Hello,
This should be a relatively simple question but I have been struggling with it. I have a capthist object with 4 different sessions (each composed of 7 occasions), imported as required using a vector of trapfiles (one for each session):
RSData<-read.capthist(captfile="RSdata_LoggedForest.txt",trapfile=c("E1_RSTrapdata_Session1.txt","E2_RSTrapdata_Session2.txt","F1_RSTrapdata_Session3.txt","F2_RSTrapdata_Session4.txt"),detector="single")
When I inspect my data (summary) everything seems to be fine and all the sessions have been appropriately specified. However, when I try and run a simple model looking at density as a function of session, secr.fit returns the following output:
>RSsecr<-secr.fit(RSData,model=list(D~session,g0~1,sigma~1))
>RSsecr
secr.fit( capthist = RSData, model = list(D ~ session, g0 ~ 1, sigma ~ 1),
  buffer = 50 )
secr 2.1.0, 15:47:17 07 Aug 2011
$`1`
Object class      traps 
Detector type     single 
Detector number   96 
Average spacing   6.546681 m 
x-range           876193.7 876324.4 m 
y-range           521046.5 521316.3 m 
$`2`
Object class      traps 
Detector type     single 
Detector number   96 
Average spacing   7.640513 m 
x-range           876302 876435 m 
y-range           521490.1 521759.1 m 
$`3`
Object class      traps 
Detector type     single 
Detector number   96 
Average spacing   8.101695 m 
x-range           871723.2 871813.8 m 
y-range           520921.8 521185.1 m 
$`4`
Object class      traps 
Detector type     single 
Detector number   96 
Average spacing   7.708401 m 
x-range           871764.1 871861 m 
y-range           520466.6 520731 m 
            1  2  3  4
Occasions   7  7  7  7
Detections 72 57 78 57
Animals    29 26 36 28
Detectors  96 96 96 96
Model           :  D~session g0~1 sigma~1 
Fixed (real)    :  none 
Detection fn    :  halfnormal 
Distribution    :  poisson 
N parameters    :  6 
Log likelihood  :  -1e+10 
AIC             :  2e+10 
AICc            :  2e+10 
Beta parameters (coefficients) 
                beta SE.beta lcl ucl
D           2.255436      NA  NA  NA
D.session2  0.000000      NA  NA  NA
D.session3  0.000000      NA  NA  NA
D.session4  0.000000      NA  NA  NA
g0         -1.714053      NA  NA  NA
sigma       2.494075      NA  NA  NA
Variance-covariance matrix of beta parameters 
NULL
Fitted (real) parameters evaluated at base levels of covariates 
 session = 1 
       link   estimate SE.estimate lcl ucl
D       log  9.5394563          NA  NA  NA
g0    logit  0.1526388          NA  NA  NA
sigma   log 12.1105241          NA  NA  NA
 session = 2 
       link   estimate SE.estimate lcl ucl
D       log  9.5394563          NA  NA  NA
g0    logit  0.1526388          NA  NA  NA
sigma   log 12.1105241          NA  NA  NA
 session = 3 
       link   estimate SE.estimate lcl ucl
D       log  9.5394563          NA  NA  NA
g0    logit  0.1526388          NA  NA  NA
sigma   log 12.1105241          NA  NA  NA
 session = 4 
       link   estimate SE.estimate lcl ucl
D       log  9.5394563          NA  NA  NA
g0    logit  0.1526388          NA  NA  NA
sigma   log 12.1105241          NA  NA  NA 
It seems secr.fit is unable to estimate loglik properly and only considers the first session, even though it acknowledges the existence of 4 distinct sessions.
If someone could point out what I am doing wrong it would be really helpful! Sorry if this is obvious.
Many thanks!
Jeremy