
CHAPTER 8

‘Dead’ recovery models

The first chapters in this book focussed exclusively on live encounter ‘mark-recapture’ models,where the

probability of an individual being seen (encountered) on a particular sampling occasion was determined

by 2 parameters: the probability the animal survived and the probability that an animal alive in state r

at time i is alive and in state s at time 8 + 1.

In this chapter, we move in a new direction altogether. Recall that ‘classic’ mark-recapture focuses

on the problem of differentiating between (i) not seeing an animal because it is ‘dead’ (or permanently

emigrated from the sample area) and (ii) simply ‘missing’ it, even though it is alive and in the sample

area. In contrast, with ‘dead recovery’ analysis we are dealing with animals known to be dead (because

they are recovered in the ‘dead state’, frequently in the process of harvest).

Echoing the seminal text by Brownie et al. (1985), it is sufficiently important to clearly distinguish

between these two broad classes of sampling method (recovery and recapture) that we’ll take a moment

to elaborate on them. In the case of a recapture analysis, a single marked individual is potentially

available for ‘multiple encounters’ – i.e., the individual may be ‘seen’ or ‘recaptured’ on more than one

occasion. If you’ve worked through the preceding chapters of this book, this is entirely obvious to you.

In contrast, in a recovery analysis, data are available on only a single, terminal ‘encounter’ (generally, the

recovery event). Unlike recapture data, recovery data are treated as independent, mutually exclusive

outcomes (i.e., a marked individual could be recovered in year 1, year 2, or not at all during the duration

of the study). While this is a clear difference from a live encounter study, in fact, close examination shows

a deep similarity between the two models. The distribution of ‘dead recoveries’ reflects the realization

of a series of probabilistic events. Just as each live encounter in a live encounter history reflects the

underlying survival and encounter processes, so too does the distribution of ‘dead recoveries’.

8.1. ‘Brownie’ parameterization

Consider the following example. An individual of a harvested (‘exploited’) species is marked and

released alive. This newly marked individual can then experience one of 3 fates: (1) it can survive the

year with some probability, (2) it can be ‘harvested’ (i.e., some ‘action’ leading to permanent removal)

with some probability, or (3) it can ‘die’ from ‘natural’ causes (i.e., it might actually die from some reason

other than harvest, or permanently emigrate the sampling area, at which point it appears dead. More

on what constitutes the ‘sampling area’ for a dead recovery analysis in Chapter 9).

However, before this individual becomes ‘dead recovery data’, something else needs to happen –

the ‘harvest’ needs to be ‘reported’. This event reflects several underlying probabilistic events. Suppose

you’re a waterfowl hunter, and you shoot a bird from your blind (or ‘hide’ for much of the world). This
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in itself does not constitute a recovery, since simply shooting the bird does not give us the information

on who it is (i.e., its identification number). For this to happen, minimally (in most cases), the marked

bird needs to be retrieved (i.e., physically handled, typically). Of course, there is some chance it won’t be

retrieved. If it is retrieved, however, then it might be ‘reported’ (i.e., the identification number submitted

to some monitoring agency), or not. We’ll let S equal the probability that the individual survives the year.

We separate sources of mortality into ‘hunter’ and ‘natural’. The probability that the individual dies

from either source is simply 1− (. The probability that it dies due to hunting is K. Thus, the probability

that it dies from natural causes is (1 − ( −  ).

Now for the only real complication (that is simple enough in principle, but has several interesting

implications we will discuss later in this chapter). Conditional on being shot (i.e., killed by hunting, with

probability K), then one of 3 things can happen. The individual may not be retrieved (a fairly common

occurrence with some types of harvest – individuals are in fact killed by harvest, but the dead animal

is not physically retrieved). The probability of being retrieved is c – thus, the probability of not being

retrieved is (1 − 2). Conditional upon being retrieved, the hunter can either report the identification

number (with probability �), or not report the identification number (with probability 1 − �).

Let’s put these probabilities together, using a ‘fate diagram’ (following Brownie et al. 1985).

Thus, recovery data supplies information directly (and directly is the key operative word here) about

only those birds which are shot and reported. Thus, under this parameterization, not everything is

estimable – only the product  2� is estimable, but the component probabilities K, c and � are not.

Generally, the product  2� (often written as ��, where � =  2 = harvest rate; the probability of being

killed and retrieved by a hunter during the year) is referred to as the recovery rate, f.‗ Using these

‘product’ (summary) parameters, we can modify the preceding ‘fate diagram’ as follows:

Different assumptions about the parameters f and S give rise to the different models. In this sense,

you can loosely (very loosely) think of f and S as the equivalents of p and ! for a live recapture analysis –

‗ We note that neither ‘harvest rate’ or ‘recovery rate’ are ‘rates’ in the strict sense of the word (which implies instantaneous rates
of change). Strictly speaking, they should probably be referred to as ‘harvest probability’ and ‘recovery probability’, respectively.
However, the use of the word ‘rate’ is traditional for these models.
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clearly not in terms of what they represent, but in the fact that the ‘encounter history’ is defined by these

2 probabilities. Remember, the components of the recovery probability f (i.e.,  2�) are not estimable

without additional information (discussed later).

Let’s see how these two primary parameters (f and S) combine to determine the expected numbers

of bands recovered in a particular time period. The process is analogous to expressing the expected

numbers of individuals with capture history ‘101101’ as a function of the number released (R) and the

underlying survival and recapture probabilities.

Suppose '1 individuals are marked. How many recoveries are expected during the next year? Note,

we’re not asking specifically how many individuals are alive at the end of the 12 months following

marking (although this can be derived, obviously), but rather, how many individuals will be (i) shot by

hunters, (ii) retrieved,and (iii) reported?Look at the fate diagram on the preceding page. The probability

that an individual is harvested, retrieved and reported (i.e., theindividual is recovered) is simply f. Thus,

the expected number of the '1 released individuals we expect to be recovered in the first interval after

marking is given simply as '1 5 .

If we assume for the moment that both survival and recovery probabilities are time-specific, then the

expected number of recoveries are given as follows:

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 '2 52 '2(2 53 '2(2(3 54

3 '3 '3 53 '3(3 54

: = 4 '4 '4 54

Make sure you understand the connection between f, S, and the expected number of recoveries. (8 is

the probability of surviving from time (8 − 1) to time (8), whereas 5 (recovery rate) is the probability of

being shot (i.e., not surviving), and then being retrieved and reported. So, 5 (recovery rate) combines the

mortality event with two other events (retrieval and reporting). For example, for individuals marked in

year 1, the number of expected dead recoveries in the second interval after marking is given as '1(1 52.

Why? Well, recall that the recovery parameter 5 is the probability of the mortality event. In order for

the individual to be a dead recovery in the second interval, it has to survive the first interval (with

probability (1), and then be harvested, retrieved and reported (with probability 52). Note that survival

( does not appear on the diagonal.

Now, if you’ve already worked through the earlier chapters on mark-recapture, in looking at the table

of expected number of recoveries (above), you probably recognize right away that there are reduced

parameter models which can be fit. The expected recoveries shown in the preceding table reflect

the expectations from a time-dependent model {(C 5C}. Of course, you could fit model {(C 5·} – time

dependence in survival only, or model {(· 5·} – constant survival and recovery probabilities, or a whole

host of additional models. For the moment, let’s quickly run through how you would fit the following

4 models: {(C 5C}, {(· 5C}, {(C 5·} and {(· 5·}.

Historically, a subset of these models have been referred to by generic model names (for example,

model {(C 5C} is referred to in Brownie et al. (1985) as Model 1). In the following, we note this historical

connection – we suggest that in general you use a explicit model naming convention as we’ve used

throughout the book (and as suggested in Lebreton et al. 1992). However, it is important to understand

the historical naming conventions to allow you to easily read and interpret earlier papers and texts.
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For individuals marked as adults, our models (and their corresponding legacy names) are:

model legacy name reference

{(C 5C} Model 1 Brownie et al. (1985) pp. 15-20

{(C 5·} none

{(· 5C} Model 2 Brownie et al. (1985) pp. 20-24

{(· 5·} Model 3 Brownie et al. (1985) pp. 24-30

You might be wondering about model {(C 5·}? There is no corresponding model in Brownie et al.

(1985) because this model (which assumes the recovery probability 5 is constant over time, while

survival ( varies) is seldom applicable to the waterfowl data sets for which the model set in Brownie et

al. (1985) was developed.

8.1.1. Brownie models – PIM approach

To demonstrate how to fit these models using MARK, we’ll use data set brownadt.inp (a subset of the

brownie.inp data file distributed with MARK). brownadt.inp contains the recovery data for adult male

mallards marked in the San Luis Valley in Colorado, from 1963 to 1971. The full data set (brownie.inp)

contains data for both the adults and juveniles. For the moment, we’ll look only at the adults.

Start MARK, and begin a new project by pulling down the ‘File’ menu and selecting ‘New’. Select

the file brownadt.inp. Before we go any further, let’s have a look at the file. Again, the easiest way to do

this is to click the ‘View file’ button. Here’s what brownadt.inp looks like:

We see that the data are stored in ‘classic’ recovery matrix form. It is not necessary to format the data

this way for a recovery analysis, but it is a traditional summary format. However, remember that using

any sort of summary format, whether for a recovery analysis or for (say) mark-recapture analyses has

the major disadvantage of not allowing individual covariates (since all individuals are lumped together

in the summary). The other approach is to use the familiar encounter history format. MARK makes

use of what we refer to as the ‘LDLD’ format to code dead recovery data (and joint live encounter-dead

recovery data – this data type is covered in chapter 9). For more details on the ‘LDLD’ data format, see

Chapter 2.

There are 9 ‘sampling occasions’ in this data set, although we submit that occasions is not particularly

useful as a reference term, since it is not accurate. In mark-recapture, the occasion is used to refer to the
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point in time (i.e, the sampling occasion) upon which a marked individual was encountered. Occasions

were separated by intervals. In recovery analysis, the data refer to the total number of individuals

recovered during the interval, and not at a particular occasion.

Consider the following diagram – individuals are initially marked and live released at (say) occasion

1,but are not encountered alive at any subsequent sampling occasion (2, 3,...). All subsequent encounters

of individuals marked and live released at occasion 1 are encountered – once – as a dead recovery, in

either period 1 (i.e., interval between occasion 1 and 2), period 2 (interval between occasion 2 and 3),

and so on.

1 2 3

(initial live release)

occasion 1 occasion 2 occasion 3

dead encounters dead encounters

Thus, for dead recovery analysis, it is more appropriate to refer to the intervals themselves. In this

example, we have 9 years (; = 9) of recovery data (as it turns out, ranging from 1963 to 1971). The

bottom row indicates the number of newly marked individuals released at the start of each year (note

that the year doesn’t necessarily start with January 1 – it could be that ‘year’ refers to the 12-month

interval between hunting seasons, for example). So, at the start of what we refer to as 1963, 231 newly

marked adult mallards were released. Of these, 10 were recovered during the first 12 months following

this release, 13 were recovered the next year, and so forth. Birds were marked and released each year

of the study – in other words, there are : = 9 rows of recovery data in the data file (i.e., the recovery

matrix is symmetric, : = ;). This becomes important later on, so keep the fact that ‘: = ;’ in the back of

your mind. Set the number of encounter occasions in MARK to 9.

Now we need to select the data type. Remember, MARK ‘can’t tell’ the sort of data (or analysis)

you are interested in from the data – you have to ‘tell it’. Now, if you look at the data type list in the

MARK specification window, you’ll see a radio-button corresponding to ‘Dead Recoveries’. If you

select this radio-button, a small window will pop up as you to pick a dead recovery data type. Three are

listed: ‘Dead Recoveries (Seber)’, ‘Dead Recoveries (Brownie et al.)’, and ‘BTO Dead Recoveries

and Unknown Ringings’.

We’re starting with the ‘Brownie’ approach, even though it is not the first one presented in the MARK

data type menu,simply because it is the ‘classic’ approachused in the vastmajority ofpublishedrecovery

analysis. So, as shown, select the ‘Dead Recoveries (Brownie et al.)’ data type from the list, and then

click the ‘OK’ button. You should now see the survival (S) PIM on the screen (just as with live encounter

Chapter 8. ‘Dead’ recovery models



8.1.1. Brownie models – PIM approach 8 - 6

– recapture – data, MARK defaults to opening up the ‘survival’ PIM). However, there are some subtle

but important differences between the survival and recovery PIMs, at least when using the Brownie

parameterization.

To explore this, let’s also open up the recovery (f ) PIM for comparison.

Woah – wait a second! These two PIMs don’t have the same number of rows and columns – is this

a mistake?! No! This is exactly the way it should be. Of course, now you need to consider why this is

true. Look again at the table of expected recoveries, and the associated probability expressions – below

(here, we are considering only 4 years (; = : = 4), but the principle is exactly the same):

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 '2 52 '2(2 53 '2(2(3 54

3 '3 '3 53 '3(3 54

: = 4 '4 '4 54

The key is to look carefully at the probability expressions in each cell. Remember that in the case of

live mark-recapture, the PIMs are (in effect) constructed from the subscripts of the parameters in the

corresponding probability expressions. What about for dead recovery analysis? Look at the subscripting

of the two primary parameters, S and f. If you look along the first row (the row with the greatest number

of columns – i.e., years), we see that the subscripting for recovery probability f ranges from ‘1’ to ‘4’. In

contrast, we see that the subscripting for survival, S, ranges from ‘1’ to ‘3’ only. Thus, the PIM for S will

necessarily be ‘smaller’ (i.e., reduced dimension) than the PIM for recoveries.

Make sure you understand why – the key is in the first year following the release of newly marked

individuals. Consider the first cohort, where '1 individuals are marked and released. As noted earlier,

during that first year after marking and release, the expected number of individuals recovered is '1 51
– there is no ( term since ( denotes survival. An individual cannot survive the interval and also be

recovered during the interval (since a recovery implies mortality). The survival term ( shows up only

in years after the first year following marking (i.e., years 2, 3, 4...). Why? Again, as noted earlier, this is

because in order to be recovered in (say) year 2 after marking, the individual must have survived year

1 (thus, the expected number of recoveries in the second year after marking is '1(1 52).
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Witha bitof thought,you might think that these ‘asymmetric’ PIMs mighthave implications forwhich

parameters are individually identifiable. You would be correct – more on parameter identifiability in a

moment. For now, let’s proceed and run this model (we’ll call it model ‘S(t)f(t)’).

Here are the parameter estimates from fitting this model to the data:

We see a couple of things: as expected, there is one more recovery parameter estimated than survival

parameters (8 survival, 9 recovery). And, we see that all of the parameters are separately estimable.

More on parameter counting, and estimability in a moment.

Where do the estimates come from? While the formal development of the likelihoods for the data are

presented in Brownie et al. (1985), we can develop an intuitive feel for the estimates by having another

look at the expected number of recoveries, assuming time-variation in both survival and recovery:

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 '2 52 '2(2 53 '2(2(3 54

3 '3 '3 53 '3(3 54

: = 4 '4 '4 54

Let’s focus in on the shaded elements in the column corresponding to recovery year 2. The first lighter

shaded element is the number of recoveries of individuals marked in year (cohort) 1 that we expect to see

in year 2 ('1(1 52). Because these recoveries occur after the interval following marking, they are usually

referred to as indirect recoveries.

The second element (slightly darker shading) is the number of recoveries of individuals marked in

year (cohort) 2 that we expect to see in year 2 ('2 52). Because these recoveries occur during the interval
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immediately following marking, they are usually referred to as direct recoveries.‗ Note that in terms of the

( and 5 parameters, these two elements differ only in terms of the parameter (1 – the indirect recoveries

are the product of number released and the recovery rate only, whereas the indirect recoveries requiring

surviving to later sampling intervals.

But, the actualexpectednumber is also a function of the numberofnewly marked individuals released

('1 , '2). If the number of newly marked individuals released in each cohort was the same (i.e., '1 =

'2 = '), the intuitive estimator for (1 could be derived by taking the ratio of the two expectations:

(̂1 =
�'(1✓✓52

�'✓✓52
= (1

Generally, though, the number of newly marked and released individuals, based on opportunistic

samples from the population of interest, will vary from year to year. As a result, we need slightly more

complex ‘intuition’ to understand where the estimates reported by MARK come from.

To start, it will help to look at the <8 9 table (the basic idea was introduced in Chapter 5), for the ith

release cohort, and the jth year of recoveries:

year recovered

year marked number marked 1 2 3 9 = 4 total

1 '1 <11 <12 <13 <14 A1

2 '2 <22 <23 <24 A2

3 '3 <33 <34 A3

8 = 4 '4 <44 A4

total <1 <2 <3 <4

∑

8 A8(=
∑

8 <8)

where

<8 9 = the number from the ith release that are recovered in year 9 (assuming tags are

reported in the same year),

< 9 = the total number of tags recovered in year 9 ,

A8 = the total number of tags recovered from the ith release.

Seber (1970) also introduced

I8 = the number of tags recovered after the ith release from the first (8 − 1) releases that

are not recovered in year 8, but which are recovered later, 8 = 2, 3, . . . ,

)′
8 = <8 + I8 , the number of tags recovered after the ith release from the first i releases

(8 = 1, 2, . . . ).

The key random variables are A8 , <8 , and )′
8 .

[While the meaning of the variables A8 and <8 are pretty straightforward, it is perhaps easier to grasp

)′
8 as the accumulated sum over C recovery samples as )′

8 =
∑C
9=8 <19 +

∑C
9=8 <29 + · · · +

∑C
9=8 <8 9. In other

words, )′
1 = A1, and )′

8 = )
′
8−1 + A8 − <8−1. Thus, )′

2 = )′
1 + A2 − <1 = A1 + A2 − <1, and so on.]

From Seber (1970), the probability of mortality in a given year 8 and having the tag reported (i.e., the

recovery probability, 59) is simply:

‗ Simply put: direct recoveries occur along the diagonal – the interval immediately following marking, while indirect recoveries
occur off the diagonal – intervals later than the interval following marking.
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58 = Pr[ tag recovered in year 8 | tag recovered after ith release ]

× Pr[ tag recovered after ith release ].

Start with the second bit – the overall probability that the tag released in year 8 will be recovered.

Following Seber (1970), we’ll call this probability �8 . The obvious estimate of this probability is simply

the proportion of the total number released that are recovered by the end of the experiment: �̂8 = A8/'8 .

The other bit – the conditional probability that a tag will be recovered in year 8, given that it is recovered

at all after the ith release – is simply <8/)
′
8 . Therefore, we can derive an estimator for 58 as

5̂8 =
<8

)′
8

· �̂8 .

What about survival, (8? With a ‘bit of algebra’, Seber (1970) showed that

(̂8 =
)′
8 − <8

)′
8

·
�̂8

�̂8+1

.

Arguably, not particularly intuitive. But, we can (after a bit more algebra) re-write this expression as

(̂8 =
)′
8 − <8

)′
8

·
�̂8

�̂8+1

=
�̂8 − 5̂8

�̂8+1

.

Look again at the ratio we considered for (̂1:

'1(1 52
'2 52

=

(

'1 52
'2 52

)

· (1.

In order to suffermortality in interval2,you need to survive interval1. The denominator is the number

released in cohort 2, times the recovery probability for interval 2 – in other words, the total number of

recoveries from the second release cohort expected in interval 2. The numerator is the expected number

of the first release cohort that survive the first interval, but die and are recovered in the second interval.

To handle the possibility that'1 ≠ '2, we consider a function of the ratio of the two (in fact, as expressed

in the preceding expression).

But, instead of the relative numbers of individuals released,we’re interested in the relative proportion

of those individual that are recovered (die), and what fraction of those die in the second interval. Look

again at

(̂8 =
�̂8 − 5̂8

�̂8+1

.

You should now see the connection (at least at some intuitive level).

OK, enough algebra. Let’s see if we can reconstitute the estimates for (1 and 51 that MARK reports.

From a couple of pages back, MARK returns (̂1 = 0.5790621, and 5̂1 = 0.0432900.
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To work out these values ‘by hand’, we’ll need to look at the m-array data for this data set:

So, in year 1, there were '1 = 231 total individuals newly marked and released, of which a total of

A1 = 37 were recovered by the end of the experiment, <1 = 10 of them in the first year. And so on.

Let’s start with 5̂1. From above,

5̂8 =
<8

)′
8

· �̂8 .

From the preceding m-array table, �̂1 = A1/'1 = 37/231 = 0.160173. Since )′
1 = A1 = 37, then

5̂1 =
<1

)′
1

· �̂1

=
10

37
(0.160173)

= 0.0432900,

which is what is reported by MARK.

For (̂1, recall that

(̂8 =
�̂8 − 5̂8

�̂8+1

.

From the m-array, �̂1 = 0.160173 (above), and �̂2 = A2/'2 = 131/649 = 0.201849. So,

(̂1 =
�̂1 − 5̂1

�̂2

=
0.1168832

0.201849

= 0.5790624,

which again is what is reported by MARK. And so on for the other estimates.

Whew! Let’s let MARK do the ‘heavy lifting’ going forward (by working with the likelihood), and

return to fitting the remaining models in our candidate model set. If you’ve worked through the

preceding chapter of this book, it should be immediately obvious how to fit the other models in our

candidate model set (again, the most efficient way is by manipulating the PIM chart).
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Go ahead and run the remaining 3 models, and add the results to the browser:

We see clearly that model {(· 5C} (Model 2, sensu Brownie et al. 1985) and model {(C 5C} (i.e., Model

1, sensu Brownie et al. 1985) are the ‘best’ two models out of the four in the model set (since they are

clearly better supported by the data than are the other two models). Among these two models, model

{(· 5C} is almost 4 times better supported by the data than is the fully time-dependent model {(C 5C}.

Using the classical ‘model comparison’ paradigm, the LRT between these two models confirms the

‘qualitative result’ from comparisons of the Akaike weights; the fit of model {(· 5C} was not significantly

different from that of model {(C 5C} ("2
= 11.42, % = 0.121), so we accept model {(· 5C} as our most

parsimonious model, and conclude there is no ‘significant’ evidence of time-dependence in survival in

these data.‗

Now we come to the first challenge of the exercise – which we hinted at earlier in the initial discussion

of the ‘asymmetry’ of the PIMs. How are the number of parameters determined? Which parameters

are identifiable in each of the models?

8.1.2. Brownie models – the DM approach

In the preceding section, we constructed and fit some fairly standard models to our example data by

manipulating the PIM structure underlying the model(s). Here, we demonstrate how you would build

the same 4 models, using an approach based on the design matrix (DM). As introduced at length in

Chapter 6, and applied in terms of age and cohort models in Chapter 7, in general you are encouraged

to build models based on the DM, since it offers the most flexibility in terms of the types of models you

might want to build.

In at least one respect, constructing Brownie models bears an apparent similarity with the age-based

models introduced in Chapter 7. Recall that for individuals marked as young, subjected to subsequent

live encounter, that there was one fewer year in the data for adults in the data than there was for juveniles

(because, for individuals marked as young, there are no adults in the first year). Here, we are not dealing

with a ‘marked as young’ data set, but because there is one more recovery survival probability than

survival probability. This might suggest that you would approach constructing the DM in much the

same way as we did for the age-based model(s) in Chapter 7.

There is an important difference, though. For the age-based models in Chapter 7, we were building

the DM for ‘young’ and ‘adults’ for the same parameter (say, apparent survival, !). So, we had a common

intercept for the parameter, an ‘age within sample’ grouping variable (column) for ‘young’ and ‘adult’,

followed by the time and (age × time) interactions. The time codings differed between the ‘young’ and

‘adult’ groups.

Here, though, for Brownie models, we have different numbers of years represented between two

different parameters: survival and recovery. So, no common intercept. Each parameter has its own

intercept, and respective time coding. So, in fact, building the DM-based Brownie models equivalent

‗ You can run a classical LRT – likelihood ratio test – in MARK simply by selecting the ‘Tests | LR tests’ menu option. This
option assumes you will correctly select only nested models, for which the LRT is valid (as discussed in Chapter 4).
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to those we constructed in the previous sections using PIMs is comparatively straightforward. For the

brownadt.inp data set,

Let’s start with the most general model: {(C 5C}. For these data, recall (from above) that we have 9

years of marking and recovery data. So, for model {(C 5C}, that means 9 recovery parameters ( 51 → 59),

and 8 survival parameters ((1 → (8). Building the DM for model {(C 5C} should be straightforward

– 9 recovery parameters, so 8 columns coding for recovery intervals (1 intercept, plus 8 for the time

intervals = 9 total columns for recovery), and 8 survival parameters, so 7 columns coding for recovery

intervals (1 intercept, plus 7 for the time intervals - 8 total columns for survival).

Here will speed things up by looking at the DM that MARK would construct for you, by using the

‘Design | Full’ option:

As expected, we see 8 total columns for survival (upper-left), and 9 total columns for recovery (lower–

right). Also, note that we don’t need to do anything special with respect to the time coding, to indicate

that survival parameters are for years 1 → 8, while the recovery parameters are coded for years 1 → 9 –

because it is the same ‘first year’ forboth parameters. This was not the case for the age models introduced

in Chapter 7, where for individuals marked as young, adults were present in the marked sample starting

in the second year of the study (whereas the young individuals were marked in the first year). So, for

age models, we had to pay attention to which age classes were present in which years. Not the case here

for the Brownie analysis of these sample data.

If we run this model, and add the results to the browser (below) we see (perhaps not surprisingly)

that we get the same fit to the data as the same model built using PIMs:

Building the remaining models in our candidate model set ({(C 5·}, {(· 5C} and {(· 5·} should be easy

enough – simply delete the appropriate time column(s) from this DM.
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8.2. Counting parameters – Brownie parameterization

Let’s start by having yet another look at the table of expected recoveries for the simpler 4 year study. As

structured, this corresponds to model {(C 5C} – full time-dependence in both the survival and recovery

parameters.

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 '2 52 '2(2 53 '2(2(3 54

3 '3 '3 53 '3(3 54

: = 4 '4 '4 54

How many of these parameters are identifiable? The key to answering this question is to see whether

or not there are any ‘groups’ of parameters that always occur together, and never apart. In the preceding

table, we see that no such ‘groups’ exist – every parameter ((1 → (3) and ( 51 → 54) occurs either alone

or in unique combinations. As such, all 7 parameters are identifiable.

In general, for model {(C 5C}, the number of identifiable parameters is 2: − 1 (where : is the number

of release cohorts). However, as we’ll see in a minute, this isn’t always the case.

What about model {(· 5C}? The probability statements for this model are:

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1( 52 '1(( 53 '1((( 54

2 '2 '2 52 '2( 53 '2(( 54

3 '3 '3 53 '3( 54

: = 4 '4 '4 54

In this case, all 5 parameters are identifiable – ( and ( 51 → 54).

Now, at this point you might be saying ‘Gee...in both cases, all the parameters are identifiable...is this

always the case?’. If only life were that simple! Consider the situation shown below:

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 '2 52 '2(2 53 '2(2(3 54

: = 3 '3 '3 53 '3(3 54

The first notable feature is that : ≠ ; (i.e., the number of rows in the recovery matrix, : = 3, is

less than the number of columns – years of the study, ; = 4). This sort of situation is not uncommon.
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Marking individuals can be time consuming, and expensive, but collecting the recovery data is passive,

inexpensive (generally), and continues as long as there is hunting, potentially well after marking has

ended. In this case, recovery data were collected for B = 1 year (B = ; − :) after the cessation of marking.

begin sidebar

Formatting the recovery matrix when k ≠ l

When : ≠ ; (typically when the number of years of marking is less than the number of years over

which recovery data are collected – i.e., : < ;), does this influence the structure if the data .INP file?

The answer, as you may recall from Chapter 2, is ‘yes’. You need to add ‘0’s for the ‘missing elements’

of the recovery matrix. For example, if : = 3, ; = 5, the recovery matrix would look like:

'1 '2 '3 '4 '5;

'2 '3 '4 '5;

'3 '4 '5;

0 0;

0;

'1 '2 '3 0 0;

end sidebar

Now, if you read Brownie et al. (1985), you’d eventually come to a point where you’re told

‘In general,underModel 1 (i.e.,(C 5C), the parameters 51, 52 , . . . , 5: and(1, (2, . . . , (:−1 are separately

estimable, but if B > 0 (where B = ; − :), only products such as (: 5:+1, (:(:+1 5:+2, . . ., (:(:+1, . . .,

(:+B−1 5:+B are also estimable, not the individual parameters (:+9−1, and 5:+9, 9 = 1, . . . , B.’

OK, now to translate – look carefully at the table of probability expressions at the top of this page (for

the time-dependent model {(C 5C}, where : < ;). We mentioned previously that the key to identifying

inestimable parameters is to look for ‘groups’ of parameters that are never separated. Do we have any

in this table? In fact, we do in this case. Notice that the parameters (3 and 54 always occur together as

the product (3 54 (i.e., whenever you find 54 you always find (3). So, they are not separately identifiable.

But you might say ‘Well, (2 and 53 always occur together, as do (1 and 52, so are they identifiable?’.

The answer in those cases is ‘yes’, because for those years (3 and 2, respectively), the last element of the

column is simply the product of the number released and the recovery probability – no survival term.

In contrast, in column 4, every element of the column has the products of the survival and recovery

probabilities.

Why does this matter? It matters because it is these final elements of the columns 2 and 3 which allow

you to estimate the various parameters. Also, with : = 3, columns 1 to 3 correspond to ; = 3 (i.e., form a

symmetrical recovery matrix), and thus all parameters are identifiable. In column 4, this is not the case,

since all elements of column 4 contain at least one product in common ((3 54).

Thus, in this example, (1 and 52 are separately identifiable, as are (2 and 53, but only the product

(3 54 is identifiable, so 5 parameters in total (4 individual, and 1 product). In general, estimates of the

products are not of particular interest, since, for example, (3 54 is the probability of surviving year 3 and

being shot and reported in year 4.

However, non-identifiability can ‘vanish’ with a reduction in complexity of the model. You may recall

this from the mark-recapture chapters, where non-identifiability did not occur in reductions from the
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fully time-dependent model. The same is true here. If survival probability S is constant over time, for

example, then

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1( 52 '1(( 53 '1((( 54

2 '2 '2 52 '2( 53 '2(( 54

: = 3 '3 '3 53 '3( 54

In this case, because estimation of S is based on data from all years, there is no problem on non-

identifiability – both S and all of the recovery parameters are estimable.

However, although everything is estimable, Brownie et al. (1985) notes that for years > :, estimates of

recovery probability tend to be poor,because they are based on so few data. So, in this example, 54 would

likely be poorly estimated, since they are based entirely on recoveries from > 1 year after marking.

begin sidebar

Counting parameters in Brownie models: a different approach

If you’re still confused about how to determine which parameters are estimable in Brownie models,

here is another way of approaching the problem which might be more intuitive. Consider the following

example recovery matrix, which is based on 4 release occasions where individuals are newly marked

and released live:

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 '2 52 '2(2 53 '2(2(3 54

3 '3 '3 53 '3(3 54

: = 4 '4 '4 54

We’ll introduce the approach by considering two ‘problem’ situations – (1) no recoveries in a given

year, and (2) no mark-release effort in a given year.

We’ll consider the problem of no recoveries in a given year first. For the preceding recovery matrix,

the most direct way to get an estimate of (1 is algebraically, by comparing the two cells in column 2 of

the recovery matrix (above). You have information on 52 from direct recoveries (along the diagonal),

and information on the product of (1 52 (based on the indirect recoveries from the first release cohort).

This constitutes two equations in two unknowns, which is easily solved for (1. If 52 = 0 (as would

be the case if there were no recoveries in year 2 of the study), then there is no information on (1 in

column 2.

However, looking at column 3, you can derive an estimate of (1 from the combination of data from

the top two cells in this column, and derive an estimate of (2 from the combination of data from

the bottom two cells in that column, assuming that there were recoveries in year 3. Normally you

would not do these things, because (1 and (2 are also found in other cells in the model. The Brownie

models use all information from all of the cells in the recovery matrix, to maximize precision. However,

this ‘algebraic’ approach at least tells you whether the minimum data necessary for estimation of a

particular parameter are available, given the absence of recoveries in one or more years of the study.

A somewhat more difficult problem arises when you also have years where you do not release

any animals (as introduced earlier this chapter). In this case you are taking out an entire row of the

recovery matrix.
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For example, as shown in the following recovery matrix:

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 0 0 0

3 '3 '3 53 '3(3 54

: = 4 '4 '4 54

In this example, we did not release any animals in year 2, and thus an entire row of the recovery

matrix is set to 0. In this case, if you use the same algebraic approach described above, you will see

that you lose your ability to estimate (1 and (2. You don’t have direct recovery information on 52 and

therefore cannot use it to extract (1 from the product (1 52. In addition, you lose information on the

product (2 53, and therefore again cannot use it to algebraically ‘solve’ for (2. The best you can do in

this case is estimate the product (1(2. In general, then, when you do not release animals in year t, you

cannot get separate estimates of (C−1 and (C .

end sidebar

Now that we’ve had a brief look at some of the considerations for counting parameters under the

Brownie parameterization, let’s return to the adult mallard example we have been working with. At this

point, you should be able to figure out why model {(C 5C} (for example) has 17 identifiable parameters.

Since (:− ;) = 9, then we have (:+ ;−1) identifiable parameters: 9 recovery probabilities, and 8 survival

rates. For model {(· 5C} we have 10 identifiable parameters: 1 survival, and 9 recovery probabilities.

8.3. Brownie estimation: individuals marked as young only

In the preceding mallard example, we noted in passing that the data set consisted entirely of individuals

marked as adults. What happens if you face the situation where you have only individuals marked as

young? Can you still estimate survival and recovery probabilities? Are all parameters identifiable?

This general question is dealt with thoroughly in Brownie et al. (1985), pp. 112-115, and the associated

paper by Anderson, Burnham & White (1985), reprinted in full as an Appendix in Brownie et al. (1985).

These references should be consulted for a full treatment of the problem. Our motive here then is to ‘test

you’ on your ability to determine which parameters are identifiable, and which are not. Paraphrasing

Brownie et al. (1985), marking of young individuals only is often popular because it is often easier, and

less expensive (young are typically easier to catch than adults or sub-adults).

However, in most cases (perhaps even in all cases), survival of young individuals is typically lower

than the survival of older age classes, Also, first year (direct) recovery probabilities are typically higher

than for older, adult individuals (this is to some degree a logically consistent statement, since some

mortality, the complement of survival, is ‘hidden’ in recovery rate).

Given this, we first need to consider what an appropriate model would be for modeling recoveries

from a sample of individuals marked as young. Brownie et al. (1985) describe a ‘model H1’ as an

appropriate model for these sorts of data (pp. 59-62). Its structure is shown at the top of the next page

for a situation where : = ; = 4.

In essence, model H1 is model {(C/C 5C/C} – an age structured model with 2 age-classes with time-

dependence for each class. If you worked through the preceding chapters on mark-recapture (Chapter 7

in particular), you should quickly recognize this structure, at least qualitatively. Along the diagonal,
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expected recoveries – Model �1

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 5
∗
1 '1(

∗
1 52 '1(

∗
1(2 53 '1(

∗
1(2(3 54

2 '2 '2 5
∗
2 '2(

∗
2 53 '2(

∗
2(3 54

3 '3 '3 5
∗
3 '3(

∗
3 54

: = 4 '4 '4 5
∗
4

the recovery probabilities (denoted with an asterisk, *) reflect the recovery probabilities for young

individuals, whereas the off-diagonal recovery probabilities (no asterisk) refer to recovery probabilities

for adult age classes (remember that time, and thus age, increase going from left to right within a cohort

– along a row). The survival rates marked with an asterisk (which form an internal diagonal within each

column) represent survival during the first year of young individuals.

Now, what (if anything) can be estimated here? With a bit of thought, and looking carefully at

the preceding table, you should see that the direct recovery probabilities 5 ∗ are estimable (recall that

direct recovery probabilities are the recovery probabilities estimated for the first interval following

marking). However, without extra information, (∗ – the survival probabilities of young over the interval

following marking – are not estimable, no matter what simplifying assumptions are made about how

the probabilities vary over time.

Remember the trick is to look for parameter ‘groups’ that always occur together. Consider the

following attempt to simplify the structure of this model in an attempt to ‘make the parameters

identifiable’. Assume that none of the 4 parameters (S, (∗, 5 and 5 ∗) vary over time (i.e., model (./. 5./.).

The structure of this model would be (again assuming : = ; = 4):

year recovered

year marked number marked 1 2 3 ; = 4

1 '1 '1 5
∗ '1(

∗ 5 '1(
∗( 5 '1(

∗(( 5

2 '2 '2 5
∗ '2(

∗ 5 '2(
∗( 5

3 '3 '3 5
∗ '3(

∗ 5

: = 4 '4 '4 5
∗

Note that the parameters (∗ and 5 always occur together as a product. In fact, this demonstrates why,

even in this simple model, these two parameters cannot be separately estimated – only the product (∗ 5

can ever be estimated if no adults are marked.

Moral: don’t mark only young individuals if you plan on using a dead recovery analysis alone to

estimate parameters of interest – it is doomed to fail, and make your analysis quite difficult, if even

possible.‗

‗ An approach combining data from dead recoveries and live encounters which can be applied (successfully) to individuals
marked as young only is described in the next chapter. Other approaches, based on various assumptions and constraints, can
be found in Catchpole et al. (1996, 1998), and references therein.
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8.4. Brownie analysis: individuals marked as young + adults

One of the unintended (yet important) messages of the preceding section was that recovery analysis

of only individuals marked as young is ultimately futile. Of course, you should also understand that

this statement is true only for recovery analysis – at least when contrasted to standard mark-recapture

analysis, which has no such structural limits.

But, the question remains – how can you get age-specific estimates from a recovery analysis? The

answer is, in fact, fairly straightforward – you mark both young and adults, and analyze their recovery

data together. The reason we do this (as we’ll see in a moment) is that the ‘extra information’ provided

from the adults allows us to estimate some parameters we wouldn’t be able to estimate using young

alone.

The background for analyzing individuals marked both as young and adults using the Brownie

parameterization is found in Brownie et al. (1985) – see pp. 56-115. As in Brownie et al. (1985), we’ll start

with a very general model – what is referred to as ‘Model H1’ in the Brownie text (which we introduced in

the preceding section). Model H1 assumes (1) that annual survival, reporting and harvest probabilities

are year-specific, (2) annual survival and harvest probabilities are age-dependent for the first year of

life only, and (3) reporting probabilities are not dependent on the time of release.

As with the preceding discussion on individuals marked as young only, we’ll let 5 ∗8 be the recovery

probability in year (i) for individuals marked and released as young in year (i). (∗8 will represent the

survival rate for year (i) for individuals marked and released as young in year (i). 58 and (8 will represent

the adult recovery and survival rates in year (i), respectively. Now, let’s examine the structure of Model

H1, again using a table of the probability expressions corresponding to the number of expected direct

and indirect band recoveries.

year recovered

Year marked Number marked 1 2 3 ; = 4

marked and released as adults

1 '1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

2 '2 '2 52 '2(2 53 '2(2(3 54

3 '3 '3 53 '3(3 54

: = 4 '4 '4 54

marked and released as young

1 "1 "1 5
∗
1 "1(

∗
1 52 "1(

∗
1(2 53 "1(

∗
1(2(3 54

2 "2 "2 5
∗
2 "2(

∗
2 53 "2(

∗
2(3 54

3 "3 "3 5
∗
3 "3(

∗
3 54

: = 4 "4 "4 5
∗
4

For marked adults, the assumptions of Model H1 are the same as those of Model 1 (i.e., model(C 5C), so

the expected recoveries from individuals marked as adults are the same under Model H1 and Model 1.

For individuals marked as young, if"1 are marked and released in the first year, then on the average

we would expect"1 5
∗
1 recoveries in the first yearaftermarking,and"1(

∗
1 of the release cohort to survive

to adulthood (i.e., to survive the year). At the start of the second year, "2 new individual young are
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marked and released. In addition, the "1(
∗
1 survivors from the first release cohort (now adults) are also

released. The important thing to remember is that in the second year, these "1(
∗
1 survivors will reflect

the adult probabilities 52 and (2, giving on average "1(
∗
1 52 recoveries and "1(

∗
1(2 survivors. And so

on for each successive cohort and recovery year.

From the table of expected recoveries for Model H1 we see that the off-diagonal elements of the

recovery matrix for individuals marked as young provide information about the adult probability

parameters:

year recovered

Year marked Number marked 1 2 3 ; = 4

marked and released as young

1 "1 "1 5
∗
1 "1(

∗
1 52 "1(

∗
1(2 53 "1(

∗
1(2(3 54

2 "2 "2 5
∗
2 "2(

∗
2 53 "2(

∗
2(3 54

3 "3 "3 5
∗
3 "3(

∗
3 54

: = 4 "4 "4 5
∗
4

It is the presence of the ‘adult’ parameters in the off-diagonal cells that can be exploited to provide

extra information needed to estimate parameters that might not be estimable otherwise.

Let’s now consider Model H1. In fact, when you installed MARK, you’ll find that this model (and 2

others) have already been ‘done for you’. During the installation, a set of files named BROWNIE.xxxwere

extracted into the \examples sub-directory where MARK was installed. Open up BROWNIE.DBF. The

results shown in the browser were derived by fitting the 3 models listed to the data in brownie.inp,

which are in fact the mallard data from San Luis Valley, California we considered before – only now

we’re looking at both the recoveries for individuals marked as young and for individuals marked as

adults.

Before we continue, let’s have a quick look at the .INP file format for these data – how do we put both

the adult and young recovery matrices into the same input file? As it turns out, it is very simple.

Near the top of the file, you’ll see the two recovery matrices, for individuals marked as adults and
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young, respectively (the order is arbitrary, as long as you remember which one comes first). Note that

the two recovery matrices are simply entered sequentially, each one preceded by a ‘RECOVERY MATRIX

GROUP=n’ statement. That’s really all that’s needed. The text that is /* commented */ out is a holdover

from the days when these data were run through BROWNIE (one of the original programs for running

these sorts of data). MARK simply ignores the commented out text (as it should).

8.4.1. marked as young + adult – the PIM approach

Now let’s look at the models themselves. We’ll start by constructing the models using PIMs. You might

guess from inspection of the table of expected recoveries under model H1 (shown on the preceding page)

that this model is in fact model {(6∗(C, C/C) 56∗(C, C/C)} – two age classes for both parameters for individuals

marked as young, with time-dependence in each age class. This is model ‘S(a*t)f(a*t)’ in the browser

(although we prefer a more informative subscripting). The PIMs are shown below starting with survival,

S, for marked as adults and marked as young respectively:

Now, the recovery PIMs, again for marked as adults and marked as young, respectively.
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Note that there is no ‘age structure’ to the adult survival or recovery PIMs. This is because we do

not a priori expect differences in the direct recovery or survival rate from the indirect probabilities for

individuals marked as adults. In contrast, note the age-structure for survival and recovery PIMs for

individuals marked as young. Again, the age-structure here is because we believe, a priori, that survival

(and recovery) in the year following marking (i.e., the direct rates), will differ from the probabilities > 1

year after marking (when the surviving individuals are adults).

However, what is important to note here is that the parameter values appear to overlap. Consider

the survival PIMs. For individuals marked and released as adults, it is a simple time-dependent PIM,

with parameter indexing from 1 → 8. For individuals marked and released as young, there are 2 age-

classes. The indexing for the first age-class (along the diagonal) goes from 9 → 16. However, off the

diagonal, the indexing ranges from 2 → 8. In other words, off the diagonal, the indexing for the young

individuals is the same as that for the adults. Why? Because off the diagonal, individuals marked as

young are adults! Remember, time (= age) within cohort goes left to right. You have actually seen this

before – it was discussed in some detail in Chapter 7.

Now, implicit in how the PIMs are indexed is the assumption (in this case) that adult survival (8 does

not depend on whether or not the individual adult released (or entering) at occasion (i) was originally

marked as an adult or not. As we will discuss in the next chapter, this may be a ‘strong’ (i.e., debatable)

assumption in some cases.

What about the recovery PIMs? Again, much the same thing – simple time-dependence for adults

(indexing ranging from 17 → 25), and age-structurewith time-dependence in both age classes for young

(26 → 34 along the diagonal for direct recovery probabilities, and 18 → 25 for the adult age-class).

To get a different (and perhaps more intuitive view) of the overlapping structure of the PIMs, simply

take a look at the PIM chart (shown at the top of the next page), where you can see clearly the overlap

between the ‘marked as adult’ and ‘marked as young’ PIMs:
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Now, let’s have a look at the results. Close the PIM chart and click on the ‘View estimates’ button

on the results browser toolbar:

Note from the browser that 34 parameters were estimated for this model (Model H1). If you look at

the PIMs, you’ll see that this is the total number of parameters in the structure of the model. And, the

estimates (above) show that indeed, all 34 parameters are estimated.

Thus, under Model H1, when : = ; (as it does in this example), all the parameters are estimable –

including the young survival and recovery probabilities. Clearly, this is a significant improvement over

the case using only individuals marked as young, where essentially nothing was estimable!

8.4.2. marked as young + adult – the DM approach

If you look at the PIM chart on the preceding page, the overlap of the PIMs for the adult age classes

for both survival and recovery parameters might remind of ‘similar’ overlapping structures introduced

in Chapter 7 (in particular, section 7.3.2). However, we need to remember that for this problem, we

really do have 2 distinct groups: marked as young, and marked as adults. As such, the DM is quite

straightforward.
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As we did a preceding example where we analyzed recovery data from ‘marked as adults’ only, we

might try to make use of the ‘Design | Full’ option. However, if you do, MARK will respond with an

‘error message’:

The message is self-explanatory – MARK cannot automatically construct the ‘full’ design matrix

unless the PIM is ‘fully time-specific’. Here, the PIMs for the ‘marked as young’ individuals (shown a

couple of pages back) have ‘age structure’ (i.e., are not fully time-specific): the indexing along the first

diagonal differs from the corresponding indexing off the diagonal.

So, for this problem, you’ll need to build the DM by hand. Simply select ‘Design | Reduced’, accept

the default 34 parameters, and proceed from there. Construction should be straightforward. Start with

the linear model for survival, (. Let the variable ‘AM’ represent the ‘age of marking’ (young, or adults):

logit((̂) = AM + TIME + AM.TIME

= �1 + �2(AM) + �3(t1) + �4(t2) + �5(t3) + �6(t4) + �7(t5) + �8(t6) + �9(t7)

+ �10(AM.t1) + �11(AM.t2) + �12(AM.t3) + �13(AM.t4) + �14(AM.t5) + �15(AM.t6) + �16(AM.t7).

Our linear model has 16 � parameters, matching the 16 parameters shown in the survival PIMs a

couple of pages back.

Here is the completed DM corresponding to the survival parameter ((8) for model �1:

Building the linear model and corresponding DM for the recovery parameter, 5 , follows the same

process – except you need to remember that there is one more recovery parameter than survival
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parameter. So, 18 total parameters for recovery, compared with the 16 total parameters for survival,

for a total of (16 + 18) = 34 total parameters.

Once you’ve built the DM, run the model and add the results to the browser. What do we see?

Hmmm – we see that the DM-based model is estimating only 33 parameters, instead of 34. So, we

might decide to simply ‘correct’ the parameter count, by manually changing the number of parameters

to 34.

In fact, for this problem, manually changing the number of parameters won’t help. Look closely at the

model deviance. It is different than the corresponding value for the PIM-based model. If the DM-based

model is equivalent to the PIM-based model, they should be the same. In general, if the deviances are

the same, but the number of parameters differ, then the reason is probably a parameter (or two) that

are simply poorly estimated. On the other hand if as in this case the deviances are different, then there

is a more fundamental issue.

If you look at the estimates from the DM-based model, you’ll get a clue as to what the problem is –

look at the highlighted estimate for parameter 14 (below):

We see that parameter 14 is estimated ‘at the boundary’, 1.0. When we look at the estimates from the

PIM-based model, parameter 14 was estimated as 0.6550464.

Why the difference? if you look at the structure of the model,you’ll see that parameter14 is an ‘interior’

parameter. Meaning, itdoesn’toccurat the beginning orendof the time series ofdata. As such, the reason

the parameter is not well-estimated using the DM approach is not because of the structure of the DM

itself (i.e., you won’t solve the problem simply by changing the reference cell coding – see discussion of

the dipper example in Chapter 6).

The alternative step to take is to change the link function from the default logit used with a DM. For

example, you might try to enforce a sin link for (say) the survival parameters. How, since the sin link is

‘greyed out’ when you build a DM-based model. You can in fact ‘over-ride’ the default logit link, and

select any link you want, by specifying a ‘Parm-specific’ link function before running the model:
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When you select this option, MARK will present you with a window allowing you to set the link

function for any individual parameter. Here, we have specified the sin link for the survival parameters,

and left the logit link applied to the recovery parameters:

If you fit this modified ‘Parm-specific’ model to the data, you’ll see that the problem seems to have

been solved:

We now have the same parameter counts, and (more importantly) the same model deviance as

compared to the PIM-based model. And, the estimate for parameter 14 from this ‘tweaked’ model

(using the sin link for the survival parameters) is 0.6550472, which is almost identical to the estimate

from the PIM-based model.

OK, that seems to solve the problem. But, why did we have the problem in the first place? The answer

lies in the fact that Brownie parameterized models can be somewhat ‘twitchy’ to fit. For example, note

that the recovery parameter, 5 , is a probability that includes both ‘death’ (the mortality event) and

‘reporting’ (that the dead individual will be retrieved, and the mark reported/recorded). Because an

animal cannot experience both recovery and survival in the same interval (think about it for a moment),

then the parameters 5 and( are implicitly relatedas 5 ≤ (1−(). OK,fine. However, there is nothing about

the structure of Brownie parameterized models that numerically ‘enforces’ or imposes this relationship,

which leads to the possibility that estimates of 5 and ( that are logically impossible. While that does not

seem to be the case here, it is indicative of the challenges youmight run into with Brownie parameterized

models.‗

‗ In fact, for this particular problem, the underlying reason is ‘weirdness’ in the shape of the likelihood function for this parameter,
that causes the logit link to ‘fail’.
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8.5. A different parameterization: Seber (S and r) models

In this section we turn our attention to a rather different approach to the same questions, and the same

data type – recoveries, but using a different parameterization, firstdescribed by Seber (1970)and later by

Anderson et al. (1985) and Catchpole et al. (1995). In the Brownie parameterization, marked individuals

are assumed to survive from one release to the next with survival probability (8 . Individuals may die

during the interval, either due to hunting or due to ‘natural’ mortality. Individuals dying due to hunting

(with probability  8) may be retrieved and reported with some probability (28 and �8 , respectively). In

contrast, individuals dying from natural causes are generally not retrieved and reported (inother words,

the Brownie parameterizations assumes that dead encounter data reflect exploitation of the population).

Here, however, we introduce a new parameter A8 , for recovery probability, defined as the probability

that dead marked individuals are reported during each period between releases, and (most generally)

where the death is not necessarily related to harvest. Note that the recovery parameter A8 we’re talking

about here is not the same as the Brownie recovery probability 58 , which is the probability of being

harvested, retrieved and reported during the period between releases.

The basic structure of the Seber parameterization is shown in the following diagram. Under this

parameterization, a marked individual either (i) survives (with probability S – encounter history ‘10’),

(ii) dies and is recovered and reported (with probability (1 − ()A – encounter history ‘11’), or (iii) dies

and is not reported (either because it was not retrieved, or if retrieved, not reported), with probability

in either case of (1 − ()(1 − A) – encounter history ‘10’).

Before we look at how to implement the Seber parameterization in MARK, let’s take a moment to

compare this parameterization with the Brownie parameterization we looked at earlier. First, clearly

there must be some logical relationship between r and f. Recall that in the Brownie parameterization,

Consider the encounter history ‘11’. Under the Brownie parameterization, the expected probability

of this event is  2�, which is traditionally referred to as f, the recovery rate ( 5 =  2�). Under the Seber

parameterization, the probability of the same ‘11’ encounter history is A(1 − ().
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Since 5 and (1−()A are equivalent in ‘probability space’ (i.e., they both correspond to the same ‘event’

– e.g., P(‘11’)Brownie = 5 , P(‘11’)Seber = (1 − ()A), we can write:

∵ 58 =
(

1 − (8
)

A8 ∴ A8 =
58

(

1 − (8
) .

As such, we can derive the expected cell probability expressions under the Seber parameterization

simply by substituting 58 = A8
(

1−(8
)

into the probability expressions for the Brownie parameterization:

Brownie

year recovered

number marked 1 2 3 ; = 4

'1 '1 51 '1(1 52 '1(1(2 53 '1(1(2(3 54

'2 '2 52 '2(2 53 '2(2(3 54

'3 '3 53 '3(3 54

'4 '4 54

Seber

year recovered

number marked 1 2 3 ; = 4

'1 '1A1
(

1 − (1

)

'1(1A2
(

1 − (2

)

'1(1(2A3
(

1 − (3

)

'1(1(2(3A4
(

1 − (4

)

'2 '2A2
(

1 − (2

)

'2(2A3
(

1 − (3

)

'2(2(3A4
(

1 − (4

)

'3 '3A3
(

1 − (3

)

'3(3A4
(

1 − (4

)

'4 '4A4
(

1 − (4

)

The preceding illustrates the algebraic and conceptual connection between the two parameterizations.

In simplest terms, the parameter A8 is a reduced parameter – and is a function of two other parameters

normally found in the Brownie parameterization. But, more pragmatically, what is the impact of the

two parameterizations? Why use one over the other, or does it matter?

One of the motives for considering the Seber parameterization (using only (8 and A8) is so that the

encounter process can be separated from the survival process, entirely analogous to ‘normal’ mark-

recapture. With the Brownie parameterization, the 2 processes are part of the 58 parameter (i.e., there

is ‘some survival’ and ‘some reporting/encounter’ information included in recovery rate). As such,

developing certain advanced models with MARK (by modifying the design matrix) is difficult, even

illogical (on occasion) using the Brownie parameterization. For example, the Brownie parameterization

does not lend itself to modelling of survival with covariates, as it is unclear how to model the survival

portion of the 5 parameter with the same relationship as is used in the ( parameter (which might be

something you’d like to do).

So, given the preceding, we should drop Brownie and use the Seber parameterization right? Well,

perhaps not quite. First, under the Seber parameterization the last (8 and A8 are confounded in the time-

dependent model, as only the product (1−(8)A8 (this is entirely analogous to the confounding of the final

!8?8+1 term in fully time-dependent model for live encounter CJS analysis). This has some implications

for comparing and contrasting survival estimates for some constrained models – we’ll deal with this in

a moment.
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Second, all of the parameters under the Seber parameterization are bounded [0, 1], which outwardly

might seem like a benefit. However, parameter estimates at the boundary do not have proper estimates

of the standard errors. The Brownie parameterization overcomes both these technical difficulties (for

details, see the Brownie text).

But finally, and perhaps more importantly (at least for exploited populations), the Seber parameteri-

zation does not allow you to separate ‘harvest’ mortality from ‘natural’ mortality, whereas the Brownie

parameterization does. The Seber parameterization basically deals with ‘mortality’ as a whole, with no

partitioning possible. In many cases, this can be an important limitation that you need to be aware of.

For the moment, though, we’ll leave the comparison of these two models (and their respective

pros and cons) for you to explore, and will concentrate on showing how to implement the reduced

parameterization in MARK. In fact, if you’ve understood the way in which we applied the Brownie

parameterization in MARK, you’ll find this new approach very easy.

We’ll demonstrate this using the brownadt.inp data set we analyzed earlier in the chapter. To specify

the new parameterization, select ‘Dead recoveries (Seber)’:

Look at the PIMs for the two parameters under the fully time-dependent model:

Note that unlike the Brownie parameterization, there are the same number (in absolute terms) of

parameters (9) for each ((1 → (9 and A1 → A9).

Since the parameterization is analogous to ‘normal’ mark-recapture, then the question identifiability

of parameters should pose no significant challenges. For example, for the fully time-dependent model

{(CAC} with 9 occasions, we expect 17 estimable parameters: (1 → (8 and A1 → A8, and the final product

A9(1 − (9). If you run this model in MARK, you’ll see that 17 parameters are estimated.

8.5.1. Seber vs. Brownie estimates in constrained models: careful!

In the preceding section, we noted that under the Seber parameterization, the last (8 and A8 are con-

founded in the time-dependent model (analogous to the confounding of the final !8?8+1 term in fully
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time-dependent model for live encounter analysis). Recall that in live encounter models, the estimate

of survival over the final interval can be obtained if the encounter probability on the last occasion is

known. We saw that in models where survival varied over time, but encounter probability was held

constant (i.e., {!C ?·}), all of the survival values were estimable, since a common, constant value for ?

was estimated for all occasions, including the terminal occasion.

However, while it would seem reasonable to use the same logic for recovery analysis using the Seber

parameterization, care must be exercised – especially if you’re comparing estimates from a model based

on the Seber parameterization with those from a Brownie parameterization. Why? Simple – because

the number of survival parameters estimable using the Brownie parameterization is always one less

than the Seber parameterization! As such, comparing estimates from a model parameterized using the

Seber parameterization can, for some models, be quite different than those from seemingly equivalent

models parameterized using the Brownie parameterization.

This can be easily demonstrated by means of a numerical example. Consider the analysis of a

simulated data set, 8 occasions, where  = 0.2, 2 = 1.0, and � = 0.4. In other words, the probability

of being harvested over a given interval is 0.2, probability of the harvested individual being retrieved

is 1.0, and the probability that the harvested, retrieved individual is reported is 0.4. We’ll assume all

3 parameters are constant over time. Under the Brownie parameterization, the recovery probability is

5 =  2� = (0.2)(1.0)(0.4) = 0.08.

Given these values, what is the recovery probability A under the Seber parameterization? Recall that

58 = A8
(

1 − (8
)

and A8 =
58

(

1 − (8
) .

So, given 5 from the Brownie parameterization, then we can solve for A provided we have an estimate

of (. Since  = 0.2, we know that survival probability is at least (1 − 0.2) = 0.8. However, this value is

derived assuming the only source of mortality is harvest. What if there is some level of natural mortality,

say � = 0.1? If we assume that harvest and natural mortality events are independent (i.e., temporally

separated, or additive), then ( = (1− )(1−�) = (0.8)(0.9) = 0.72. So, given 5 = 0.08, and ( = 0.72, then

A8 =
58

(

1 − (8
)

=
0.08

(1 − 0.72)
= 0.286.

We’ll assume no age structure, and 5,000 newly marked individuals on each occasion – the recovery

data (in LD format) are contained in the file seber-brownie.inp.

We’ll start our analysis by specifying the Brownie data type in the data type specification window.

If we examine the default starting PIMs for the two parameters, we see that the survival PIM has 7

columns (corresponding to parameters(1 → (7), while the recovery PIM has 8 columns (corresponding

to parameters 51 → 58). We run this model (i.e., model {(C 5C}), and add the results to the browser.

Then, by modifying the PIMs, we construct a ‘constrained’ model, {(C 5·}, where survival is allowed

to vary over time, while the recovery probability is constant (remember – recovery probability under the

Brownie parameterization includes information about mortality, since it is the product of kill probability

K with the retrieval and reporting parameters 2 and �, respectively. As such, a model where recovery

probability is held constant, but where survival is allowed to vary over time has likely implications for

how ‘other sources of mortality’ must vary). Model {(C 5·} then has only one recovery estimate, but the

same 7 estimates for survival. So, constraining recovery 5 to be constant over time does not change the

number of survival parameters ( which are estimable.
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The results for both models are shown below. We see that model {(C 5C} has 15 estimable parameters

(8 recovery parameters + 7 survival parameters), whereas model {(C 5·} has only 8 estimable parameters

(1 recovery parameter + 7 survival parameters).

If we look at the parameter estimates from model {(C 5·}

we see that the survival estimates are all fairly close to the true value of 0.72 (recall that in the true

model under which the data were simulated, the true value for survival did not vary over time), and

the estimated recovery probability is very close to the true value of 0.08. This is perhaps not surprising

given the size of the data set, and that our fitted model is fairly close to the true model underlying these

simulated data.

OK – fine. But now let’s fit these same data using the Seber parameterization. We can do this easily

in MARK by changing the data type from ‘Brownie’ to ‘Seber’. We do this by selecting ‘Change Data

Type’ from the PIM menu:

and selecting the ‘Dead recoveries’ data type from the list.

Now, if we examine the PIMs for the fully time-dependent model (i.e., model {(C AC}), we see that the

PIMs for both parameters have 8 columns, corresponding to 8 parameters for survival, and 8 parameters

for reporting rate, respectively. However, we also recall that the final two estimates of survival and

reporting probabilities are confounded under the Seber parameterization, so we in fact have only 15

estimable parameters in this model. Fit this model to the data, and add the results to the browser:
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Notice that models {(C 5C} (Brownie) and {(C AC} (Seber) have exactly the same model deviances

(19.8253), and number of estimated parameters (15). And, not surprisingly perhaps given this, you’ll

see that the estimates of survival from the Seber model are identical to those from the Brownie model,

for the first seven estimates; the final estimate of survival from the Seber model is confounded with the

final estimate of the reporting rate.

OK – so far, it seems as if the two parameterizations are equivalent. But now, let’s try model {(C A·}
using the Seber parameterization. Recall that for this model, there are 9 estimable parameters (8 survival

estimates + 1 reporting probability estimate). In contrast, for the ‘equivalent’ Brownie model {(C 5·} there

are only 8 estimable parameters (7 survival estimates + 1 recovery probability estimate). So, unlike the

case where we contrasted the fully time-specific models between the two parameterizations, here, the

actual number of estimable parameters differs between the two models. This should suggest fairly

strongly that these are not equivalent models.

As we can see after adding the results to the browser:

that models {Seber - (C A·} and {Brownie - (C 5·} are not equivalent; they have different deviances, and

different numbers of estimable parameters.

If we compare our reconstituted parameter estimates from the Seber model (below) with those from

the ‘equivalent’ Brownie model (preceding page),

we see that all of the survival estimates differ between the two models. (Note that the reporting

probability estimate is fairly close to the true value of 0.286).

Now, in this particular example, you might suspect that the differences in the survival estimates

between the two models (Brownie versus Seber) are ‘not that big’. In fact, the relative ‘closeness’ of

the estimates in this example owes more to the fact that the simulated data set is very large, and the

underlying (generating) model is very simple (no time variation in any of the parameters).

To demonstrate this more graphically, let’s reanalyze the recovery data for adult male mallards

banded we considered earlier (contained in brownadt.inp). For these recovery data, fit models {(C A·}
(Seber) and {(C 5·} (Brownie), and add the results to the browser (top of the next page).

Chapter 8. ‘Dead’ recovery models



8.5.1. Seber vs. Brownie estimates in constrained models: careful! 8 - 32

We see that the model fits are not even remotely similar. This is reflected both in terms of the model

deviances,but also (and more to the point we’re trying to make here) in terms of the parameter estimates.

Here are the reconstituted estimates from the Seber and Brownie models, respectively:

Several things to note. First, in the browser (above) we have both the {(C A·} (Seber) and {(C 5·}
(Brownie) models. You might be tempted to simply look at the AIC for each models, and conclude

that there was ‘overwhelming support’ for the Seber parameterization. However, because the Brownie

and Seber models are based on different likelihoods, you cannot legitimately compare the AIC values

between the models (this is frequently an important consideration whenever you’re comparing results

from different data types fit to the same underlying data).

Second, and of particular interest, the estimates of survival (shown above) for the first 8 intervals

which are estimable under both models are quite different – often dramatically so. For example, under

the Seber model, the estimated survival probability for the first interval is 0.7344, whereas under the

Brownie model, the estimate for the same interval is 0.625, a value which is almost 15% smaller!

So, the obvious question you might have is, ‘which model yields the most robust estimates of

survival?’. In considering this problem,there are a couple of things to keep in mind. First, for the Brownie

model, the recovery probability 5 contains some information about mortality, and thus constraining

either ( or 5 to be constant while allowing the other parameter to vary with time makes implicit

assumptions about the pattern of variation in other parameters. For example, for Brownie model {(C 5·},

if  (kill rate) varies with time, then parameters 2 and� must covary in such a way that the product  2�

(which equals the recovery probability 5 ) does not vary. More likely, if 2 and � are constant (as is often

assumed), then constant ( implies either that  is constant, or that natural mortality is compensatory

(and not additive). Thus, it might be reasonable to wonder if model {(C 5·} is a reasonable model under

the Brownie parameterization.

Second, it is important to remember that in the end, the Brownie and Seber models are fundamentally

different models – the Seber model is more general (i.e., has more parameters) than the Brownie model,

and thus will ‘fit the data better’ (i.e., have a smaller deviance).

And this is key – for most of our models, the Brownie and Seber parameterizations are effectively

equivalent – and yield the same model fits and estimates for survival. For example, in the following

browser (shown at the top of the next page) we show the model fits for our 4 standard models (models

{(C 5C}, {(· 5C}, {(C 5·} and {(· 5·}).
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Looking closely at the model results, we see that:

Brownie Seber
{

(C 5C
}

≡
{

(C AC
}

{

(· 5C
}

≡
{

(· AC
}

{

(· 5·
}

≡
{

(· A·
}

{

(C 5·
}

6≡
{

(C A·
}

In other words, only models {(C 5·} (Brownie) and {(C A·} (Seber) are not equivalent – because these

are the only two models which do not have the same number of estimable parameters.

And, thus, comparing survival estimates from these two models is analogous to comparing ‘apples

and oranges’. We leave the question of which set of estimates (Brownie or Seber) is least biased for

you to explore – however, it is clear that you need to pay careful attention to the number of estimable

parameters for a given model type if comparing estimates generated using either the Brownie or Seber

parameterization.

8.6. Recovery analysis when the number marked is not known

If you look back in this chapter, you’ll see that under the ‘typical’ application of recovery analysis, the

number of recoveries expected over a given interval is equal to the number marked and released ('8)

times the survival and recovery probabilities.

However, under some marking schemes (for example, the marking or ‘ringing’ scheme that was used

by the British Trust for Ornithology – the ‘BTO’), the number marked and released is often unknown.

What can you do in these cases?

To circumvent this problem, a ring recovery model is formulated where the recovery probability

(using A8 from the reduced parameterization) is assumed constant by age class and year. Under this

assumption, the survival probability can be estimated from the observed recoveries. How does this

work?

If we assume that A8 is a constant, then the cell probability for the j year of recoveries given k years of

recoveries is

(1(2(3 . . . (9−1

(

1 − (9
)

1 − (1(2(3 . . . (:
,
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where the denominator is 1 minus the probability of still being alive. Note in particular that recovery

(A8) does not appear in this expression.

Of the k survival probabilities, only (:− 1) are identifiable. Common approaches to achieve identifia-

bility are to set (:−1 = (: or to set (: equal to the mean of (1 , (2, . . . , (:−1 using appropriate constraints

in the design matrix. This model should only be used when you do not know the number of animals

marked because you cannot evaluate the assumption of constant recovery probabilities with this model.

If you know the number of individuals marked, use one of the ‘normal’ dead recovery models (Brownie

or Seber) described earlier in this chapter.

To implement a BTO recovery analysis in MARK, simply select ‘BTO Dead Recoveries and Unknown

Ringings’:

What about the data file itself? Consider a ‘typical’ recovery matrix (in fact, the brownadt.inp file

we’ve looked at previously). The last row of the INP file in this case reflect the number released in each

year (cohort). What would you do to modify the format for the ‘BTO’ data type? Simple – delete the last

line! [Why? Because for the ‘BTO’ data type, you don’t actually know the number marked and released.]

Let’s run this analysis using MARK, to get a more ‘hands-on’ sense of how the BTO data type analysis

differs from the ‘normal’ dead recovery analyses we’ve already discussed. Start up MARK, and select

brownadt.inp. View the file, by opening it in the default editor. Edit the file by deleting the last row

of total number of marked and released individuals (which we’re assuming we don’t know). Save the

edited file – calling it bto.inp. Re-select the file to analyze, this time picking bto.inp. Set the number

of occasions to 9, and then make sure the ‘BTO Ring Recoveries’ data type is selected.

To see quickly that we’re working with something distinct from ‘normal’ recovery analysis, have a

look at the PIM chart. The first thing you’ll notice immediately is that there is only one parameter –

S (survival). Why? Because recovery (r) is assumed to be constant, and is therefore not estimated. Or,

in other words, since the recovery probability (i.e., A8) does not factor in the expected cell probabilities,

then you clearly don’t need to estimate it (in fact, you can’t!).

With only one parameter, then obviously all constraints are placed on survival only. Clearly, this

is a significant limitation in your ability to analyze these data, since you cannot test any hypotheses

concerning variation in recovery probability. Assuming a constant recovery rate is a necessary step to

do anything with data collected in this way. Since the BTO has collected a lot of data over the past many

decades, there has been a fair amount of work devoted to the theory of analyzing data of this type,

where the number marked and released is unknown. However, despite those efforts, there are going to

be limits to what you can do.

How do the estimates from this analysis, using the BTO data type, compare to those using ‘normal’

recovery analysis, where the number marked and released is known (recall that for these data, we

actually do know the number marked and released)?

The estimates from model {(C} for the BTO data type are shown at the top of the next page. Notice that

there are no standard errors reported for each of the estimates. This is because for the ‘BTO’ data type,

the error variance around the estimates of(8 cannot itself be estimated under the constraint (assumption)

of constant recovery rate.
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How do these estimates of (8 compare to the values from the most parsimonious model fit to these

data when number marked and released was known? Recall that we analyzed these data earlier in this

chapter – referring back to that analysis, we see that the most parsimonious model was model {(· 5C}.

For this model, S was estimated as 0.638.

For the most parsimonious model with time dependence in S (model (C 5C), the estimates of survival

are

We see that the estimates are markedly different. Why? Because,as it turns out, the most parsimonious

model(s) had time-dependence in the recovery parameter – clearly a ‘violation’ of the assumption of

constant recovery probability required by the BTO data type analysis.

8.7. Recovery models and GOF

First the good news – GOF testing for recovery models is possible, and quite straightforward. Now the

bad news (well, perhaps not ‘bad’ news, but something to note) – the type of GOF tests that are available

to you depends on which parameterization you use (Brownie, or Seber):

• If you want to use the ‘Brownie’ parameterization, you can test goodness of fit of the data to

your general model using program ESTIMATE (Brownie et al. 1985). Program ESTIMATE

can be called from within MARK (much as you can invoke program RELEASE from within

MARK).

• Alternatively, if you’re using the ‘Seber’ parameterization, you can use either the bootstrap

or median-2̂ approaches (but not program ESTIMATE) for GOF testing.

But, suppose you’ve already fit your model set using the ‘Brownie’ parameterization, but instead of

using program ESTIMATE for the GOF, you’d like to estimate 2̂ using either the bootstrap or median-2̂

approaches. Do you need to ‘start over’, and re-construct all your ‘Brownie’ models using the equivalent

‘Seber’ parameterization? The answer (thankfully) is ‘no’. All we need to do is change the data type from

‘Brownie’ → ‘Seber’ for the general model, which we can do directly within MARK (see below).
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In the following,we’lldemonstrate the various steps needed forGOF testing fordeadrecovery models.

We’ll use the brownadt.inp data file we analyzed earlier in the chapter. Recall that our analysis for these

data was based on the ‘Brownie’ parameterization. Also, remember we want to derive the measure of

fit (estimate of 2̂) for our most general model, which in this case is model {(C 5C}.

As noted above, for the ‘Brownie’ parameterization, our only option for GOF testing is to run program

ESTIMATE from within MARK. Program ESTIMATE provides basic GOF testing for several of the

‘classic’ models under the ‘Brownie’ parameterization (think of ESTIMATE in some senses as the

recovery equivalent of RELEASE).

Program ESTIMATE uses the ‘classical’ naming convention for models we noted earlier in this

chapter:

model legacy name reference

{(C 5C} Model 1 Brownie et al. (1985) pp. 15-20

{(C 5·} none

{(· 5C} Model 2 Brownie et al. (1985) pp. 20-24

{(· 5·} Model 3 Brownie et al. (1985) pp. 24-30

Under this model naming convention, model {(C 5C} is ‘Model 1’. To run ESTIMATE, you don’t need

to make any particular model in the browser ‘active’, since ESTIMATE simply fits a series of ‘built-in’

models, regardless of the models you have in your browser.‗ One of these models is ‘Model 1’.

To run ESTIMATE, simply pull down the ‘Test’ menu, and select ‘Program Estimate’:

After a few seconds, you’ll be dumped into the Notepad, which will present the results of the

ESTIMATE analysis. You’ll want to find the part of the output pertaining to ‘Model 1’. After a bit

of scrolling, you’ll find the following results for ‘Model 1’ (shown at the top of the next page). At the

bottom of the output, you’ll see that the observed "
2 statistics for ‘Model 1’ is 31.57, with 25 df. The

P-value of observing a "2-value larger than 31.57 is 17.1%. Using ("2/df) as an estimate of 2̂, then

2̂ = (31.57/25) = 1.263.

‗ This means that unless your general model is one of the ‘built-in’ models that ESTIMATE is fitting to your data, you’re out of
luck.
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But, what if we wanted to use either the bootstrap or median-2̂ approaches, rather than program

ESTIMATE? Recall that both the bootstrap or median-2̂ GOF tests are available only for the ‘Seber’

parameterization. If your models are already constructed using the ‘Seber’ parameterization, then you

simply make the general model active in the browser (by right-clicking and retrieving it), and then

proceeding as per normal.

However, if your models are constructed using the ‘Brownie’ parametrization, as in the present

example, then you first need to change the data type for the general model from ‘Brownie’ → ‘Seber’.

As demonstrated earlier in this chapter, this is easy to do – simply make the general model active in the

browser (by right-clicking and retrieving it), and then select ‘PIM | Change data type’. MARK will

present you with a selection of data types which are consistent with the data contained in the PIM.

In this case, there are only two such data types: the ‘Dead recoveries (Seber)’ (i.e., the S and r Seber

parameterization, and the ‘Dead recoveries (Brownie et al.)’ (our current data type). We want to

switch to the Seber ‘S and r’ data type, so pick the ‘Dead recoveries (Seber)’ option from the list. You

won’t see anything happen, but you’ll now be able to run a model under the ‘S and r’ parameterization.

The model we want to run is model {(C AC}, which is equivalent to model {(C 5C}. If you want look at the

PIM chart, you’ll see that the general model is now parameterized in terms of ( and A – i.e., the ‘Seber’

parameterization.

Once you’ve changed the data type, go ahead and run the model, and call it model ‘S(t)r(t)’. Add

the results to the browser. You should observe that the AIC, deviance and the number of parameters

are identical to that reported for model {(C 5C}. Now, all you need to do is run a bootstrap or median-2̂

GOF test on this new model {(C AC}. The mechanics for both tests were covered in detail in Chapter 5.
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Based on 1,000 bootstraps, we found that approximately 21% of the bootstrapped deviances were

greater than the observed deviance for model {(C AC}, indicating adequate fit. Recall from our program

ESTIMATE GOF analysis that the observed "2 statistics for Model 1was 31.57, with 25 df. The P-value

of observing a "2-value larger than 31.57 is 17.1%, which is comparable to the 21% value observed from

the bootstrap analysis. Further, both our bootstrapped and median-2̂ estimates for 2̂ (1.153, and 1.110,

respectively) are consistent with the estimate of 2̂ from the ESTIMATE analysis (31.57/25 = 1.263).

Taken together, this wouldsuggest some levelof equivalence between the approachbasedon program

ESTIMATE, applied to the general model under the ‘Brownie’ parameterization, and the bootstrap and

median2̂ approaches, under the ‘Seber’ parameterization. Such a conclusion should be approached

cautiously. One thing the ESTIMATE output does give you is the relative contribution of each element

of the recovery matrix to the overall model "2, analogous to partitioning the data into the contingency

tables that we used with program RELEASE for live encounter data. Careful examination of these tables

can sometimes help you diagnose lack of fit.

8.8. Summary

Recovery models are more common than you think, and not simply restricted to ‘harvested’ species. It

is worth spending some time getting comfortable with the theory, and the different implementation of

recovery analysis in MARK. In the next chapter, we’ll actually combine ‘dead recovery’ models with

‘live encounter’ models. As you’ll see, this ‘joint’ estimation can in some cases make it possible to tease

apart sources of apparent mortality in novel and potentially useful ways.
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