Hi ,
I run into a curious problem. 
I've tried to run the following model:
secr.fit(MesicBrown2011,model=list(D~session,g0~session+b,sigma~session),buffer=100,detectfn=0,trace=TRUE)
But I get 
Checking data 
Preparing detection design matrices 
Preparing density design matrix 
Finding initial parameter values... 
Initial values  D = 7.80193, g0 = 0.04695, sigma = 17.98337 
Maximizing likelihood... 
Eval     Loglik                   D     D.sessionLG1PP2     D.sessionLG1PP3                  g0    g0.sessionLG1PP2    g0.sessionLG1PP3                g0.b               sigma sigma.sessionLG1PP2 sigma.sessionLG1PP3 
   1         NA              2.0544              0.0000              0.0000             -3.0105              0.0000              0.0000              0.0000              2.8894              0.0000              0.0000 
   2         NA              2.0544              0.0000              0.0000             -3.0105              0.0000              0.0000              0.0000              2.8894              0.0000              0.0000 
   3         NA              2.0544              0.0000              0.0000             -3.0105              0.0000              0.0000              0.0000              2.8894              0.0000              0.0000 
   4         NA              2.0544              0.0000              0.0000             -3.0105              0.0000              0.0000              0.0000              2.8894              0.0000              0.0000 
So I've read about this kind of problem and some suggest that it could be du to an animal with crazy movement. In that case I could change the detection function to a exponential (2) to be able to get correct Density estimate !
I've done that and it seems to work ...
Checking data 
Preparing detection design matrices 
Preparing density design matrix 
Finding initial parameter values... 
Initial values  D = 7.86567, g0 = 0.04802, sigma = 17.7744 
Maximizing likelihood... 
Eval     Loglik                   D     D.sessionLG1PP2     D.sessionLG1PP3                  g0    g0.sessionLG1PP2    g0.sessionLG1PP3                g0.b               sigma sigma.sessionLG1PP2 sigma.sessionLG1PP3 
   1  -1447.786              2.0625              0.0000              0.0000             -2.9868              0.0000              0.0000              0.0000              2.8778              0.0000              0.0000 
   2  -1447.786              2.0625              0.0000              0.0000             -2.9868              0.0000              0.0000              0.0000              2.8778              0.0000              0.0000 
   3  -1447.786              2.0625              0.0000              0.0000             -2.9868              0.0000              0.0000          
I get proper density estimate but I'm not sure the result are ok since I've used halfnormal detection function for the rest of my data (long-term data).
Am I doing this right ?
Thanks a lot !!
Nicolas