
CHAPTER 6

Adding constraints: MARK and linear models

Up until now, we’ve used MARK to build relatively simple models. We’ve seen how to use MARK

to help with model selection, and how the process of model selection can be viewed in an analysis of

variance context, by comparing models with and without grouping factors (Chapter 4).

However, suppose, for example, you want to build a model where annual variation in survival is

‘related’ to some weather variable. How would you construct a model where survival was constrained

to be a function of ‘weather’? The concept of ‘constraints’, and how to use them to apply linear models

to MARK, is one of the most important and powerful extensions of what we have covered so far.

What do we mean by ‘constraint’? Here, we are referring to a mathematical constraint – ‘forcing’

MARK to estimate survival and encounter probabilities after imposing one or more linear constraints

on the structure of the underlying model. While the concept is simple, the ability to construct linear

models gives you considerable flexibility in addressing a very large numberof questions and hypotheses

with your data; if you can conceive of a linear model (ANOVA, ANCOVA, multiple regression, etc.), you

can apply it to mark-encounterdata using MARK. The only thing you’ll need to know is how to construct

the ‘linear constraint’ – the linear model. This is the subject of the present chapter.

6.1. A (brief) review of linear models

If you have a prior background in linear models, then much of the following material will be familiar.

Our purpose is to provide a ‘minimum-sufficient level’ of background. If you are new to linear models,

we urge you supplement your reading of this chapter by having a look at one of the many good textbooks

on this subject. McCullagh & Nelder (1989) and Dobson & Barnett (2008) are particularly good.

The basic idea underlying linear models can be stated quite simply: the response variable in many

statistical analyses can be expressed as a linear regression function of 1 or more other factors. In fact,

any ANOVA-type design can be analyzed using linear regression models (although interpretation of

interactions is sometimes complex). In general, fordata collected from marked individuals, the ‘response

variable’ is often a probability or proportion (e.g., survival or encounter probability), which must be

transformed prior to analysis using a linear models approach (we’ll get to that in a moment). For the

moment, assume the response variable has been suitably transformed.

We begin by demonstrating this relationship between ‘regression’ and ‘ANOVA’ by means of a simple

example. Consider data from a study of a physically small tropical species of bat, where we’re interested

in knowing if the wing length is on average larger in males than in females (we’ll assume for the moment

that all of the individuals in the sample were the same chronological age). Let’s suppose we measure 7

male and 7 female bats, and analyze our data using a normal single-classification ANOVA.

© Cooch & White (2025) Last updated: 04.23.2025

6.1. A (brief) review of linear models 6 - 2

Here are the wing length data (in inches):

male 7.2 7.1 9.1 7.2 7.3 7.2 7.5

female 9.8 8.5 8.7 8.6 8.4 7.7 8.2

First, the results from a ‘standard ANOVA’ (as you might generate using some statistical analysis

software), which indicate a nominally significant difference in wing length between males and females:

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137

Error 12 5.485 0.457

Total 13 9.292

However, what if our statistics package was limited only to a regression subroutine? Could we have

analyzed our data using a linear regression model, instead of ANOVA, and arrived at the same result?

The answer is, indeed, ‘yes, we can’. What we do is simply take the classification factor (SEX) and

‘code’ it as a ‘0’ or ‘1’ indicator (‘dummy’) variable (we’ll see why in just a moment). For example, let ‘0’

represent females, and ‘1’ represent males. Thus, every individual in our data set is assigned a ‘0’ or a

‘1’, depending upon their gender. Let’s call this dummy variable ‘SEX’. Now, all we need to do is regress

our response variable (wing length) on the dummy variable for SEX.

Here are the results of such a regression analysis:

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137

Error 12 5.485 0.457

Total 13 9.292

No, it’s not a typo – they are in fact the exact same results as shown previously for the classical

ANOVA. The two approaches are equivalent, yielding identical results. How can this be? The answer

lies in the structure of the models actually being tested. Let’s look at things a bit more formally.

In general, a linear model can be expressed in matrix (or, matrix-vector) form as

y = X# + &,

where y is a vector of responses (i.e., a vector of the response variables), # is a vector of parameters

(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0’ or ‘1’ elements, or values of

‘independent’ variables, and & is a vector of random error terms.

In cases of analysis of variation of the response variable among different levels of one or more

classification (i.e., ‘treatment’ or ‘factor’) levels, there is a parameter � in the vector # to represent each

level of a factor. The elements of X (which is generally referred to as the design matrix – discussed below)

are chosen to exclude or include the appropriate parameters for each observation. These elements are

often referred to as either ‘dummy’ or ‘indicator’ variables (‘indicator’ generally being used when only

‘1’ or ‘0’ are used as the coding variables).

The following simple example will make this clear, and will illustrate the underlying connection

between a linear regression model and analysis of variation (ANOVA). Suppose you have collected

data on the scutum width of male and female individuals of some insect species. You are interested

in whether a difference in mean scutum width between the sexes is larger than would be expected

by random chance. Typically, you might use a single-classification (Model I) ANOVA for this sort of

analysis.

Chapter 6. Adding constraints: MARK and linear models

6.1. A (brief) review of linear models 6 - 3

Recall that for this sort of analysis, any single variate Y (in this case, Y = f [wing length]), can be

decomposed as:

.8 9 = � + 8 + &8 9 .

In other words, each individual variate .8 9 is the sum of the global mean (�), the deviation of the

individual from that mean due to the ‘classification’ factor (sex; 8), and the random error term (&8 9)

In this example, with 2 levels of the classification factor (i.e., males and females), we would be testing

for differences of the type (1 − 2). If (1 − 2) = 0 (the null hypothesis), then we would conclude no

significant group effect (i.e., no significant difference in group means between the sexes).

How could we use linear regression to approach the same analysis? In a regression analysis, each

individual variate .8 would be decomposed as:

.8 = �1 + �2G8 + &8 .

In this case, each variate.8 is the sum of the product of the slope (�2) and the variable x, the intercept

(�1), and a random error term (&8). In this case, the hypothesis being tested is whether or not the estimate

of the slope is significantly different from 0 (Ho: �2 = 0).

However, what is the variable ‘x’? In fact, this is the key to understanding the connection between

the regression model and the ANOVA analysis. In the regression formulation, x represents a coding

(‘dummy’) variable specifying male or female (i.e., sex, the classification variable in the ANOVA

analysis). The coding variable takes on the value of ‘0’ or ‘1’ (you might use ‘0’ for females, ‘1’ for

males). We regress the response variable Y (scutum width) on the coding variable for sex. If the slope

(�2) is not different from 0, then we interpret this as evidence that the numerical value of the coding

variable does not significantly influence variation in our data. Put another way, if the slope does not

differ from 0, then this indicates no significant difference between the sexes. This is entirely analogous

to test of the (1 − 2) hypothesis in the ANOVA analysis.

Recall that we can express a linear model in vector-matrix form as

y = X# + &,

where y is a vector of responses (i.e., a vector of the response variables), # is a vector of parameters

(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0’ or ‘1’ elements, or values of

‘independent’ variables, and & is a vector of random error terms. For our present example, the design

matrix X consists of 2 columns of ‘0’ and ‘1’ dummy variables (the first column corresponding to the

intercept, �1, and the second column corresponding to dummy variable coding for a given sex, �2).

Given K individuals in each sex (although a balanced design is not required), y = X# + & can be

written as

.11

.12

...

.1

.21

.22

...

.2

=

1 0

1 0

...
...

1 0

1 1

1 1

...
...

1 1

[
�1

�2

]
+

&11

&12

...

&1

&21

&22

...

&2

.

Chapter 6. Adding constraints: MARK and linear models

6.1. A (brief) review of linear models 6 - 4

In fact, in this case, if we used ‘1’ to code for males, and ‘0’ to code for females, then the intercept

(�1) would represent the estimate for female survival (since if the dummy variable is ‘0’, then all that

remains in the model is the intercept, and the random error term). The �2 term actually reflects (male

survival - female survival), such that �1 + �2 = (female)+(male−female) = male survival. The structure

of the design matrix is discussed in more detail in the next section.

It is perhaps worth noting that models of the form ‘y = X# + &’ are called linear models because

the non-error part of the expression X# is a linear combination of the parameters (and not specifically

because of the relationship of ANOVA to linear regression). MARK uses this general linear models

approach as the basis for all of the analysis (data) types available.

begin sidebar

matrix approach to linear regression & ANOVA: simple introduction

Here, we provide a very simple example of a matrix approach to linear regression (and, by extension,

to linear models in general). For deeper understanding, you should consult one of the several very

good ‘linear models’ textbooks which give much fuller treatments of the subject.

Consider the linear model, say of individual (i) with mass (.8) relative to sex (-8 , where - = 0

or - = 1 for female or male, respectively), measured with Gaussian (normally) distributed random

variation (&8) about the mean. We’ll assume the following ‘fake’ data:

mass (Y)

male (- = 1) 11 12 11 14

female (- = 0) 8 11 12 10

The mean mass for males (Ḡ< = 12) is larger than the mean mass for females (Ḡ 5 = 10.25) – the

usual question being, is the difference between the two larger than expected due to random chance?

Here we adopt a linear models approach to answering this question. As a first step, we write the

relationship between mass and sex in linear model form as:

.8 = �1 + �2-8 + &8 .

The null hypothesis of ‘no difference between sexes’ can be expressed formally in terms of the �

term for sex; i.e., Ho : �2 = 0, where-8 is the ‘dummy’ indicator for sex (male or female). The technical

problem then is estimating the �8 coefficients in the linear model. To do this, first define a vector y for

all the .8 , a matrix X for a vector of 1s and all the -8 , a vector & for all the &8 , and further define a vector

for the coefficients �1 and �2.

Then (for our ‘fake’ data set) we get

Y =

11

12

11

14

8

11

12

10

=

1 1

1 1

1 1

1 1

1 0

1 0

1 0

1 0

[
�1
�2

]
+

&11
&12
&13
&14

&21
&22
&23
&24

= X# + &.

Note that the matrix X is referred to as the design matrix. The construction of the design matrix

is fundamental to using linear models in MARK, as we will cover in considerable detail later in this

chapter. So, to derive estimates of the �8 coefficients, we need to find a vector # such that y = X#.

Is this possible? The answer is clearly ‘no’, because that would require the points to lie exactly on

a straight line. A more modest (and tractable) question is: can we find a vector #̂ such that X#̂ is in a

Chapter 6. Adding constraints: MARK and linear models

6.1. A (brief) review of linear models 6 - 5

sense ‘as close to y as possible’? The answer is ‘yes’. The task is to find #̂ such that the length of the

vector & = y − X# is as small as possible (i.e., & → 0).

How do we get there from here? Fairly easily. First, we note that what we’re trying to do is solve for

in the linear model. The first step is to let & = 0 (such that it drops out of the equation – this should

make sense, if you keep in mind that what we’re trying to do is to find #̂ such that the length of the

vector & is, in effect, 0). This leaves us with

y = X#.

Then, a few steps of algebra to solve for the vector #:

y = X#

X
Ë
y = X

Ë
X#(

X
Ë
X
)−1

X
Ë
y =

(
X
Ë
X
)−1

X
Ë
X#(

X
Ë
X
)−1

X
Ë
y = #

#̂ =
(
X
Ë
X
)−1

X
Ë
y.

In words, we multiply both sides of the initial equation by the transpose of X to get the cross-product

X
Ë
X, which is a square matrix (note: the square matrix (XË

X) is called the pseudo inverse of X. We cannot

use the true matrix inverse of X (i.e., X
−1) because it generally does not exist as X is not generally a

square matrix;< ≠ =). We then find the inverse of this cross-product matrixand multiply both sides by

that. This allows us to cancel out the term involving X on the right-hand side of the equation, allowing

us to find an estimate of #, which we call #̂, in terms of the original data.

It is worth noting that we could also approach this problem using the more familiar method of least

squares. Recall that least squares involves minimizing the sum of the squared residuals between the

observed and expected values. More formally, we want to minimize the Euclidean norm squared of

the residual (y − X#). That is, the quantity

y − X#
2

=
(
[.1 − (X#)1]

)2 +
(
[.2 − (X#)2]

)2 + · · · +
(
[.8 − (X#)=]

)2
,

where (X#)8 denotes the ith component of the vector (X#).
We could also rewrite this asy − X#

2
=

(
[.1 − (X#)1]

)2 +
(
[.2 − (X#)2]

)2 + · · · +
([
.8 − (X#)=

])2

=

=∑
8=1

(
.8 − (�1 + �2G8)

)2
.

You might recall (from some linear algebra class you might have taken) that for some vector)

)
Ë
) =

[
�1 �2 · · · �=

]

�1
�2

...

�=

= �

2
1 + �

2
2 + · · · + �

2
= =

=∑
8

�
2
8 .

Thus, if) =
(
y − X#

)
, then we can write

y − X#
2

=
(
y − X#

)Ë (
y − X#

)
= y

Ë
y − 2#ËXË

y + #
Ë
X
Ë
X#.

Chapter 6. Adding constraints: MARK and linear models

6.1. A (brief) review of linear models 6 - 6

All that’s left is to differentiate this expression with respect to #, set to 0, and solve. Let

(=
y − X#

2
=

(
y − X#

)Ë (
y − X#

)
.

Thus,

∂(

∂#
= −2X

Ë
y + 2X

Ë
X# = 0

X
Ë
Y = X

Ë
X#

#̂ =
(
X
Ë
X
)−1

X
Ë
y.

Note this resulting algebraic solution is identical to that obtained earlier.

In fact, we could show that both solutions are equivalent to the MLE estimates for # (the Gaussian

linear model is nice in the sense that the parameter estimates – namely the solution to the linear set

of equations, the least squares estimate, and the maximum likelihood estimate – are all the same). For

our ‘fake’ data:

#̂ =
(
X
Ë
X
)−1

X
Ë
Y

=

[
10.25

1.75

]
.

Thus, our estimates for the intercept and slope are �̂1 = 10.25 and �̂2 = 1.75, respectively.

We would next estimate the error variance for �̂1 and �̂2. First, we derive an estimate of the variance-

covariance matrix for the vector # estimates as

var(#̂) =
(
X
Ë
X
)−1

�
2
4 .

We can estimate �
2
4 from the residual sums of squares (RSS) as

RSS =
(
y − X#

)Ë (
y − X#

)
.

If the model estimates p parameters, then the estimate of �2
4 is simply RSS/(# − ?) where # is the

number of data points. Thus,

Var(#̂) =
(
X
Ë
X
)−1 RSS

(# − ?)

=
(
X
Ë
X
)−1

(
y − X#

)Ë (y − X#)
(# − ?) .

So, for our ‘fake’ data (where # = 8 and ? = 2), and our vector #̂,

RSS =
(
y − X#

)Ë (
y − X#

)
= 14.75,

and thus

Var(#̂) =
(
X
Ë
X
)−1 (

y − X#
)Ë(y − X#)

(# − ?)

=

[
0.6146 −0.6146

−0.6146 1.2292

]
.

Chapter 6. Adding constraints: MARK and linear models

6.2. Linear models and the ‘design matrix’: the basics 6 - 7

From this, we can calculate ŜE(�̂1) =
√

0.6146 = 0.7840, and ŜE(�̂2) =
√

1.2292 = 1.1087. And, since

a 95% CI for �̂2 (approximately �̂2 ± 2SE; [−0.4674, 3.9674]) clearly includes 0, we would conclude no

significant sex effect at a nominal = 0.05 level.

Our ‘hand calculated’ estimates of slope and intercept, and variances for both parameters, are

identical to the values returned by fitting the linear model in any statistical software package (below):

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 10.25000 0.78395 13.07 <.0001

sex 1 1.75000 1.10868 1.58 0.1655

end sidebar

6.2. Linear models and the ‘design matrix’: the basics

In program MARK, the default design matrix for a given model is determined by the parameter

structure of the model you are trying to fit (number of groups, and the number and structure of the

parameters; i.e., the PIMs). This design matrix is then modified in various ways to examine the relative

fit of different models to the data. In order to understand this process, it is essential that you understand

how the design matrix is constructed.

We’ll introduce the concept of a design matrix by means of an example. Suppose you are doing a

‘typical’ ANOVA on data with a single classification factor (say, ‘treatment’). Suppose that there are 4

levels for this factor (perhaps a control, and 3 different levels of the ‘treatment’). You want to test the

hypothesis that there is no heterogeneity among ‘treatment’ levels (Ho: �1 = �2 = �3 = �4). Recall from

the preceding discussion that this problem can be formulated as an applied linear regression problem

using ‘0/1 dummy variable’ coding for the different levels of the ‘treatment’.

Recall the previous example (above) which had 1 ‘treatment’ or classification factor (sex), with 2

levels (male and female). The corresponding regression model was

.8 = �1 + �2G8 + &8 ,

where x represented a coding variable specifying male or female (i.e., sex, the classification variable in

the ANOVA analysis). The coding variable took on the value of ‘0’ (for females) or ‘1’ (for males).

What would the regression model look like for our present example, with 4 levels of the treatment

factor instead of 2? How can we use a simple ‘0’ or ‘1’ dummy variable coding scheme (which clearly

has only 2 ‘levels’) to accommodate a treatment factor with 4 levels? The key is to consider the answer

to the following question: if G8 can take on 1 of 2 values (0 or 1), then how many values of G8 do we need

to specify k levels of the classification variable (i.e., the treatment variable)? If you think about it for a

moment, you should realize that the answer is : − 1 (which, of course, corresponds to the familiar ‘: − 1

degrees of freedom’ for a single-classification ANOVA).

Thus, for the present example, G1, G2 and G3 could be:

G1 =

{
1 if trt 1

0 if other
G2 =

{
1 if trt 2

0 if other
G3 =

{
1 if trt 3

0 if other

Clearly, when the coefficients for G1, G2 and G3 are all 0, then the treatment level must be 4 (‘other’).

Chapter 6. Adding constraints: MARK and linear models

6.2. Linear models and the ‘design matrix’: the basics 6 - 8

Thus, our regression equation for this example would be:

.8 = �1 + �2G1 + �3G2 + �4G3 + &8

In this case, �1 is the intercept, while �2, �3 and �4 correspond to the slopes for each of the levels of

the treatment factor. Since there are 4 levels of the treatment, 3 slopes are needed to code 4 levels of

the treatment, because 1 of the levels of the treatment corresponds to the case where all 3 slopes are 0.

Parameters �2, �3 and �4 refer to treatment levels 1, 2, and 3, respectively. If G1 = G2 = G3, then �1 refers

to treatment level 4. In other words, the intercept corresponds to treatment level 4.

begin sidebar

why is level 4 the intercept?

Choosing the intercept to specify treatment 4 was entirely arbitrary. We could for example have used

any other level of the treatment as the intercept, and adjusted the coding for the remaining levels

according. For example, we could have used level 1 of the treatment as ‘other’ (i.e., the intercept), as

follows:

G1 =

{
1 if trt 2

0 if other
G2 =

{
1 if trt 3

0 if other
G3 =

{
1 if trt 4

0 if other

In this case,when the coefficients for G1 ,G2 and G3 are all0, then the treatment levelmustbe 1 (‘other’).

Our regression equation would stay the same

.8 = �1 + �2G1 + +�3G2 + �4G3 + &8 ,

but now, parameters �2, �3 and �4 refer to treatment levels 2, 3, and 4, respectively. If G1 = G2 = G3,

then �1 refers to treatment level 1.

What is important to note here is that in either case, one of the levels is specified by the intercept

(i.e., �1). This level is referred to as the ‘control’ or ‘reference’ level. In this design, then, the other levels

(�2 → �4) are ‘offsets’ from this reference (control) level (i.e., the other � terms represent the magnitude

that a particular level of the treatment differs from the control).

We will discuss this and related issues in much more detail later.

end sidebar

From this step, it is fairly straightforward to derive the design matrix (so-called because it fully

represents the design of the analysis). The design matrix is simply a matrix showing the structure

of the ‘dummy’ coding variables in the analysis. Because there are 4 parameters being estimated in the

equation (�1, �2, �3 and �4), each corresponding to the 4 levels of the main effect, then the design matrix

will be a (4 × 4) square matrix.

To help construct the design matrix, we can decompose the general regression equation for this

analysis (above) into n regression equations, where n is the number of parameters in the regression

equation (i.e., the number of levels of the main effect; = = 4).

treatment equation

1 .8 = �1(1) + �2(1) + �3(0) + �4(0)
2 .8 = �1(1) + �2(0) + �3(1) + �4(0)
3 .8 = �1(1) + �2(0) + �3(10) + �4(1)
4 .8 = �1(1) + �2(0) + �3(0) + �4(0)

Chapter 6. Adding constraints: MARK and linear models

6.2. Linear models and the ‘design matrix’: the basics 6 - 9

The design matrix X (below) is simply the matrix of the coefficient multipliers in these equations:

X =

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

.

While this seems logical enough, there are, in fact, a number of alternative parameterizations of the

design matrix, each of which yields the same ‘model fit’, but which have different interpretations.

For example, all 6 of the following design matrices (X1 → X6) give equivalent model fits for our

example problem:

X1 =

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

X2 =

1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

X3 =

1 1 0 0

1 0 0 0

1 0 1 0

1 0 0 1

X4 =

1 1 0 0

1 0 1 0

1 0 0 0

1 0 0 1

X5 =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X6 =

1 1 0 0

1 0 1 0

1 0 0 1

1 −1 −1 −1

X1 (above) is the design matrix we derived previously; we estimate an intercept term for the last

‘treatment’ level (4), and then an additional ‘treatment’ effect for ‘treatment’ levels 1, 2 and 3. Matrices

X2 → X4 are based on the same underlying idea, except that the intercept specifies a different ‘reference’

level in each case (see preceding -sidebar-). For example, in X2, the intercept corresponds to treatment

level 1. In X3, the intercept corresponds to treatment level 2. And, in X4, the intercept corresponds to

treatment level 3.

The matrix X5 is an identity design matrix. Here, each row corresponds to a parameter, and each

column corresponds to a parameter. Thus, each parameter represents a treatment estimate directly, not

as an ‘offset’ (deviation) from the ‘control’ or ‘reference’ (i.e., the intercept).

In matrix X6, we estimate a mean parameter among treatment levels, and then an ‘offset’ for each

of the 4 levels; the first column corresponds to the mean treatment value, and the remaining columns

provide the treatment effects.

We’ll consider these different design matrices later in the chapter. Note that the choice of the structure

of the design matrix doesn’t affect the real estimates of the parameters (!, or ?, for example, on the real

probability scale) – but it does change how estimates of the individual slope parameters (i.e., the �

estimates) in the linear model are interpreted. We will see many examples of this later in the chapter.

Perhaps the most important thing to remember in considering design matrices is that the number

of rows corresponds to the number of parameters in your PIMs, whereas the number of columns

corresponds to the number of these parameters you are trying to individually estimate. As we will

see in the next section, this distinction becomes important when fitting models where parameters are

constrained to be functions of 1 or more effects.

Finally, a more complex example, using 2 groups (say, males and females), with multiple levels of a

treatment within group (i.e., within sex). This example is clearly analogous to a 2-way ANOVA, with 2

main ‘effects’ (treatment, and sex). Again, assume there are 4 possible treatment levels. The response

Chapter 6. Adding constraints: MARK and linear models

6.2. Linear models and the ‘design matrix’: the basics 6 - 10

variable Y can be decomposed as:

.8 9: = � + 8 + � 9 + (�)8 9 + &8 9: ,

where 8 is the sex (group) effect, � 9 is the treatment effect, and (�)8 9 is the interaction of the two.

The corresponding regression equation would be:

.8 9 = �1 + �2(SEX) + �3(t1) + �4(t2) + �5(t3)
+ �6(SEX.t1) + �7(SEX.t2) + �8(SEX.t3) + &.

If we derive the design matrix directly from this expression, then we see that we have 8 rows: 2 levels

for SEX (male or female) multiplied by 4 treatment levels within sex (remember, (= − 1) = 3 columns).

The design matrix X (shown below) would also have 8 columns, corresponding to the intercept, the SEX

(group effect), and the treatment and interaction terms, respectively

X =

1 1 1 0 0 1 0 0

1 1 0 1 0 0 1 0

1 1 0 0 1 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

The first column represents the intercept, the second column the group (SEX) effect (1=male,0=female;

i.e., the additive effect of males-females), columns 3-5 represent the treatment effect (C1 → C3), and

columns 6-8 represent the interactions of SEX (male) and treatment. Why male, and not female? It

depends on the coding – in this case, we’re using ‘0’ to represent females, and thus the interaction

columns have non-zero elements for males only.

Suppose, for example, rather than the full model (with interactions), you wanted to fit the additive

model consisting simply of the 2 main effects (no interaction term):

.8 9: = � + 8 + � 9 + &8 9: ,

which, in regression form, is

.8 9 = �1 + �2(SEX) + �3(t1) + �4(t2) + �5(t3) + &.

Using the design matrix X (above), this is easily accomplished by simply deleting the columns corre-

sponding to the interaction terms:

X =

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 0 0 0 0

Chapter 6. Adding constraints: MARK and linear models

6.2. Linear models and the ‘design matrix’: the basics 6 - 11

Got it? As we work through this chapter, we’ll come back to the concept of a ‘linear model’ and the

‘design matrix’ with considerable frequency, but hopefully you have the basic idea. In the examples

we will explore in this chapter, you will learn the basic steps of creating these linear ‘dummy variable’

models, design matrices, and how to use them with MARK to test a variety of hypotheses.

The only thing we now need to consider is – how can we use ‘regression models’ for analysis of mark-

encounter data, since both survival and encounter are not ‘normal’ response variables – normal in the

sense that they are both constrained to be values from 0 → 1? If you simply regressed ‘live = 1/dead = 0’

or ‘seen = 1, not seen = 0’ on some set of explanatory variables x, it is quite conceivable that for some

values of x the estimates value of survival or encounter would be > 1 or < 0, which clearly can’t be

correct! However, we clearly want to be able to bring the full power of ANOVA-type analyses to bear

on capture-encounter studies.

As mentioned earlier in this chapter, the way around this problem is to transform the probability of

survivalorencounter,such that the transformedprobabilities have been mappedfrom [0, 1] to [−∞,+∞],
which is of course the ‘assumption’ for normal linear regression models. To accomplish this, MARK

uses a ‘link function’ (see the following -sidebar- for more general background on link functions). In

fact, MARK allows you to choose among a number of different link functions (some of which are more

appropriate for certain types of analyses than others).

The default link function is the sin link, which has very good properties for analyses that use what is

known as the ‘identity matrix’ (much more on this matrix in a minute). For models which don’t use the

identity matrix (such as constrained models), the logit link function is preferred (this is also discussed

later on in this chapter). Using these transformed probabilities, we can use linear regression models

analogous to the one we just considered in the bat wing length example introduced at the start of this

chapter.

We will now consider a simple example in detail, based on live encounter data from the European

dipper, to demonstrate how linear models are constructed using MARK.

begin sidebar

What is a ‘link function’?

In the context of analysis of data from marked individuals, a ‘link function’ is a transformation of

probability such that the transformed probability is mapped from [0, 1] to [−∞,+∞]. For example,

suppose you want to express a dichotomous (i.e., binary) response variable Y (e.g., survival or

encounter) as a function of 1 or more explanatory variables. Let . = 1 if alive or present; otherwise

. = 0. Let x be a vector of explanatory variables, and ? = Pr(. = 1 | G) is the probability of the

response variable you want to model. We can construct a linear function of this probability by using

a certain type of transform of the probability, p.

For example, the logit transformation (one of several transformation or link functions you can use

with MARK) is given as:

logit(?) = ln

(
?

1 − ?

)
= �1 + �2G,

where �1 is the intercept, and #2 is the vector of slope parameters. Since � = ln(?/(1 − ?)) has inverse

? = 4�/(1 + 4�) = 1/(1 + 4−�), then the back-transformed estimate of ?̂ (i.e., back-transformed to the

[0, 1] probability scale) is

?̂ =
4 �̂1+�̂2G

1 + 4 �̂1+�̂2G
=

1

1 + 4−�̂1−�̂2G
.

In other words,we can express the probability of the event (survivalor encounter) as a linear function

of a vector of explanatory variables. The logit (or logistic) model is a special case of a more general class

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 12

of linear models where a function 5 = 5 (<) of the mean of any arbitrary response variable is assumed

to be linearly related to the vector of explanatory variables. The function f is the ‘link’ between the

random component of the model (the response variable) and the fixed component (the explanatory

variables). For this reason, the function 5 (<) is often referred to as a ‘link function’.

MARK allows you to choose among a number of different link functions (we will discuss the various

link functions later in this chapter), some of which are more appropriate for certain types of analysis

than others. MARK estimates the intercept and vector of the slope parameters, using the specified

link, and then reconstitutes the values of the parameter from the values of the explanatory variables, x.

MARK does this in 2 steps: (1) first, MARK reconstitutes estimates of the parameter from �̂1, �̂2 and

x, and then (2) MARK computes values of the parameter from f using the back transform 5 −1. There

are several examples of this in the text.

end sidebar

6.3. The European dipper – the effects of flooding

We return to our analysis of the European dipper data set. Now, we will examine the effects of a specific

climatic event (flood conditions on the breeding ground) on survival and encounter estimates.

As you may recall from Chapter 3 and Chapter 4, this data set involves 7 occasions of mark-encounter,

of both male and female individuals. In those earlier chapters, we focussed on the males exclusively. In

this chapter, we’ll reanalyze this data set including both males and females. Each year in the study was

characterizedby the presence orabsence offloodconditions. Are years withhigh(or low) values of either

survival or encounter (or both) associated with years when there was a flood? Does the relationship

between flood and either survival or encounter differ significantly between male and female dippers?

In order to address these questions, we will use the following ‘logic sequence’:

step 1 - is there support for an interaction of sex and the covariate (flood) on variation in either

survival or encounter?

step 2 - if there is no strong support for such an interaction, then is there evidence supporting a

difference between the sexes in survival?

step 3 - in the absence of an interaction between sex and flood, is there any evidence supporting a

linear relationship between survival (or encounter) and the covariate (flood)?

This is the same sequence of steps used in analysis of covariance (ANCOVA). This is a very basic (and

hopefully familiar) analytical design in statistical analysis, and we will demonstrate that the very same

approach can be used to analyze variation in survival or encounter. Before we begin, let’s recast our

analysis in terms of linear models. For the moment, let’s use the simplified expression of linear models

used in earlier chapters. Our basic model, including our classification variable (SEX) is

! (or p) = SEX + FLOOD + SEX.FLOOD + error.

One thing you might ask at this point is – why isn’t TIME included in the model? The answer lies in the

fact that when we talk about constraints, we are speaking about ‘applying’ a constraint to a particular

starting model.

For example, we could start with the standard CJS model, with time-dependence of both survival and

encounter probabilities. Then, we could apply a specific constraint to this model. In this example, we

replace the ‘random’ effect of time in the CJS model by the ‘specific’ temporal effect of FLOOD. FLOOD is

a particular case of time-dependence, because years with the same flood condition will share the same

survival value. Thus, models with the FLOOD factor are ‘nested’ in the corresponding CJS model with

the ‘random’ TIME factor. Of course, FLOOD, just like TIME, can be crossed (interaction) with SEX.

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 13

Our first step in this analysis is to test for the significance of the interaction term: SEX.FLOOD. If the

interaction term is not significant, we can proceed to test for the significance of the other factors.

How do we test for significance of the interaction term? Clearly, we test the model with the interaction

against the same model without the interaction – using either relative model support (the QAIC

approach), or (if you prefer) a LRT. The difference in fit of these two models is a ‘test’ of the interaction

term.

! (or p) = SEX + FLOOD + SEX.FLOOD + error

versus ! (or p) = SEX + FLOOD + error

SEX.FLOOD

How do we do this? The basic mechanics are the same as were described in earlier chapters – we use

MARK to fit the 2 models we want to compare. But, in this case, there is a subtle difference; although the

SEX term clearly corresponds to the 2 groups on our analysis, how do we incorporate the information

specified by the FLOOD variable? In other words, how do we ‘constrain’ our estimates for either sex to

be a linear function of flood? What about the design matrix?

OK – here we go – step by step...

Step 1 – reading in the data

Start MARK, and create a new project. The data file for this example is the full dipper data set

(ed.inp). Select it, and label the 2 groups ‘males’ and ‘females’. [Reminder, you are expected to know

or remember which columns in the .INP file correspond to which groups]. There are 7 occasions in the

dipper data set.

Step 2 – identify the parameters you want to constrain

In any typical analysis, your next step would be to decide on your starting, underlying model. For

example, your starting model might include simple time-dependence in both parameters. Remember,

this fully time-dependent model is the default starting model for MARK.

How do you decide on the structure for the starting model? By using the techniques discussed

in the preceding chapters, and the GOF procedures outlined in Chapter 5. Remember – you apply a

constraint to a particular underlying (or starting) model – if this model doesn’t adequately fit the data,

then applying a constraint will not yield a particularly powerful test.

For the moment, let’s assume that the model {!6∗C ?6∗C} (i.e., time and group effects for both survival

and encounter) is a good (and valid) starting model. Once you’ve determined the starting model, you

need to determine the parameter indexing that MARK will use. For the dipper data set, we have 2

groups, and 7 occasions.

Thus, the PIMs for this model would look like the following:

survival

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 8 9 10 11 12

3 4 5 6 9 10 11 12

4 5 6 10 11 12

5 6 11 12

males 6 females 12

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 14

encounter

13 14 15 16 17 18 19 20 21 22 23 24

14 15 16 17 18 20 21 22 23 24

15 16 17 18 21 22 23 24

16 17 18 22 23 24

17 18 23 24

males 18 females 24

Remember, this is the default model that MARK will start with, so there is no need to modify the

PIMs at this stage. A GOF test (using the median-2̂ – see chapter 5) yields a 2̂ value of 1.183 (remember,

your estimate of 2̂ might differ somewhat from this value, since the actual estimate of 2̂ will depend

upon the number of simulations you run). Adjust the 2̂ in the results browser from 1.000 (the default)

to 1.183 (remember, this means we’re now changing from AIC2 to QAIC2).

This model represents our ‘starting point’. Note that there are 24 structural parameters – 6 survival

parameters for each sex (12 total), and 6 encounter parameters for each sex (12 total). However, recall

that there are a couple of non-estimable �-terms here, one for males and females, respectively, so 22

total estimable parameters (10 survival, 10 encounter, 2 �-terms). Go ahead and fit this model to the data.

Call it ‘phi(g*t)p(g*t) - PIM’ (we’ve added the PIM label so that when we look at the model in the

browser, we’ll know that this model was constructed using PIMs only).

Now, we’ll fit a ‘constrained model’ to these data. For the moment, we’re concentrating on survival in

our analysis of these data, so the parameters we’re interested in are in ‘survival’ matrices, the survival

PIMs. Thus, we want to constrain 12 parameters: 6 survival estimates for males, and 6 for females. How

do we do this? In other words, we want to make the probability of survival a linear function of other

factors. In this particular example, the ‘other factors’ are SEX, and FLOOD.

Step 3 – defining the model structure of the linear constraint (modifying the design matrix)

As suggested earlier, linear models are specified via a ‘design matrix’. In fact, this is precisely what

we’ll do in MARK – specify a particular design matrix, corresponding to the particular linear model

we want to apply to the data. Again, recall that the name ‘design matrix’ reflects what it does – it is a

matrix containing the dummy variable structure which ‘codes’ the design of the linear model you are

fitting to the data. What would the design matrix corresponding to model

! (or p) = SEX + FLOOD + SEX.FLOOD + error

look like? As a first step, we generally rewrite this model expression more formally. If we consider FLOOD

as a simple binary variable (a year is either ‘flood’ or ‘non flood’), then the corresponding linear model

equation would be:

.8 9 = �1 + �2(SEX) + �3(FLOOD) + �4(SEX.FLOOD) + &

Recall that each column in the design matrix corresponds to each ‘�’ term in the model. In the

model, we have 4 different ‘�’ terms – the intercept, the term for SEX, the term for FLOOD, and the term

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 15

corresponding to the (SEX.FLOOD) interaction. So, the design matrix will have 4 columns. Now we need

to create, or modify, the design matrix for this model in MARK. You may have noticed that there is a

menu in MARK called ‘Design’. If you pull down the ‘Design’ menu, you’ll see that you are presented

with several options: full, reduced, and identity.

Understanding the distinction between the various options in the ‘Design’ menu will take a few steps,

so for the moment, we’ll start by selecting the ‘Design | Full’ menu option from the ‘Design’ menu.

Once you select ‘Full’, a new window will pop up on the MARK desktop, looking like the following:

This new window is the ‘Design Matrix Specification’.‗ Here we are using the full dipper data,

consisting of 2 groups (males, females), and 7 sampling occasions). For larger data sets (more groups,

more occasions), you may only see parts of it, so you need to get familiar with the basic layout. First, and

most obviously, the matrix is split into a series of columns. In this example, there are in fact 25 columns,

1 each for each of the 24 ‘potentially’ estimable parameters (remember, this is the CJS model, with 12

survival and 12 encounter parameters), and 1 ‘parameter label’ column (the grey one in the middle of

the matrix, labeled ‘Parm’). At the top of each of the columns representing the 24 parameters, you’ll see

headers like ‘B1’, ‘B2’ and so forth. Recall that ‘B’ stands for ‘�’ – thus, the columns ‘B1’, ‘B2’, ‘B3’ refer to

model parameters ‘�1’, ‘�2’ and ‘�3’, respectively.

How many rows in the design matrix? You might guess 24. You would be correct! The design matrix

– the full design matrix – for the CJS model for this data set is (in effect) a (24× 24) matrix (we’ll ignore

the parameter column for the moment).

‗ This is where it helps to have a big monitor!

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 16

If you look at the design matrix for this model carefully, you’ll see that it has the following general

structure:

survival
dummy

variables

recapture
dummy

variables

null

null

In the upper-left and lower-right quadrants, we have the ‘dummy variable coding’ for the survival

and encounter probabilities, respectively. In the upper-right and lower-left quadrants, we have what

we’ll refer to as the ‘null’ coding.

Whatare these codings? Let’s lookat the upper-leftquadrantfirst– the dummy coding for the survival

parameters. This quadrant is shown below:

First – how big (number of rows,number of columns) is the quadrant? Since the full matrix is (in effect)

(24 × 24), then 1/4 of this is a (12 × 12) matrix. Thus, the upper-left quadrant are the first 12 columns

and rows (going from left to right, top to bottom). In this quadrant (pictured at the top of this page),

we see a column of 12 ‘1’s (the column labeled ‘B1 - Phi Int’), a second column of 6 ‘1’s followed by

6 ‘0’s, then a series of columns with ‘1’s going down along a diagonal. (Note: the column shows a label

of ‘B1 - Phi Int’. MARK provides the indicated column labels by default for the full design matrix

corresponding to a fully time-dependent model structure, as specified by the PIMs. For other models,

the default column labels are simply Bn (e.g., B1, B2, B3...). To change the label for a particular column in

the design matrix, simply right-click within any cell in a particular column. This will spawn a series of

options you can select from – one of which is to label the column. Meaningful (to you) column labeling

is very useful until you’ve developed some experience with design matrices – the labels will help you

keep track of things.)

Remember, what is pictured here is the part of the design matrix which corresponds to the survival

parameters for the ‘full’ general model - model {!6∗C ?6∗C} (where g = SEX). In other words, the basic CJS

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 17

model for 2 groups. This is what ‘Full’ refers to when you select that option from the ‘Design’ menu -

‘Full’ means the fully time-dependent model, as specified by the PIMs.

Second, the actual structure of this part of the design matrix reflects the linear model corresponding

to model {!6∗C} (remember, we’re only considering the survival part of the design matrix for now). Now,

given that there are 7 occasions, and 2 groups (males and females), the linear model corresponding to

model !6∗C is (wait for it. . .)

.8 9 = �1 + �2(SEX) + �3(t1) + �4(t2) + �5(t3) + �6(t4) + �7(t5)
+ �8(SEX.t1) + �9(SEX.t2) + �10(SEX.t3) + �11(SEX.t4) + �12(SEX.t5) + &

Pretty cumbersome looking, but not too hard if you go through it slowly. One term for the intercept

(�1), one term for the ‘group’ effect (i.e., sex, �2), 5 terms for the 6 time intervals over which we hope to

estimate survival (�3 to �7), and then 5 terms for the interaction of sex and time (�8 to �12) – a total of

12 parameters. Thus, 12 columns for this part of the design matrix, just as we observe in the preceding

figure. Remember – even though there are 6 time intervals for survival (7 occasions = 6 intervals), we

need only 5 columns – 5 parameters – to code them. So, for 6 intervals (which is analogous to 6 levels

of a ‘time’ treatment), you need (6 − 1) = 5 parameters. This is precisely where the ‘= − 1’ degrees of

freedom bit comes from in ANOVA (and which is almost never explained to you in your basic stats

class – they simply teach you ‘rules’ like ‘= − 1 degrees of freedom. . .’ without explaining why. Now

you know why! – it relates to how the linear model is set up and reflects the number of columns needed

to code for a ‘treatment’ in the design matrix).

However, note that the columns of the design matrix are labeled ‘B1’ to ‘B12’. MARK defaults to

labeling the first column (the ‘intercept’ column) as ‘B1’, which seems counter to the (fairly) standard

linear models convention of using �0 for the intercept. While you can always change it in the MARK

preferences if you want, we will adopt the convention of using �1 for the intercept. Doing so makes it

much easier to relate the terms of the linear model to specific columns in the design matrix (column B1

in the design matrix corresponds to �1 in the linear model, column B2 corresponds to �2, and so on).

OK, so that’s the basic structure – 12 columns, and 12 rows (12×12): 12 columns for the 12 parameters

of the linear model, and 12 rows for the (2 groups × 6 occasions). Remember – the number of columns

in the design matrix represents the number of parameters we want to estimate, while the number of

rows in the design matrix reflects the number of parameters in the underlying model (i.e., the parameter

indexing specified in the PIMs). If the number of columns is < the number of rows, then this implies

that we are applying a constraint to the underlying model structure.

What about the actual dummy variable coding? Well, the intercept column should be straightforward

– it’s all ‘1’s. Next – the column coding for ‘SEX’. Here it is arbitrary which dummy variable you use to

code for ‘males’ and for ‘females’ (there is a fairly common convention for using ‘1’s for males, and ‘0’s

for females, but it makes absolutely no difference at all). Again, there are 2 levels of this effect – 2 sexes.

So, we need 1 column of dummy variables to code for ‘SEX’ (that old ‘= − 1 degrees of freedom’ thing

again). So far, so good – and hopefully, pretty easy stuff.

What about time? Well, if you remember the introduction to linear models and the design matrix

from earlier in this chapter, you realize that what MARK does is use a row of all ‘0’s to code for the last

time interval, and then ‘1’s along the diagonal to code for the preceding intervals. The choice of using

‘0’s first, then the diagonal, is entirely arbitrary (you could, for example, use a diagonal set of ‘1’s, with

the last row being all ‘0’s – makes little difference to the overall model fit, or the reconstituted estimates)

– it is a MARK default. Note that this pattern is repeated twice – once for the males, and once for the

females. Look closely – make sure you really do get it. Finally, the interaction terms. Pretty easy – just

multiply the ‘SEX’ column by the ‘TIME’ columns to generate the ‘SEX.TIME’ interaction columns. Got it?

Good!

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 18

Now, what about encounters? So far, we’ve been talking only about modeling survival. Well, since the

general model is {!6∗C ?6∗C}, then the structure for the design matrix for encounters should be identical

to the one for survival, except it is located in the lower right quadrant of the design matrix – the encounter

part of the design matrix is pictured below. Before we proceed, what about the 2 ‘null’ quadrants? Well,

since ‘null’ generally refers to ‘0’, you might suspect that the ‘null’ quadrants are filled entirely with ‘0’s.

You would be correct.

begin sidebar

changing the default reference level

In the preceding, we’ve used the default coding system in MARK to specify the ‘full’ design matrix.

The default uses the last time interval or occasion as the reference (i.e., the last time interval or occasion

is represented by the intercept). As will be discussed later in this chapter (p. 77), there may be reasons

why you don’t want to use the last interval or occasion as the intercept – in particular, if it involves

confounded parameters. For example, in a fully time-dependent CJS model, the final ! and ? estimates

are confounded. In such cases, it may make sense to change the default reference level to (say) the first

interval or occasion. MARK makes it easy to do so – simply access ‘File | Preferences’, and check the

box ‘For time effects in the using matrix, make the first row the reference value’. Recall

that the first row corresponds to the first interval or occasion.

end sidebar

Back to the problem at hand – we want to constrain the survival estimates – the first 12 parameters

(rows 1 → 6 for the males, and rows 7 → 12 for the females). In MARK, you constrain parameters by

‘modifying’ the design matrix. For our present example, we want to constrain survival to be a function

of SEX, FLOOD, with a SEX.FLOOD interaction. Recapture probability we’ll leave as is – with simple SEX

and TIME differences, with a SEX.TIME interaction. Simple designs tend to be very easy, more complex

designs obviously less so. So, we really need to consider only the structure of the design matrix for

survival.

In fact, all you really need to do is write out the linear model equation for survival. In this case, it

would be:

.8 9 = �1 + �2(SEX) + �3(FLOOD) + �4(SEX.FLOOD) + &.

A term for the intercept (�1), a term for the sex effect (�2), a term for the flood effect (�3 – remember

that flood is a simple binary state variable – either ‘flood’ or ‘no flood’), and a term for the interaction

of the two (�4). So, the survival part of the design matrix would consist of 4 columns, corresponding

to this linear model. The number of rows? Again, the number of rows is the product of the number of

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 19

time intervals specified in the PIMs, and the number of groups (so, 6 × 2 = 12 rows).

We already know how to code the intercept term, and the SEX term. What about the FLOOD term? Well,

since flood state is a binary variable, we can use ‘1’ to indicate a flood year, and ‘0’ to indicate no flood.

In this study, the flood occurred during the 2nd and 3rd breeding seasons only.

Thus, the design matrix for the survival parameters will be – for males:

INTERCEPT SEX FLOOD SEX.FLOOD

1 1 0 0

1 1 1 1

1 1 1 1

1 1 0 0

1 1 0 0

1 1 0 0

and for females

INTERCEPT SEX FLOOD SEX.FLOOD

1 0 0 0

1 0 1 0

1 0 1 0

1 0 0 0

1 0 0 0

1 0 0 0

Note that since the SEX column is now all ‘0’, the interaction column will also be a column of ‘0’s,

regardless of what is in the FLOOD column. Thus, putting the two sexes together, the design matrix for

survival would be:

INTERCEPT SEX FLOOD SEX.FLOOD

1 1 0 0

1 1 1 1

1 1 1 1

1 1 0 0

1 1 0 0

1 1 0 0

1 0 0 0

1 0 1 0

1 0 1 0

1 0 0 0

1 0 0 0

1 0 0 0

Got it? Now, all that’s left is to translate this design matrix into MARK. There are a couple of ways

to do this, but since we have the ‘full design matrix’ open already, we’ll go ahead and modify it.

Now, recall that in the unmodified full design matrix,we have 12 columns for the survival parameters,

and 12 columns for the encounter parameters (we’re ignoring the encounter parameters for the time

being). So, we want to reduce the number of columns for the design matrix for survival from 12, to 4.

Chapter 6. Adding constraints: MARK and linear models

6.3. The European dipper – the effects of flooding 6 - 20

It is this reduction that leads us to say that a model where survival is constrained to be a function of

SEX and FLOOD is a ‘reduced parameter model’. It is reduced because the number of columns (i.e., the

number of parameters) is reduced, relative to the starting model.

Now, MARK makes it easy to manipulate the design matrix. But, for the moment, we’ll do it

‘manually’, without some of the ‘way cool and nifty’ shortcuts that MARK offers. After some practice,

you’ll probably skip the manual approach, but then...the manual approach almost always works, even

if it takes a bit longer. Basically, we want to keep the column corresponding to the intercept (the B1

column in the matrix MARK presents). We also want to keep the SEX column (column B2). Then, we

want 2 columns: one for the flood dummy variable, and one for the interaction. The simplest approach

to doing this is to manually edit the cells in columns 3 and 4 of the existing design matrix, entering

the dummy variable coding for FLOOD, and the SEX.FLOOD interaction, as described earlier. All that’s left

after that is to delete the other 8 columns, which are no longer needed (there are lots of ways to delete

or add columns to the design matrix – note the various menus specifically for this purpose. You can

also right-click your way to the required structure). The final design matrix, showing both survival and

encounters, is shown below:

Again, we now have 4 columns coding for the survival parameters, and 12 columns for the encounter

parameters. Study this design matrix carefully – make sure you understand how it is constructed, and

(obviously) why it has the structure it does.

Note: You may have noticed the grey-shaded column in the various design matrices we’ve examined

thus far. This is a handy little feature of the presentation of the design matrix in MARK, which helps

you remember which rows of the design matrix correspond to which parameters. This ‘guide column’

Chapter 6. Adding constraints: MARK and linear models

6.3.1. Design matrix options: full, reduced, and identity 6 - 21

(for lack of a better name) can be dragged left or right within the design matrix – this is convenient since

you can drag it to a point which conveniently separates the survival and encounter parameters to the

left or right of the guide column, respectively (as we’ve shown in this example).

6.3.1. Design matrix options: full, reduced, and identity

For the preceding example, we started by generating the ‘full design matrix’, corresponding to the

general time-dependent model {!6∗C ?6∗C}. We did this by selecting the ‘Full’ option from the ‘design

matrix’ menu. You might have noticed two other options – one for a ‘reduced’ design matrix, and the

other for an ‘identity’ design matrix. The distinctions among the three options are:

1. The ‘full’ design matrix corresponds to a fully ‘group × time’ model. If the underlying PIM

structure is fully ‘group × time’, then selecting the design matrix option ‘full’ from the

menu will generate the standard ‘group× time’ design matrix, based on intercept (reference)

coding – MARK defaults to using the last time interval as the reference cell (this is discussed

elsewhere). If you select the ‘full’ design matrix option when the underlying PIM structure

is not fully ‘group × time’, then MARK will respond with an error box. The ‘full’ design

matrix option applies only if the underlying PIM structure, is fully ‘group × time’ – if the

PIM structure is anything else, then you need to use the ‘reduced’ option (see 2, below).

2. If either (i) the underlying PIM structure does not represent a fully ‘group× time’ model (e.g.,

if the PIM structure represents a reduced parameter structure – fewer parameters than the

‘group × time’ structure, or more parameters than a ‘group × time’ structure – for example,

for a TSM model; Chapter 7), or (ii) you want to build a design matrix which constrains the

underlying PIM structure (e.g.,applying a constraint to a ‘group× time’ PIM structure where

time might be constrained to be a linear function of some environmental covariate), then

you would select the ‘reduced’ design matrix option (note: the term ‘reduced’ is perhaps

somewhat misleading, since in fact you would use it for a model with more parameters than

a ‘group × time’ model – the word ‘reduced’ would suggest fewer parameters).

The ‘reduced’ option is the option you use whenever you want to construct a design matrix

which does not correspond to a full ‘group× time’ model. When you select ‘reduced’,MARK

presents you with a popup window which asks you to specify the number of columns you

want in the design matrix, MARK defaults to the number of columns represented in the

PIMs (i.e., if the PIMs specify = parameters, then the default design matrix will have =

columns). If you want to start with fewer columns, you simply change the value in the

popup window.

3. The ‘identity’ matrix is the default design matrix in MARK – The ‘identity’ option results

in the number of columns in the matrix equaling the number of rows, with the diagonal

filled with ones and the rest of the matrix zeros. This is an identity matrix, and provides no

constraints on the parameters. The identity matrix can be selected for any model, regardless

of the underlying PIM structure.

6.4. Running the model: details of the output

Go ahead and run this model – call it ‘Phi(sex*flood)p(sex*time)’. Now, before

you submit this model, something important to notice (image to the right) – the

sin link is no longer the default link function. In fact, as you can see, the sin link is

not even available. The default (and generally preferred) link function when you

change the design matrix from the default identity matrix is now the logit link.

Chapter 6. Adding constraints: MARK and linear models

6.4. Running the model: details of the output 6 - 22

begin sidebar

available link functions in MARK, and...why no sin link with a design matrix?

MARK currently supports 8 different link functions: 4 which constrain parameters to the interval [0, 1]
(logit, log-log, complementary log-log, and the default sin link), and 4 which either do not restrict the

parameters to be in the [0, 1] interval (identity and log), or which are constrained versions of the logit

transform (cumulative and multinomial logit; these will be introduced later).

The following tabulates many of the more commonly used link functions and back-transformations

in MARK, presented assuming a simple linear function � = �1 + �2(G), where � is some parameter

bounded [0, 1] (e.g., encounter probability).

link function back-transform

sin arcsin(2� − 1) = �1 + �2(G) � =
[
sin

(
�1 + �2(G)

)
+ 1

]
/2

logistic log

(
�

1 − �

)
= �1 + �2(G) � =

exp

(
�1+�2(G)

)
1 + exp

(
�1+�2(G)

) (∗)

log ln(�) = �1 + �2(G) � = exp
(
�1 + �2(G)

)
log-log log

(
− log(�)

)
= �1 + �2(G) � = exp

(
− exp(�1 + �2(G)

)
complementary log-log log

(
− log(1 − �)

)
= �1 + �2(G) � = 1 − exp

[
− exp

(
�1 + �2(G)

)]
identity � = �1 + �2(G) � = �1 + �2(G)

∗
Note the equivalence of the following:

4X#

1 + 4X#
=

1

1 + 4−X#

Although the logit link function is a familiar, commonly used link function used for statistical

analysis of [0, 1]bounded parameters, it can present some problems during the numerical optimization

for parameter estimates for � that approach±∞ (i.e., as the real parameter values approach either 0 or 1

– so-called ‘boundary estimates’). As a result, the sin link, which tends to perform better for ‘boundary

estimates’, is the default in MARK.

Why the difference in performance between the two link functions? To understand the difference,

first consider the following figure where we plot parameter values back-transformed to the real

probability scale, for both the sin and logit link functions:

Chapter 6. Adding constraints: MARK and linear models

6.4. Running the model: details of the output 6 - 23

In the plot, notice that the ‘standard’ sin transform (blue line) oscillates between [+1,−1], whereas

we want a function that is bound on the interval [0, 1]. To achieve this, MARK transforms the sin link

by first adding 1 (changing the scale from [+1,−1] to [+2, 0]), and then dividing by 2, transforming

it to the [0, 1] interval (the red line in the plot).‗ Both the original and transformed sin link functions

oscillate, whereas the back-transform from the logit scale (black line; the back-transform is usually

known as expit, the exponential function ‘exp’ being the opposite of the ‘log’ transformation used in

the logit link) is monotonic. This difference (oscillatory versus monotonic) has important implications,

and as a result, the logit and sin links have both advantages and disadvantages that are important to

understand.

First, why is the sin link the default link function in MARK? The simple explanation is that the sin

link generally ‘performs better’ (than the logit link) at handling parameters that are estimated near

the 0 or 1 boundaries. Have a look at the following plot:

Here we see that for some values of the covariate (represented by X# along the x-axis), the logit link

asymptotically approaches 1 (the same thing applies in reverse for the 0 boundary). In fact, over a fair

range along the x-axis (say, for values of X# ≥ 6), it is probably impossible to differentiate between

two values of X# in this region of the curve. This is important because MARK counts parameters by

looking at the slope (partial derivative) of the likelihood function at the putative maximum (this point

is called G in the plot). MARK does this numerically by evaluating the derivative as

lim
�→0

5 (G + �) − 5 (G)
�

,

where � is a (very) small deviation away from the value G, on the function 5 (G) (in this case, 5 (G) is

the likelihood function). If the derivative evaluates to something other than 0, then the parameter has

changed the ‘curvature’ of the (likelihood) function, and thus, the parameter is counted as a distinct

parameter. If the function is ‘flat’ (as the logit function is), then MARK has a difficult time detecting

such a change in slope, and as a result, may not correctly count the parameter. More formally (as

detailed in the Addendum to Chapter 4), both the first and second derivatives of the function approach

0. As a result, determining the rank of the information matrix (a key step in counting parameters) is

not a reliable method for determining the number of parameters estimated when using the logit link.

In contrast, because the sin link does not asymptote for any range of values of X#, then the numerical

evaluation for the slope (derivative) between G and G + � will generally ≠ 0, even if very close to either

‗ The use of the sin link was introduced by Box (1966) – the original reference used sin(X#)2, whereas MARK uses (sin(X#)+1)/2
to ensure the back-transformed real probability estimate is on the [0, 1] interval. In fact, it might be better named the arcsin link,
since estimation is on that transformed scale, and back-transformed using the sin function (see table on the preceding page),
but ‘sin link’ is somewhat traditional, and is the name used in MARK.

Chapter 6. Adding constraints: MARK and linear models

6.4. Running the model: details of the output 6 - 24

the 0 or1 boundaries. As a result, the rankof the information matrix is a reliable estimatorof the number

of parameters estimated – the sin link will generally correctly estimate (and count) parameters that

fall near either boundary. Thus, the default link function in MARK is the sin link.

But, the sin link is ‘greyed out’...

So, if the sin link has this advantage ‘at the boundaries’, why is sin link ‘not available’ (i.e., is ‘greyed

out’) when the design matrix is modified (i.e., when the design matrix is not a default identity matrix)?

The reason, in fact, reflects the ‘downside’ of the sin link being cyclical (oscillatory), and not monotonic.

The sin link oscillates between 0 and 1 (under the transformation used in MARK), with a period of

2�. This is important because it means that under the sin link, any two covariate values that differ

by 2� would yield exactly the same parameter estimate (i.e., sin(G), sin(G + 2�), and sin(G + 4�) all

result in the same value, given G), which might not make much biological sense (in other words, it

is unlikely that the biological relationship between some covariate and some parameter oscillates).

On the other hand, it is probably much more reasonable to imagine that the parameter changes as a

linear, monotonic function of the convariate (e.g., as covariate increases, parameter increases, over the

observed range of the covariate), which is what the logit link allows.

As a result, the sin link should only be used with design matrices that are identity matrices, or when

only one column in each row has a value not equal to zero, because the sin link will reflect around the

parameter boundary, and not enforce monotonic relationships (as discussed above). In other words,

when the range of the covariate and/or the parameter estimates cause the link function to straddle 0,

the logit link is better for non-identity design matrices.

Thus, although the sin link is the best link function to enforce parameter values in the [0, 1] interval

and yet obtain correct estimates of the number of parameters estimated, you need to be careful: in fact,

because the sin link is not monotonic, the sin link is simply not available whenever you manipulate

the design matrix (i.e., MARK protects you from potential error if you try to use the sin link).

Here is a worked example demonstrating the problem. Consider the survival of some organism

deliberately exposed to a potentially toxic chemical. The data set (sin_example.inp) consists of 6

sampling occasions, and 2 groups (treatment and control). Analysis of this data set provides a very

interesting example of the misbehavior of the sin link function‗. Fit the model {!C+6 ?C} using a sin

link. MARK will not let you do this directly – you’ll need to use a ‘parameter-specific’ link, which

we’ll discuss later, and examine the parameter estimates:

Sin Link Logit Link

Treatment Control Treatment Control

Interval Estimate Estimate Estimate Estimate

1 0.693804 0.809271 0.723796 0.786824

2 0.966087 0.901265 0.913274 0.936837

3 0.902766 0.966995 0.921747 0.943152

4 0.908336 0.817021 0.846637 0.886047

5 0.684043 0.800919 0.700348 0.767003

As illustrated at the top of the next page, the differences in survival of the treatment and control

groups are not consistent between the two link functions. Using the sin link, the control group is not

consistently larger than the treatment group, or vice versa. In contrast, note how this constraint is

enforced with the logit link function, i.e., the control estimate is always greater than the treatment

estimate. The survival probabilities are parallel on the logit scale, but not on the sin scale.

How can this be? The answer again lies in the fact that the logit function is monotonic, whereas the

sin function is not. For this example, the biological interpretation of the sin model is nonsense, yet,

interestingly, this model provides the minimum AIC by 3 units. Further, the treatment effect would

appear to be significant with this model. So, if you use the sin link with a DM, be careful, especially

for design matrices where a row in the matrix has non-zero values in more than 1 column.

‗ When it misbehaves – it is generally not easy to predict when it will.

Chapter 6. Adding constraints: MARK and linear models

6.4. Running the model: details of the output 6 - 25

��������

�������	

 � � �

�
�
��
�
�
��
�
��
�
��
��
�
	

����

����

����

����

����

����

����

���

���������

������	

����	�����

�������	

 � � �

�
�
��
�
�
��
�
��
�
��
��
�
	

����

����

����

����

����

����

����

���

Some important additional details...

Among the 6 standard link functions (excluding the cumulative and multinomial logit links), the log

and identity link functions do not constrain the probability to the interval [0, 1], which can occasionally

cause numerical problems when optimizing the likelihood. The log link does constrain real parameter

values >1 (which is clearly useful for parameters which are naturally ≥ 0). For the log and identity

link functions used with an identity design matrix, MARK uses the sin link function to obtain initial

estimates for parameters, then transforms the estimates to the parameter space of the log and identity

link functions when they are requested.

end sidebar

Go ahead and run this model, and add the results to the results browser. The QAIC2 for this model

(given the value for 2̂ we specified at the outset) is 584.77, which is approximately 15 less than our

starting, general model. Thus, based on these 2 models, we would conclude that our ‘constrained’ (i.e.,

reduced parameter) model is many times better supported by the data than was our general starting

model. However, note that our constrained model is reported to have 15 estimated parameters. And yet,

if you look at the design matrix, you’ll see that we have 16 columns, meaning 16 parameters.

So why does MARK only report 15, and not 16? MARK reports the numbers of parameters that it can

estimate, given the data, not the number of parameters that are theoretically available to be estimated. As

discussed in the preceding -sidebar-, the sin link generally does ‘better’ when dealing with parameters

near the boundaries – meaning that it will often ‘succeed’ at estimating a few more of these ‘problem’

parameters than the logit link. However, here, where we’ve modified the design matrix, we need to

use the logit link. If you look at the parameter estimates for the constrained model, you see that the

encounter probability for males for the third occasion (reconstituted parameter 14) is estimated at 1.0,

with a standard error of 0, which is usually diagnostic of a problem. As such, MARK doesn’t ‘count it’

in the parameter total. So, MARK reports only 15 parameters, not 16. As a result, you need to manually

adjust the number of parameters to reflect the ‘missing’ parameter. You do this with the ‘Adjustments’

menu. Simply change the number of parameters for this model from 15 to 16.

Now, let’s look at the estimates for survival (shown at the top of the next page). Couple of things to

notice. First, the parameters 1 → 6 correspond to males, 7 → 12 to females. This is what we specified

in the PIMs for the underlying model, to which you applied the constraint reflected in the linear model.

Now, remember that there was a flood over the second and third intervals only. This is seen in the

estimates – for males, for example, survival in the 2 flood years is 0.4725, while in the non-flood years,

survival is 0.5970. For females, the survival during the 2 flood years is 0.4537, while for the non-flood

years, it is 0.6403.

Chapter 6. Adding constraints: MARK and linear models

6.5. Reconstituting parameter values 6 - 26

Where do these ‘estimates’ come from? Notice that these are labeled as ‘Real Function Parameters’

– what does that mean? The answer is found if you look in the ‘full output’. Scroll down until you get to

the sections showing the link function parameter estimates, and the reconstituted real function

estimates. These are the key ‘bits’ we need. What are these two types of estimates, and why are they

important?

In brief, the ‘link function parameters’ are the estimates of the ‘slope parameters’ in the linear

model, on the link function scale. Remember, we’re fitting what is in effect a regression model to the

data, a regression model that contains estimated parameters – these are the � values referred to earlier.

In this example, they are logit link function parameter estimates. The real function parameters are the

estimates of the survival and encounter parameters themselves, calculated from the regression model

on the transformed scale, back-transformed to the real probability scale.

6.5. Reconstituting parameter values

Let’s look at the link function parameter estimates a bit more closely. Recall that for the constrained

model, 15 parameters were estimated. Can we confirm this by looking at the link function parameter

estimates? You can look at the ‘Beta’ estimates by clicking on model ‘Phi(SEX*FLOOD)p(SEX*time)’ in

the browser (to make it active), and then clicking on the third icon from the left in the browser toolbar.

This will open up the editor showing the �-estimates (i.e., the estimates of the intercept and slopes):

Chapter 6. Adding constraints: MARK and linear models

6.5. Reconstituting parameter values 6 - 27

We see that there are 16 �-estimates, but that only 15 of them are actually estimable (note the standard

error for parameter 13). This is why MARK reports 15 estimable parameters. No confounded �-terms

here (more on why in a minute). So we see again that the number of estimable parameters MARK

reports in the browser corresponds to the number of estimable ‘slopes’ in the linear model.

But let’s explore what these ‘link function parameter estimates’ actually mean. This will make

explicitly clear what link functions are all about. Let’s look at the ‘link function parameter estimates’

from model {SEX FLOOD SEX.FLOOD} model (shown at the bottom of the preceding page). The first 4

parameter estimates are:

Parameter term �̂

1 INTERCEPT 0.576929

2 SEX −0.183767

3 FLOOD −0.762691

4 SEX.FLOOD 0.259347

These values are the � coefficients (‘slopes’) for each of the terms in our linear model, estimated on

the logit link scale: one each for the INTERCEPT, SEX, FLOOD, and the SEX.FLOOD interaction (parameters

1 → 4, respectively, as shown above). It is through using these � estimates that we ‘reconstitute’ our

estimates for survival.

A simple example will make this clear. Suppose you were given the equation. = 3.2G+4. If you were

then given some value x, you could interpolate what the value of Y will be (on average, if the equation

is a regression line). For example, if G = 4, then . = 16.8. The same thing applies in our constraint

analysis. We now have an equation (linear model) of the form:

logit(!) = �1 + �2(SEX) + �3(FLOOD) + �4(SEX.FLOOD).

Now, from this equation, and given estimates of each of the regression coefficients �̂8 , we can

‘reconstitute’ estimates of survival for any value of SEX, FLOOD and the interaction (SEX.FLOOD).

To make sure you really understand what is happening, let’s consider how the reconstituted estimate

for male survival over the fifth interval (i.e., !̂5) is obtained. We must first compute the estimate of

survival on the logit scale using the linear formula noted above, where the values of �1, �2, �3 and �4

are parameters (‘beta’) 1, 2, 3 and 4 (respectively).

Formales,SEX is coded ‘1’. As the fifth interval is a ‘non-flood’ year,FLOOD is ‘0’,and thus the interaction

term (SEX.FLOOD) is also ‘0’ (since (1 × 0) = 0).
Therefore,

logit(!̂5) = �1 + �2(SEX) + �3(FLOOD) + �4(SEX.FLOOD)
= 0.576929+ (−0.18377) × (1) + (−0.76269) × (0) + (0.25935) × (0)
= 0.393159.

The reciprocal of the logit transform (usually referred to as expit) is

expit(!̂5) =
4logit(!5)

1 + 4logit(!5)
.

Chapter 6. Adding constraints: MARK and linear models

6.5. Reconstituting parameter values 6 - 28

Thus, the ‘reconstituted’ value is

!̂5 =
40.393159

1 + 40.393159

= 0.5970429.

This is the result reported by MARK (up to the level of the rounding error).

begin sidebar

reconstituting standard error of estimate

In the preceding, we saw how we can ‘back-transform’ from the estimate of � on the logit scale to an

estimate of some parameter � (e.g., ! or ?) on the probability scale (which is bounded on the interval

[0, 1]). But, we’re clearly also interested in an estimate of the variance (precision) of our estimate,

on both scales. Your first thought might be to simply back-transform from the link function (in our

example, the logit link), to the probability scale, just as we did above. But, does this work?

Consider the male dipper data. Using the logit link, we fit model {!· ?·} to the data – no time-

dependence for either parameter. Let’s consider only the estimate for !̂. The estimate for � for ! from

model {!· ?·} is 0.2648275. Thus, our estimate of !̂ on the real probability scale is

!̂ =
40.2648275

1 + 40.2648275
=

1.303206

2.303206
= 0.5658226,

which is what MARK reports (to within rounding error).

But, what about the variance? Well, if we look at the � estimates, MARK reports that the standard

error for the estimate of � corresponding to survival is 0.1446688. If we simply back-transform this

estimate of the SE from the logit scale to the probability scale, we get

!̂ =
40.1446688

1 + 40.1446688
=

1.155657

2.155657
= 0.5361043.

However, MARK reports that the standard error for ! is 0.0355404, which isn’t even remotely close

to our back-transformed value of 0.5361043.

What has happened? Well, remember (fromChapter 1) that the variance for a parameter is estimated

from the likelihood based on the rate of change in the likelihood at the MLE for that parameter (i.e., the

second derivative of the likelihood evaluated at the MLE). As such, you can’t simply back-transform

from the SE on the logit scale to the probability scale, since the different scalings influence the shape

of the likelihood surface, and thus the estimate of the SE.

To get around this problem, we can make use of something called the Delta method. The Delta

method is particularly handy for approximating the variance of transformed variables (and clearly,

that is what we are dealing with here). The details underlying the Delta method are beyond our scope

at this point (the Delta method is treated in some detail in Appendix B); here we simply demonstrate

the application for the purpose of estimating the variance of the back-transformed parameter.

For example, suppose one has an MLE �̂ and an estimate of v̂ar(�̂), but makes the transformation,

�̂ = 4 �̂
2

.

Then, using the Delta method, we can write

v̂ar(�̂) ≈
(
∂�̂

∂�̂

)2

× v̂ar(�̂).

Chapter 6. Adding constraints: MARK and linear models

6.5. Reconstituting parameter values 6 - 29

So, all we need to do is differentiate the transformation function for� with respect to �, which yields

2�.4�
2

. We would simply substitute this derivative into our expression for the variance, yielding

v̂ar(�̂) ≈
(
2�̂.4 �̂

2)2
× v̂ar(�̂).

Given values for �̂, and v̂ar(�̂), you could easily derive the estimate for v̂ar(�̂).
What about the logit transform? Actually, it’s no more difficult, although the derivative is a bit

‘uglier’. Since

!̂ =
4 �̂

1 + 4 �̂
,

then

v̂ar(!̂) ≈
(
∂!̂

∂�̂

)2

× v̂ar(�̂)

=
©
«

4 �̂

1 + 4 �̂
−

(
4 �̂

)2

1 +
(
4 �̂

)2

ª®®
¬

2

× v̂ar(�̂)

=
©
«

4 �̂(
1 + 4 �̂

)2

ª®®
¬

2

× v̂ar(�̂).

It is worth noting that if

!̂ =
4 �̂

1 + 4 �̂
,

then it can be easily shown that the derivative of ! with respect to � is:

!̂(1 − !̂) = 4 �̂(
1 + 4 �̂

)2
.

So, we could rewrite our expression for the variance of !̂ conveniently as

v̂ar(!̂) ≈
©«

4 �̂(
1 + 4 �̂

)2

ª®®¬

2

× v̂ar
(
�̂
)

=
(
!̂(1 − !̂)

)2 × v̂ar
(
�̂
)
.

From MARK, the estimate of the SE for �̂ was 0.1446688. Thus, the estimate of v̂ar(�̂) is calculated

simply as (0.1446688)2 = 0.02092906. Given the estimate of �̂ of 0.2648275, we substitute into the

preceding expression, which yields

v̂ar(!̂) ≈
©«

4 �̂(
1 + 4 �̂

)2

ª®®¬

2

× v̂ar
(
�̂
)

= (0.0603525 × 0.02092906) = 0.001263.

So, the estimated SE for !̂ is
√

0.001263 = 0.0355404, which is what is reported by MARK (again,

within rounding error).

Chapter 6. Adding constraints: MARK and linear models

6.5. Reconstituting parameter values 6 - 30

Note: The standard approach to calculating 95% confidence limits for some parameter � is � ±
(1.96 × SE). However, to guarantee that the calculated 95% CI is [0, 1] bounded for parameters (like !)

that are [0, 1] bounded, MARK first calculates the 95% CI on the logit scale, before back-transforming

to the real probability scale. However, because the logit transform is not linear, the reconstituted 95%

CI will not be symmetrical around the parameter estimate, especially for parameters estimated near

the [0, 1] boundaries.

end sidebar

We further distinguish between ‘reconstituted’ parameter estimates and ‘free parameters’ in the next

section. In MARK, the output file does not distinguish between ‘reconstituted parameters’ and ‘free

parameters’. In fact, MARK arguably makes it a bit more difficult to see the correspondence between

the number of constrained and free parameters. In MARK, all the parameters are printed in sequence –

your only clue as to which are ‘constrained’ and which are ‘free’ is to look at the link function parameter

estimates. This can be somewhat confusing for beginners. Recall that in this example, we applied the

constraint to the survival estimates only. Thus, the encounter probabilities were estimated ‘the normal

way’, although their value reflects the influence of the constrained survival estimates – this is why they

are not the same as the estimates from the preceding CJS analysis. Got it?

If we follow the classical iterative modeling procedure discussed in earlier chapters,we might proceed

to test reduced parameter versions of the ‘flood model’ by sequentially eliminating various terms in

the model. For example, given the structure of the starting model, the first step would be to test for

‘significance’ of the interaction term. In other words, does the effect of flood on survival differ as a

function of the sex of the organism? Recall that this is the prerequisite analysis in either multi-factorial

ANOVA or ANCOVA.

We would do this by comparing the following models:

! = SEX + FLOOD + SEX.FLOOD + error

versus ! = SEX + FLOOD + error

SEX.FLOOD

So, from top to bottom, we see that we first fit the ‘full model’, with both main effects and the

interaction. We then follow this by fitting the reduced model without the interaction term. This model

is what we refer to as an additive model – something we’ll speak more about later in the chapter. The

comparison of the fit of these models is a test of the significance of the interaction term.

We’ve just finished fitting the full model, so we’ll proceed directly to fitting the second model –

without the interaction term. This analysis is very similar to what we’ve just done. All we need to do is

modify the design matrix. Again, remember we are still applying the constraint to the underlying CJS

time-dependent model. In fact, in MARK, this is very easy. All you need to do is drop the interaction

term (in other words, delete the column containing the dummy variable coding for the interaction term

– the fourth column, in our case) from the design matrix. That’s it! Isn’t that easy?

Go ahead and delete the interaction column from the design matrix (shown at the top of the next

page), and then run this reduced parameter model. Name it ‘Phi(SEX+FLOOD)p(SEX.TIME)’. Note we

change the syntax from ‘SEX.FLOOD’ to ‘SEX+FLOOD’ – a fairly standard convention to indication we’ve

dropped the interaction term from the model. The newly modified design matrix (for the survival

parameters) should now look like the figure shown below:

Look closely at this new model. First, instead of 3 slopes and 1 intercept, we now only have 2 slopes

and one intercept. The slopes correspond to the SEX and FLOOD terms in our model, respectively. We

have 1 fewer slope parameters since we eliminated the interaction term (SEX.FLOOD) from the model.

Chapter 6. Adding constraints: MARK and linear models

6.5. Reconstituting parameter values 6 - 31

Since we’ve dropped the interaction term, how many parameters should we have? Well, if we had 16

for the model with the interaction (remember – 15 were originally reported, but we manually adjusted

this ‘up’ to 16 – see above), then we should have (at least in theory) 15 for the model without the

interaction (since the interaction term corresponds to 1 link function parameter estimate). Note from

the results browser that MARK reports 14 parameters – again, because of the fact that MARK was

unable to correctly estimate ?3 for males, we need to adjust the number of parameters for this model

‘up’, from 14 to 15.

Next, we examine the ‘reconstituted’ survival estimates:

Again, we notice that there are effectively 2 estimates for each sex: one each for the flood or non-flood

years (1 → 6 for males, 7 → 12 for females). Notice that the estimates are similar to, but not exactly the

same, as the estimates with the full constraint (i.e., including the interaction term). In fact, on the logit

scale, we see that the parameters parallel each other – with a constant difference between the males and

females for a given year (again, on the logit scale).

However, the key question is, is this difference ‘large enough’ to be ‘biologically meaningful’? If we

follow the ‘classical’ paradigm of model testing, we can compare the relative fits of the two models,

keeping track of the number of parameters difference between the 2 models. From the results browser,

we see that the QAIC2 for the reduced model is 585.01, and for the full model, 586.93. Using the Akaike

Chapter 6. Adding constraints: MARK and linear models

6.5. Reconstituting parameter values 6 - 32

weights, the model without the interaction is approximately 2.6 times as well supported as the model

with the interaction term – supporting the conclusion that there is no strong support for an interaction

of SEX and FLOOD.

The LRT results are consistent with this – the difference in deviance is not statistically significant

by usual standards ("2
1 = 0.242, % > 0.5). Since the interaction term is not significant, we could next

proceed with testing the significance of the main effects: SEX and FLOOD. We can do so easily by using

exactly the same process as we just completed above: we modify the constraint to include one of these

two remaining terms, and compare the fit. However, while this allows us to test for significance of both

terms, we must remember that we will not be able to use LRT to determine if the model containing SEX

alone is a better model than one containing FLOOD alone.

Why? Because these are not nested models. Thus, for comparison of these 2 models, we will have to

use the QAIC2 comparison approach. Even if the nesting isn’t obvious (if it isn’t, think about it! We will

reconsider ‘nestedness’ in the context of linear models later in this chapter; see the -sidebar- beginning

on p. 41), the necessity of using QAIC2 for these 2 models will be obvious when you compare the number

of parameters.‗ In fact, comparison of non-nested models was one of the original motivations for use

of the QAIC2 for model selection (Lebreton et al. 1992).

Ifwe were to proceed througheachof the ‘nested’ models,we wouldsee that the modelwhere survival

is constrained to be a function of FLOOD alone is the most parsimonious model, and is approximately

2.8 times better supported by the data than the next best model (SEX+FLOOD). No other model in the

model set is adequately supported by the data. In other words, we conclude that there is no support

for a ‘significant’ difference between the sexes, and that flooding significantly influences variation in

survival.

Does this mean that this is our best model overall? The short answer to this question is ‘no’. What we

have done is simply to test a set of hypotheses under specific conditions. What were ourmain conditions?

The conditions in this example were the use of the CJS model structure for both survival and encounter,

prior to adding the constraints. The remaining question is – would we have come up with a different

result if we had made the encounter probability constant? What if we had left time-dependence in

encounter probability, but used the same parameter values between the sexes? How does our current

model compare to one where survival is assumed to be constant?

Where we go from here, then, very much depends upon what we’re after. We have to keep in mind

the various purposes of model testing. At one level, we are seeking to test specific biological hypotheses.

At the other, we may also be trying to find the most parsimonious model, which will provide us with

the most precise and least biased estimates for modeling purposes.

Again, our recommended strategy is to use the process of model selection over a set of candidate

models to identify the most parsimonious acceptable model containing the effect(s) that you want to

test, and then proceed to use LRT or QAIC2 to compare this model with reduced parameter models

where one or more of these terms have been eliminated. Remember, by ‘acceptable’ we mean a model

which fits the data (Chapter 5). In fact, we can’t emphasize this enough – the first step in analyzing your

data must be to ensure that your most general model (fully time-dependent CJS, {!C ?C}, for example)

adequately fits the data.

How would we derive the design matrix for the next 2 models – {SEX} and {FLOOD}? We can do

this easily in MARK, using one of a couple of different approaches. The most intuitive approach is to

simply modify the design matrix manually. Start with the design matrix for the most general model,

{SEX+FLOOD+SEX.FLOOD}, shown at the top of the next page.

‗ If it isn’t obvious – the two models have the same number of parameters, so the degrees of freedom for a putative LRT would
be 0, which of course makes no sense.

Chapter 6. Adding constraints: MARK and linear models

6.5.1. Subset models and the design matrix 6 - 33

To create model {SEX+FLOOD}, we simply take the design matrix for {SEX+FLOOD+SEX.FLOOD} (above),

and delete the column corresponding to the interaction term:

Using the same approach, to fit model {SEX} all we’d need to do is take the design matrix for

{SEX+FLOOD} and drop the FLOOD column, leaving {SEX}. But, once we’ve dropped the FLOOD column,

how can we go from the design matrix for {SEX} back to {FLOOD}?

Do we have to manually re-enter the appropriate dummy-variable coding? No! In MARK, all you

need to do is click on any ‘more saturated’ model containing the terms you want in the results browser,

and then ‘retrieve’ its design matrix. For example, if we want to fit model {FLOOD}, simply (a) click on

the model {SEX+FLOOD} in the browser (this model is more saturated because it contains the factor of

interest – FLOOD – plus one or more other terms), then (b), pull down the ‘Retrieve’ menu and retrieve

the ‘Current model’. This causes MARK to extract the design matrix for the model you’ve selected.

Once you have this design matrix (in this case, corresponding to model {SEX+FLOOD}), all you need to

do is delete the SEX column to yield the design matrix for model {FLOOD}. Pretty slick!

6.5.1. Subset models and the design matrix

In the preceding example, we used the full design matrix from our general model {!B4G. 5 ;>>3 ?B4G.C8<4},

and built the reduced parameter models by deleting one or more columns from this design matrix. All

of the remaining models in the candidate model set were nested within the general model.

While this is relatively straightforward to do ‘by hand’ for simple models, it can quickly become

Chapter 6. Adding constraints: MARK and linear models

6.5.1. Subset models and the design matrix 6 - 34

tedious for more complicated analysis, where the design matrices can be very large. MARK has an

option referred to as ‘subset models’ to automate much of the process of constructing various nested

models from the design matrix for some more general model.

As the first step,you first construct the design matrix for the full model which contains all the variables

(i.e., columns in the design matrix of interest). Note that the full model may not have actually been run,

i.e., the saved structure of the full model can be used to construct the subset models. Then, using the

‘subset models’ feature, you simply select the columns from the full model design matrix to be used in

a nested set of models.

To start the process, in the ‘Results Browser Window’, highlight (retrieve) the model with the design

matrix that contains all the variables that you want to use in all possible subset model combinations

– in this case, model {!B. 5 ?B.C}. Then, select the menu choices ‘Run | Subset of DM Models’ to create

and run all possible models. This will bring up the interactive interface window, below:

The interactive interface gives you a list of all the columns in the design matrix for the selected model.

If you pull down any of the drop-down menus shown beside each parameter,you will see a set of options:

‘Always’, ‘Never’, followed by the letters A→ J.

The ‘subsetting’ of different variables (columns) in the design matrix is accomplished by selecting

elements from these drop-down lists for each parameter. Some of these options are relatively self-

explanatory. For example, columns in the design matrix corresponding with a model ‘intercept’ (which

we’ve designated in the label) we will generally keep in all models in the candidate model set, and

so would be assigned the value ‘Always’ to designate this status. For parameters (columns) which will

never show up in any of the other models in the candidate model set, you would select the value ‘Never’.

Chapter 6. Adding constraints: MARK and linear models

6.5.1. Subset models and the design matrix 6 - 35

The meaning and use of the values A→ J requires a bit more explanation. Columns in the models

which are neither ‘always present’ or ‘never present’ will be given values of A, B,...,J, designating up

to 10 variables, either singly or jointly. Currently, the upper limit is set to 10 variables, which produces

210
= 1,024 possible models. If you think you need to run more that 1,024 models, we suggest you think

harder about the list of variables you are considering!

The letters A → J identify how columns in the design matrix are related to each other and how

they will be combined in subsets of models. So, as an example, suppose as in the dipper example

you have 4 columns for apparent survival (!) (the intercept column, the sex column, the flood

column, and the (sex.flood) interaction column), and 12 columns for the encounter probability (?) (the

intercept and sex columns, the 5 columns for time, and the 5 columns representing the interaction

of (sex.time)). In our candidate model set, we focus only on a series of 4 nested models for apparent

survival: {!B4G+ 5 ;>>3}, {! 5 ;>>3}, {!B4G}, {!·}. Recall that our general model is {!B4G. 5 ;>>3}. Thus, the

structure for our encounter probability {?B4G.C8<4} occurs in every model – in other words, it is ‘always’

there. So, as a first step, we simply select the value ‘Always’ for the encounter parameters (columns).

Now, for the apparent survival parameters. Clearly, the intercept is in each model, so we select

the value ‘Always’ for the intercept. The variables sex and flood are ‘stand alone’ variables – i.e., each

defines a category with a single column in the design matrix. Each variable could appear alone in the

model, so each is assigned its own letter. We’ll use A for sex, and B for flood (it doesn’t much matter

which letters you use, so long as they are different).

What about the interaction term (sex.flood)? We need to use the value ‘Never’, for two reasons:

first, because the interaction model cannot enter the model without the two interacting variables also

included in the model (i.e., model Y = A+ B+ A.B is valid, but Y = A.B is not), and moreover, there is no

direct way to conditionally subset columns (i.e., select C if only A and B are present; discussed in more

detail below). But second, and perhaps most obviously, we don’t need the interaction column because

that column is already present in the general model we started with. Think about it for a moment.

Here (below) is what the variable definition screen should look like so far:

Now, before running the models, note the additional options which are available at the bottom of

the model specification screen. Instead of running the models immediately, the model structure can be

saved and then all of the models run later in batch mode. The second option is to use the � estimates

from the full model as initial values for the subset models. However, these estimates may not be great,

depending on the collinearity among the variables. Note that this option does not appear if the full

model has not actually been run (i.e., only the saved structure is used to specify the full model).

Chapter 6. Adding constraints: MARK and linear models

6.5.1. Subset models and the design matrix 6 - 36

After clicking ‘OK’, another window will pop up asking if you want to change (specify) variable names:

The naming of models fit using the ‘subset models’ approach defaults to listing all of the columns

which were ‘always’ included in the model. This can often result in very long model names (as we will

see). This windows gives you the opportunity of overriding the default naming convention, but that

places the burden of responsibility on you to remember which columns were included in your models.

Once you hit the ‘OK’ button, a little popup window will inform you that you’re going to run 4 models.

But, before you simply click the ‘OK’ button – think a bit. What are the 4 models? If you understand what

we just did (above), then you’ll know that the 4 models (in terms of !) are {!B+ 5 }, {!B}, {! 5 }, {!·}.

Here is the results browser, showing the general model and each of the models in the candidate model

set fit by manually modifying the design matrix, and the 4 fit using the ‘subset models’ approach:

As noted earlier, the models fit using the ‘subset models’ approach have very long model names –

the naming syntax explicitly indicates which columns were included in the model. In particular, pay

attention to the right-hand side of the default model names – this is where the ‘variable’ columns that

are included in a given model are indicated. For example, model

{Phi Int+p Int+p g1+p t1+p t2+p t3+p t4+p t5+p g1*t1+p g1*t2+p g1*t3+p g1*t4+p

g1*t5+sex+flood}

The last two terms (i.e., sex+flood) indicate that this model is the additive {!B+ 5 } model.

More importantly, notice that the model deviance values are identical for a given model regardless of

whether or not it was generated by modifying the design matrix manually, or using the ‘subset models’

approach.

The preceding analysis was very simple, and the cost savings for using the ‘subset models’ approach

might not be particularly significant in this instance. But, that will generally not be the case.

A common issue alluded to earlier occurs when you only want to include a particular column when

another column is included in the model. An example would be for linear trend (T) and the associated

quadratic trend (TT). As an example, suppose that there are two additional variables, age and gender.

Chapter 6. Adding constraints: MARK and linear models

6.5.1. Subset models and the design matrix 6 - 37

One approach to only including ‘TT’ when ‘T’ is in the model is to do 2 sets of models. For the first set,

only the ‘T’ variable would be used:

intercept Always

age A

gender B

T C

TT Never

Then, a second set of models are constructed to always include ‘TT’ with ‘T’:

intercept Always

age A

gender B

T C

TT C

Each set would produce 8 models, for a total of 16. However, the user will have 4 sets of duplicates

when neither ‘T’ or ‘TT’ are included (sorting the list of models by model name may help find the

duplicates):

intercept

intercept + age

intercept + gender

intercept + age + gender

A second issue is that the user never wants 2 particular variables in the model at the same time.

Suppose this is the case for length and weight. Again, a simple solution is to run 2 sets of models,

specifying the ‘Never’ key word first for length, and then for weight. Again, some duplicate models will

have to be removed.

begin sidebar

subset models and ‘importance of a factor’ – a mechanical shortcut

As introduced in Chapter 4 (section 4.6.3), assessment of the relative importance of variables has often

been based only on the best model (e.g., often selected using a stepwise testing procedure of some

sort). Variables in that best model are considered ‘important’, while excluded variables are considered

‘not important’. Burnham & Anderson have suggested that this approach is too simplistic. Importance

of a variable can be refined by making inference from all the models in the candidate set. Akaike

weights are summed for all models containing predictor variable (i.e., factor) G 9 , 9 = 1, . . . , '. Denote

these sums as F+(9). The predictor variable with the largest predictor weight, F+(9), is estimated to be

the most important, while the variable with the smallest sum is estimated to be the least important

predictor.

As suggested by Anderson & Burnham, summing support over models is regarded as superior to

making inferences concerning the relative importance of variables based only on the best model. This

is particularly important when the second or third best model is nearly as well supported as the best

model or when all models have nearly equal support.

The robustness of the use of cumulative AIC weights appears to be strongly conditional on the

‘symmetry’ of the candidate models set. A ‘symmetrical’ model set is one which has roughly the

same number of models with, and without a particular factor. While this can sometimes be difficult to

accomplish, especially for models involving interaction terms, for models where the factors of interest

Chapter 6. Adding constraints: MARK and linear models

6.5.1. Subset models and the design matrix 6 - 38

are entered into the models as independent factors (covariates), the ‘Subset of DM models’ option

makes generating symmetrical model sets straightforward. In additional, there is an option in MARK

to automatically calculate the cumulative AIC weights over models built using the ‘Subset of DM

models’ approach.

We’ll demonstrate this approach using some simulated data contained in var-importance.inp.

The data consist of live encounter data, 6 occasions. Time-varying apparent survival !, and constant

encounter probability, ?. We’re interested in the relative ‘importance’ of 3 different environmental

covariates (cov1, cov2, cov3).

Here are the covariate values corresponding to each interval:

1 2 3 4 5

cov1 4 2 2 3 2.5

cov2 0.3 0.7 0.7 0.1 0.6

cov3 12 14 14 17 11

Here is the DM corresponding to the most ‘general’ model, containing all 3 covariates:

We’ll go ahead and run this model – give it a temporary name like ‘hold’, or some such. Now, we’ll

use the ‘Subset of DM models’ option to build a model set symmetrical for all three environmental

covariates. As shown below, we want to ‘always’ include the intercepts for ! and ?. We have three

covariates (cov1,cov2,cov3), which we’ll label A, B, C, respectively.

We will accept the default variable names, as shown below:

Chapter 6. Adding constraints: MARK and linear models

6.6. Some additional design matrix tricks 6 - 39

Once you click the ‘OK’ button, MARK will pop-up a window informing us that we have specified

8 models. With a bit of thought, you’ll see that this set of 8 models consists of

• 3 models containing a single covariate (cov1, cov2 or cov3),

• 3 models consisting of 2 of the factors (cov1+cov2, cov1+cov3, or cov2+cov3),

• 1 model consisting of all 3 factors (cov1+cov2+cov3)

• 1 model not containing any of the 3 factors (i.e., intercepts only)

Go ahead and run the 8 models – the results are automatically added to the results browser. Note

that the 8 models in the browser match the structures we anticipated, above.

Before we interpret the results in the browser, notice that the highlighted model (which contains

all 3 covariates) is redundant to the model right below it – the one we started with which we called

‘hold’. For the ‘Subset of DM models’ option, MARK needs a model to ‘start from’ (model ‘hold’, in

this example), but now that we’ve run the models, we no longer need it.

Go ahead and delete the model named ‘hold’ from the browser.

The most parsimonious model in the candidate model set contains both cov2 and cov3, but the

support for this model is only marginally greater than for the second-best model, which contains cov2

only. This is a good example where model selection uncertainty makes it somewhat more difficult to

establish the relative importance of the 3 different covariates.

We can calculate cumulative AIC weights in MARK by selecting ‘Run | Variable weights’, which

outputs the weights to both the editor (shown below), and an Excel spreadsheet:

We see clearly that cov2 is ‘more important’, relative to the other 2 covariates.

end sidebar

6.6. Some additional design matrix tricks

In a moment, we’ll continue with the next ‘analytical question’ we might be interested in – are the

differences between flood and non-flood significant? Is there an interaction of flood, sex and survival?

And so on. For the moment, though, let’s consider a couple of the ‘mechanical’ aspects of modifying the

design matrix which are worth knowing. In the preceding, we modified the design matrix manually. As

Chapter 6. Adding constraints: MARK and linear models

6.7. Design matrix...or PIMs? 6 - 40

you probably realize by now, MARK often gives you more than one way to do things (this is generally

a good thing!). What could we have done other than manually editing the design matrix? A perhaps

more elegant, and (with some practice) faster way, is using some of MARKs nifty menu options.

For example, pull down the ‘FillCol’ menu. You’ll see two intercept options – the ‘Intercept’ itself,

and something called the ‘Partial Intercept’. Since in our example we only wanted to modify ‘part’

of the design matrix, we would select ‘Partial Intercept’. This causes MARK to spawn a window

asking you the number of rows in the design matrix you want to add the intercept coding to. In this

example, with 12 rows (corresponding to the 12 survival parameters – 6 for males, 6 for females), we

would have responded with ‘12’.

Anything else we could do with the ‘FillCol’ menu? Well, you might notice that there is an option

to specify a ‘Group Effect’ item on the menu. If you select this option, another child menu will pop

up, giving you several options for the kind of group effect you want to code (broadly dichotomized

into discrete or continuous). Now, within the discrete or continuous groupings, you’ll see options for

‘partial’.

What does this mean? Well, ‘partial’ simply means we want whatever it is we’re going to do to be

applied only to ‘part’ of the design matrix. Since in our example we’re only interested in the first 12

parameters, corresponding to the first 12 rows and columns, we clearly would want ‘partial’ – a piece

of the whole matrix. If we select ‘Partial Discrete’, MARK would immediately fill in the first column

of the design matrix, with 6 ‘1’s followed by 6 ‘0’s. MARK is clever enough to remember that (a) you

have 2 groups, and (b) that there are 7 occasions (and therefore 6 parameters) for each group. In fact, it

‘learned’ this when you filled in the model specification window for this analysis. Pretty slick, eh? At

any rate, go ahead and ‘play around’ a bit with the various menus available for modifying the design

matrix.

One last thing – remember at the beginning of our example – we started with the ‘Full’ design

matrix? Recall that there were 2 other options in the ‘Design Matrix’ menu - ‘Reduced’, and ‘Identity’.

The ‘Reduced’ option allows you to tell MARK exactly how many columns to put into the design matrix

– this can be useful (and can save you some time) if you know how many columns you need – which you

might if you’ve carefully thought through the linear model, and corresponding design matrix, for your

analysis. The ‘Identity’ matrix is simply a matrix of the same dimension as the ‘Full’ design matrix,

but with ‘1’s along the diagonal. Some people prefer modifying the identity matrix, since most of the

matrix elements are ‘0’s – fewer cells to modify. Pick whichever approach works best for you.

6.7. Design matrix...or PIMs?

In the preceding, we fit the ‘flood model’ to the European dipper data by modifying the design matrix,

changing it from the default identity matrix. Remember, the design matrix reflects the underlying

structure of the model, which is specified by the PIMs. When we modify the design matrix, for a given

set of PIMs, we’re applying a constraint to the model specified by those PIMs. We are not changing

the parameter structure at all (that you can only do by modifying the PIMs) – we are constraining the

estimates from that parameter structure to be a function of the linear model we specify in the design

matrix.

This is a very important point. So important, if fact, that we’re now going to force you to think about

it carefully, by pointing out that we could have fit a ‘flood’ model to the dipper data without using a

linear model at all – simply by using a different set of PIMs!

How? Recall that our original starting model for the dipper data was the fully time-dependent CJS

model with two groups (the two sexes, males and females) – {!B.C ?B.C}.

Chapter 6. Adding constraints: MARK and linear models

6.7. Design matrix...or PIMs? 6 - 41

There were 7 occasions in the data set, so the PIMs reflecting this starting model were

survival

1 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 8 9 10 11 12

3 4 5 6 9 10 11 12

4 5 6 10 11 12

5 6 11 12

males 6 females 12

encounter

13 14 15 16 17 18 19 20 21 22 23 24

14 15 16 17 18 20 21 22 23 24

15 16 17 18 21 22 23 24

16 17 18 22 23 24

17 18 23 24

males 18 females 24

These PIMs specified the model that we then constrained – they indicate 6 survival parameters for

each sex, which we then constrained to be a linear function of flood. Remember, the actual linear model

we fit initially was:

logit(!) = �1 + �2SEX + �3FLOOD + �4SEX.FLOOD

Now...is there any way we could have fit this model without modifying the design matrix? The answer

is...‘yes’. How? A couple of hints: PIM’s, and the fact that ‘flood’ is a binary state variable.

Remember, a year is classified as either a ‘flood’ year, or a ‘non-flood’ year. In our original survival

PIMs, we had 6 parameters for each sex, respectively, which allowed survival to vary among years.

However, if we want survival to vary only as a function of whether or not a year is a ‘flood year’, then

in fact we need only 2 parameters for each sex!

Thus, we could have specified model

logit(!) = �1 + �2SEX + �3FLOOD + �4SEX.FLOOD

using the PIMs shown below:

survival

1 2 2 1 1 1 3 4 4 3 3 3

2 2 1 1 1 4 4 3 3 3

2 1 1 1 4 3 3 3

1 1 1 3 3 3

1 1 3 3

males 1 females 3

What would the encounter PIMs look like?

Chapter 6. Adding constraints: MARK and linear models

6.7. Design matrix...or PIMs? 6 - 42

Well, if we use model {?6∗C} for encounter, the PIMs for the encounter parameters would look like:

encounter

5 6 7 8 9 10 11 12 13 14 15 16

6 7 8 9 10 12 13 14 15 16

7 8 9 10 13 14 15 16

8 9 10 14 15 16

9 10 15 16

males 10 females 16

Try it! You’ll see that you get the same results as you did when you modified the design matrix – IF

you specify the logit link function. In fact, one advantage of this approach is that you can use whatever

link function you want. Note also that the PIMs specify 16 parameters,which is exactly the same number

of parameters as there were in the design matrix approach (although only 15 of them were estimable

using the logit link – if you run this PIM-based model using the sin link, all 16 parameters are estimated,

and reported as estimated by MARK).

Pretty slick, eh? Make sure you understand this. If not, go through it again. Now, if this approach

works, why not use it all the time? The reason is, because it has limited flexibility in the ability to specify

certain kinds of models. You can’t use this approach to build additive models (something we’ll address

later), or to constrain estimates to follow a trend (the next section). There are limits – but it is useful to

know that you can sometimes ‘get where you need to go’ by modifying the PIMs directly, rather than

using the design matrix. This is important both conceptually, and practically, in some cases. However,

we generally recommend that you use the design matrix approach the majority of the time, since it gives

you the greatest flexibility. In fact, in many cases, the design matrix is your only option – the additive

(SEX+FLOOD) model is a good example of this. There is no way you could build this additive model using

PIMs alone.

So, as a general recommendation, we suggest the following sequence (which we’ll revisit again in

this chapter, and elsewhere in the remainder of the book):

step 1 - Build your general model using PIMs, if you can. Recall that models with multiple groups

based on PIMs assume interaction effects among levels of your groups. This is often – but

not always – the basis for the general model in your candidate model set,

step 2 - Once you have the general model constructed using PIMs, then try to build the exact

same model using the design matrix approach. Run this model. You’ll know your design

matrix is correct if the deviance for the model fit with the design matrix approach is the

same as the deviance for the same model constructed using PIMs (note: the deviances

should be the same – but the number of estimated parameters MARK reports might differ

due to differences in the link function used),

step 3 - Once you’ve successfully built your general model with the design matrix, delete the same

general model you built with PIMs – you don’t want two copies of the same model in your

results browser. Then, build all other models in the candidate model set by manipulating

the design matrix of your general model.

These 3 steps are good, general recommendations on where to start. Once you’ve built your general

model using the design matrix, you can quickly and easily construct reduced parameter models –

including models with additive effects – simply by manipulating the design matrix. This invariably

Chapter 6. Adding constraints: MARK and linear models

6.8. Constraining with ‘real’ covariates 6 - 43

means deleting or modifying one or more columns in the design matrix. Once you get the hang of this

approach, it will become fairly automatic to you.

6.8. Constraining with ‘real’ covariates

In the previous sections, we’ve considered variation in one parameter or another over time – implicitly,

we’ve been treating time as a ‘classification’ variable (or ‘factor’), and looking for heterogeneity among

‘time intervals’ in a particular parameter. Generally, though, we’re not interested in whether or not there

is variation over time, but whether this variation over time corresponds to one or more ‘other variables’

(covariates) which we think might cause (or contribute to) the variation we observe. In other words, our

interest is typically in the causes of the temporal variation, not the variation itself.

We can address this hypothesis (i.e., that variation in some parameter over time reflects variation in

some covariate) by building a linear model where the parameter estimates are constrained to be linear

functions of one or more covariates. This is the subject of this section – constraining parameters to be

functions of ‘real’ variables (in the mathematical sense of real), as opposed to simple ‘dummy’ or other

integer variables.

For example, suppose we have measured some other variable, such as total precipitation, or measures

of annual food abundance, which can take on ‘real’ or ‘fractional’ values. Clearly, we might want to test

the hypothesis that a model where one or both parameters are constrained to be linear functions of this

type of covariate might be extremely useful. Fortunately, we have to learn nothing new in order to do

this in MARK – all we need to do is put our ‘real’ covariates into our design matrix.

Consider the following example. Suppose you believe that capture rate is a function of the number of

hours spent by observers in the field. This makes good intuitive sense – the more hours spent in the field,

the more likely you might be to see a marked individual given that it is still alive. So, one way we might

increase the precision ofourestimate of encounterprobability is to constrain the encounterparameters to

be linear functions of numberof observations hours at each occasion. Recall that parsimonious modeling

of encounter probability will also influence our estimates of survival probability as well (translation:

you might be more interested in estimating survival, but you won’t be as successful unless you also do

a good job modeling the encounter probability).

These data are unavailable for the dipper data set, so we’ll ‘make up’ some ‘observation hours’

covariate data, just for purposes of illustrating this. Here are our covariate ‘data’:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

Now, we simply need to construct the correct design matrix. One slight twist here is that for the

first time we’re going to apply a constraint to the encounter probabilities, rather than the survival

probabilities.

This is no more difficult than what we’ve already done – all you need to do is identify the index values

of the parameters you want to constrain. Recall that for the dipper data set, with 2 sexes and 7 occasions,

parameters 1 → 6 are male survival, parameters 7 → 12 are female survival, parameters 13 → 18 are

male encounter probability, and finally, parameters 19 → 24 are female encounter probability. Thus, if

we want to constrain our encounter probabilities to be linear functions of observer hours, we’re going

to constrain parameters 13 → 24. This means that we’re working in the lower-right quadrant of the

design matrix.

Chapter 6. Adding constraints: MARK and linear models

6.8. Constraining with ‘real’ covariates 6 - 44

Next, we need to decide on the model we want to test. Let’s test the model where we allow the sexes

to potentially differ, with full interaction. In other words,

logit(?) = �1 + �2(SEX) + �3(HOURS) + �4(SEX.HOURS).

As you can see, it is exactly the same qualitative model ‘structure’ as in our earlier ‘flood’ example,

with a different ‘covariate’ (HOURS instead of FLOOD). Given this similarity, you might guess the design

matrix should look similar as well.

In fact, as shown below, it is virtually an inverted mirror image of the design matrix you used for

the ‘flood’ analysis – now the upper-left quadrant has the time-specific coding we’ve seen before, and

the lower-right quadrant (pictured) has the dummy variable coding for INTCPT, SEX, HOURS, and the

SEX.HOURS interaction.

The only real difference is that instead of ‘0’ or ‘1’ to represent ‘FLOOD’ states, we replace that column

of ‘0’ and ‘1’ values with the ‘real’ number of observer hours. And, since these are simply different levels

of a single factor (‘HOURS’), we need only one column to code for ‘HOURS’.

However, as you’ll remember from our earlier examples, if you change either of the 2 columns

contained in the interaction term, you also need to change the values in the interaction term itself.

The encounter portion of the design matrix (i.e., the lower-right quadrant) is shown above. Note we

still have 12 rows, and 4 columns for the encounter parameter (reflecting the number of variables in the

constraint). Once you have the design matrix constructed, you proceed in precisely the same fashion as

you did with the ‘flood’ example we just covered – the only difference is that, in this example, you’re

concentrating on encounter probabilities, rather than survival.

begin sidebar

linear covariates and nested models: LRT revisited

Recall from Chapter 4 that the classical LRT requires that models be nested. What constitutes ‘nested’

in the case of models with one or more linear covariates? What are the options if models are not strictly

nested?

In Chapter 4, we defined nested models as follows:

nested models: Two models are nested if one model can be reduced to

the other model by imposing a set of linear restrictions on the vector of

parameters.

Chapter 6. Adding constraints: MARK and linear models

6.8. Constraining with ‘real’ covariates 6 - 45

For example, consider models 5 and 6, which we’ll assume have the same functional form and error

structure. For convenience, we’ll express the data as deviations from their means (doing so eliminates

the intercept from the linear model, since it would be estimated to be 0). These two models differ then

only in terms of their regressors.

In the following

5 : . = �1G1 + &0

6 : . = �1G1 + �2G2 + &1 ,

the model 5 is nested within model 6 because by imposing the linear restriction that �2 = 0, model 6

becomes model 5 .

OK, what about the situation we’re considering here – linear models with one or more linear

covariates? Consider the following linear model for some parameter � corresponding to a 5 occasion

study:

� = �0 + �1(interval1) + �2(interval2) + �3(interval3)

Remember: 5 occasions = 4 intervals = (4−1) = 3 columns of dummy variables coding for the intervals

(�1 → �3).
Here is the design matrix (DM) corresponding to this time-dependent linear model:

intcpt �1 �2 �3

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

Now, suppose we wanted to constrain this model such that the estimate of the parameter in the

first and third intervals was equal. How would we modify the DM to achieve this constraint? The key

is remembering what each �8 column represents: �1 represents the first interval (between occasion 1

and 2), �2 represents the second interval (between occasion 2 and 3), and so on.

So, to constrain the estimates for �̂ to be the same for the first and third intervals (i.e., �1 = �3),

we have to (i) eliminate one of the two columns corresponding to these intervals (either the �1 or �3
columns), and (ii) add a ‘1’ dummy variable in the appropriate row to the remaining column.

For example, in the following DM:

intcpt �1 �2

1 1 0

1 0 1

1 1 0

1 0 0

we have eliminated the �3 column from the original DM, and added a dummy ‘1’ in the 3rd row of

column �1 – recall that row 3 corresponds to interval 3. The presence of a ‘1’ in the first and third rows

in the �1 column is what constrains �1 = �3. This is essentially the same sort of thing we did for the

flood example we considered earlier in this chapter. We have constrained our time-dependent model

in a particular way – using the linear constraint �1 = �3.

Similarly, what if we want to constrain �̂ to be a linear function of some continuous covariate (say,

rainfall). Our DM might now look like

intcpt �1

1 2.3

1 4

1 1.2

1 5

Chapter 6. Adding constraints: MARK and linear models

6.8.1. Reconstituting estimates using real covariates 6 - 46

Here, we’ve constrained the estimates for each interval to be a linear function of the rainfall covariate

– one � column. So, based on the criterion for ‘nestedness’ – where two models are nested if one model

can be reduced to the other model by imposing a set of linear restrictions on the vector of parameters

– these two constrained models we’ve just constructed are both nested within the more general time-

dependent model. And, as such, these models could both be compared to the time-dependent model

using an LRT.

end sidebar

6.8.1. Reconstituting estimates using real covariates

Here, we continue with our example analysis, using the full dipper data (i.e., including both males and

females),where detection probability is being modeled as a linear function of the number of observation

hours. For purposes of demonstrating how to reconstitute parameter estimates on the real probability

scale, we’ll first fit the following linear model to the dipper data:

logit(?) = �1 + �2(SEX) + �3(HOURS) + �4(SEX.HOURS).

As noted earlier, it is exactly the same qualitative model ‘structure’ as in our earlier ‘flood’ example,

with a different ‘covariate’ (‘HOURS’ instead of ‘FLOOD’). For present purposes, we’ll assume simple time-

dependence for survival, with no sex differences. So, our overall model is {!C ?(+�+(.�}.

Recall that our ‘fake’ observation hour covariates were:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

After fitting our model to the data, we see that the reconstituted estimate for ? for males (first group),

third encounter occasion, is 0.9373487. Where did this value come from?

As with the earlier ‘flood’ example, we’ll need the parameterized linear equation for ? on the logit

scale. If we look at the � estimates for ?, we see that the parameterized linear model is

logit(?̂) = �̂1 + �̂2(SEX) + �̂3(HOURS) + �̂4(SEX.HOURS)

= 1.4116023+ 1.4866125(SEX) + 0.0463456(HOURS) + (−0.0783096)(SEX.HOURS).

The coding for males (‘SEX’) is ‘1’. The ‘HOURS’ covariate for the third encounter occasion is 6.03. The

interaction of the two, ‘SEX.HOURS’, is simply (1)(6.03) = 6.03.

So,

logit(?<,3) = 1.4116023+ 1.4866125(1) + 0.0463456(6.03) + (−0.0783096)(6.03)

= 2.70547188.

So, back-transforming

?̂<,3 =
42.70547188

1 + 42.70547188
= 0.9373487,

which is what is reported by MARK.

Chapter 6. Adding constraints: MARK and linear models

6.8.2. Plotting the functional form – real covariates 6 - 47

6.8.2. Plotting the functional form – real covariates

In the preceding example, we modeled encounter probability as a linear function of the number of

observation hours. But,what is the actual relationship between ‘encounter probability’ and ‘observation

hours’? If you look at the parameter estimate for �̂3 = 0.0463456, the interpretation seems easy enough

– the estimated slope is positive, meaning that as the number of hours of observation increases, so does

the probability of detection. Which of course, seems somewhat intuitive.

But, suppose you decide to go ahead and ‘plot the relationship’. In principle, this is straightforward.

First, you have to decide whether you want to plot the relationship for males, or females. Let’s assume

our interest is in males – recall that the dummy coding for males is ‘1’. Then, you simply need to derive

the estimate of logit(?) for males, over a range of hours (say, from 5 → 20), and then back-transform

from the logit scale to the real probability scale.

Given our estimated linear model,

logit(?̂) = 1.4116023+ 1.4866125(SEX) + 0.0463456(HOURS) + (−0.0783096)(SEX.HOURS),

then the estimates of logit(?) for males (SEX = 1), for 5, 6, · · · → 20 hours of observation, are calculated

as:

[1] 2.738395 2.706431 2.674467 2.642503 2.610539 2.578575 2.546611 2.514647

[9] 2.482683 2.450719 2.418755 2.386791 2.354827 2.322863 2.290899 2.258935

which when back-transformed to the real probability scale yields

[1] 0.9392546 0.9374050 0.9355031 0.9335474 0.9315368 0.9294699 0.9273455

[8] 0.9251623 0.9229189 0.9206140 0.9182463 0.9158145 0.9133171 0.9107529

[15] 0.9081205 0.9054185

which, when plotted, yields a function that...

������������	�
����

� � �� �� �� �� �� ��

	
�
�
�
�
�	
�
�	
�
�
�
�
�
�	
��
�
��
�
�
�
�
�
�

��	�

��	�

��	�

��	

��	�

��	�

Chapter 6. Adding constraints: MARK and linear models

6.8.2. Plotting the functional form – real covariates 6 - 48

...doesn’t even remotely suggest increasing encounter probability with increasing hours – in fact, it

suggests the opposite of what we concluded!

So, have we made a mistake? Well, yes, in the sense that we did not fully interpret all of the � terms

in our linear model:

logit(?̂) = 1.4116023+ 1.4866125(SEX) + 0.0463456(HOURS) + (−0.0783096)(SEX.HOURS)

While the coefficient for ‘HOURS’ (�̂3) does clearly suggest that as hours of observation increases,

encounter probability increases, look carefully at the equation – recall that ‘HOURS’ is also included in the

interaction term, and that the estimated �̂4 = −0.0783096 for the interaction term is negative. Meaning,

that depending on the SEX covariate, the relationship between logit(?) and HOURS might actually be

negative, as seems to be the case when we considered males only (above).

To illustrate the impact that this negative interaction term has, let’s now estimate logit(?), but this

time for females. Given our � estimates, then the estimates of logit(?) for females, for 5 → 20 hours of

observation, are (for each hour increment):

[1] 1.643330 1.689676 1.736022 1.782367 1.828713 1.875058 1.921404 1.967750

[9] 2.014095 2.060441 2.106786 2.153132 2.199477 2.245823 2.292169 2.338514

which when back-transformed to the real probability scale yields

[1] 0.8379876 0.8441815 0.8501810 0.8559889 0.8616083 0.8670425 0.8722949

[8] 0.8773692 0.8822690 0.8869983 0.8915610 0.8959611 0.9002026 0.9042896

[15] 0.9082264 0.9120169

which, when plotted against the estimates for males, yields a function that...

������������	�
����

� � �� �� �� �� �� ��

	
�
�
�
�
�	
�
�	
�
�
�
�
�
�	
��
�
��
�
�
�
�
�
�

����

����

����

����

��	�

��	�

��	�

��	�

���

�
���

Chapter 6. Adding constraints: MARK and linear models

6.8.2. Plotting the functional form – real covariates 6 - 49

...shows a classical ‘interaction’ – with increasing observation hours,male encounter probability ↓,while

female encounter probability ↑. So – plotting your linear model is always a good idea, since it can be

tricky to try to interpret the individual � terms, and embarrassing if you get it wrong (which is quite

easy to do in complex models).

Now, one thing that is missing in our plot is any indication of parameter uncertainty. We recall that

our estimates of each � term in our model are estimated with a SE, and thus, our reconstituted parameter

estimates (in this case, on the real probability scale) are also estimated with uncertainty. How can we

add confidence bands to our plots?

The short answer is, you can’t. While MARK makes it possible to plot (or export) the � estimates, and

the reconstituted parameter values for each occasion, it does not have the capability to directly generate

a plot of the parameter estimates (of uncertainty in those estimates) as a function of a real covariate,

over a range of values of that covariate. Meaning, MARK can’t generate the plots we just made above,

with or without confidence bands, simply by ‘clicking a button or two’.

However, there are two ways you can generate the desired plot,albeit with a bit of work.One approach

is to get MARK to treat environmental covariates as individual covariates, and then use the individual

covariate plotting capabilities in MARK to generate the plot we want – predicted values for given values

of the covariate, plus confidence bands. Using individual covariates in MARK is covered in Chapter 11.

The specific details of using the individual covariate plotting tools in MARK to plot real ‘environmental’

covariates is covered in a -sidebar- in section 11.5.

The other somewhat more laborious approach is to make use of the Delta method – see the following

-sidebar-.

begin sidebar

Calculating SE of predicted values from linear model

As briefly introduced earlier in this chapter (-sidebar- starting on p. 26), the Delta method is a

relatively straightforward way for approximating the variance of transformed variables. The details

underlying the Delta method are beyond our scope at this point (the Delta method is treated more

fully in Appendix B); here we simply demonstrate the application for the purpose of estimating the

variance of the prediction from a linear model.

Without proof, we can approximate the variance of some multi-variable function Y as

v̂ar(.̂) ≈ D�D
Ë ,

where D is the matrix of partial derivatives of the function Y with respect to each parameter, and � is

the variance-covariance matrix for the parameters in the function.

In other words, to approximate the variance of some multi-variable function Y, we (i) take the vector

of partial derivatives of the function with respect to each parameter, �8 , in turn (i.e., the Jacobian), D, (ii)

right-multiply this vector by the variance-covariance matrix, �, and (iii) right-multiply the resulting

product by the transpose of the original vector of partial derivatives, D
Ë.

For the dipper example (above), the ‘function’ (i.e., the linear model fit to the data) is

logit(?̂) = �̂1 + �̂2(SEX) + �̂3(HOURS) + �̂4(SEX.HOURS).

Forconvenience,we’ll refer to this function as Y. So, to derive an estimate of the variance forany value

predicted by this function, on the logit scale, we first need to generate the vector of partial derivatives

of the function with respect to each parameter, �8 in turn, D:

D =

[
∂.

∂�1

∂.

∂�2

∂.

∂�3

∂.

∂�4

]

=
[
1 SEX HOURS SEX.HOURS

]
.

Chapter 6. Adding constraints: MARK and linear models

6.8.2. Plotting the functional form – real covariates 6 - 50

The variance-covariance matrix among the parameters, �, is given as

� =

V̂ar
(
�̂1

)
Ĉov

(
�̂1 , �̂2

)
Ĉov

(
�̂1 , �̂3

)
Ĉov

(
�̂1 , �̂4

)
Ĉov

(
�̂2 , �̂1

)
V̂ar

(
�̂2

)
Ĉov

(
�̂2 , �̂3

)
Ĉov

(
�̂2 , �̂4

)
Ĉov

(
�̂3 , �̂1

)
Ĉov

(
�̂3 , �̂2

)
V̂ar

(
�̂3

)
Ĉov

(
�̂3 , �̂4

)
Ĉov

(
�̂4 , �̂1

)
Ĉov

(
�̂4 , �̂2

)
Ĉov

(
�̂4 , �̂3

)
V̂ar

(
�̂4

)

.

After a little bit of matrix algebra, we can ‘easily show’ that

v̂ar(.̂) ≈ D�D
Ë

= SEX

(
(HOURS · SEX) · V̂ar

(
�̂4

)
+ Ĉov

(
�̂4 , �̂2

)
· SEX + Ĉov

(
�̂4 , �̂3

)
· HOURS + Ĉov

(
�̂4 , �̂1

))
+ HOURS

(
HOURS · V̂ar

(
�̂3

)
+ Ĉov

(
�̂3 , �̂4

)
· (HOURS · SEX) + Ĉov

(
�̂3 , �̂2

)
· SEX + Ĉov

(
�̂3 , �̂1

))
+ SEX

(
SEX · V̂ar

(
�̂2

)
+ Ĉov

(
�̂2 , �̂4

)
· (HOURS · SEX) + Ĉov

(
�̂2 , �̂3

)
· HOURS + Ĉov

(
�̂2 , �̂1

))
+ V̂ar

(
�̂1

)
+ Ĉov

(
�̂1 , �̂4

)
· (HOURS · SEX) + Ĉov

(
�̂1 , �̂2

)
· SEX + Ĉov

(
�̂1 , �̂3

)
· HOURS

Admittedly, this looks a little ugly, but most computer algebra systems (like Maple, Mathematica,

Maxima...) handle this sort of thing very easily.

OK, now what do we do with this BUE (‘big ugly equation’)? Simple – we substitute in our estimates

for the various parameters in this equation (i.e., �̂1 , V̂ar(�̂1), ...), leaving out the parameter we wish to

plot predictions against. In our example, we’re interested in plotting predicted encounter probabilities

as a function of HOURS of observation in the field.

Let’s say for the moment we’re interested in the relationship between HOURS of observation and

predicted detection probability, for male dippers (i.e., for SEX=1). All we do next is to substitute the

following into the BUE shown above:

• SEX = 1

• �̂1 = 1.4115995, �̂2 = 1.4866175, �̂3 = 0.0463458, �̂4 = −0.0783100

• � =

V̂ar
(
�̂1

)
Ĉov

(
�̂1 , �̂2

)
Ĉov

(
�̂1 , �̂3

)
Ĉov

(
�̂1 , �̂4

)
Ĉov

(
�̂2 , �̂1

)
V̂ar

(
�̂2

)
Ĉov

(
�̂2 , �̂3

)
Ĉov

(
�̂2 , �̂4

)
Ĉov

(
�̂3 , �̂1

)
Ĉov

(
�̂3 , �̂2

)
V̂ar

(
�̂3

)
Ĉov

(
�̂3 , �̂4

)
Ĉov

(
�̂4 , �̂1

)
Ĉov

(
�̂4 , �̂2

)
Ĉov

(
�̂4 , �̂3

)
V̂ar

(
�̂4

)

=

1.4707909088 −1.3489390733 −0.1048562399 0.0965896636

−1.3489390733 4.4087794743 0.0978171691 −0.3077306503

−0.1048562399 0.0978171691 0.0084589932 −0.0079429315

0.0965896636 −0.3077306503 −0.0079429315 0.0237105215

After the substitutions, the BUE is not nearly so ‘big’ or ‘ugly’:

V̂ar(.̂) ≈ 0.0162836517(HOURS)2 − 0.436360115(HOURS) + 3.1816922365.

All you need to do at this point is use this equation to generate the estimated uncertainty for

the encounter probability predicted for a given value of the covariate HOURS. The following R script

demonstrates one approach for generating predicted encounter probabilities, and estimated SE and

95% CI for those predictions, for 1 → 20 HOURS.

initialize hours vector for 1 -> 20 hours

h <- seq(1:20);

Chapter 6. Adding constraints: MARK and linear models

6.8.2. Plotting the functional form – real covariates 6 - 51

generate estimates of var + SE on logit scale as a function of hours

logit_var <- 0.0162836517*h^2-0.436360115*h+3.1816922365;

logit_se <- sqrt(logit_var);

generate estimated encounter probability on logit scale

b1=1.4115995; b2=1.4866175; b3=0.0463458; b4=-0.0783100; sex=1;

logit_p <- b1+b2*sex+b3*hours+b4*hours*sex;

p <- exp(logit_p)/(1+exp(logit_p));

var <- (p*(1-p))^2*logit_var; # Delta method for var on prob scale

se <- sqrt(var)

now derive LCI and UCI

uci <-exp(logit_p+1.96*logit_se)/(1+exp(logit_p+1.96*logit_se));

lci <-exp(logit_p-1.96*logit_se)/(1+exp(logit_p-1.96*logit_se));

put everything together

results <- cbind(p,se,lci,uci)

print(results);

Note that the SE and 95% CI are derived on the logit scale, and then back-transformed. This is done

to guarantee that the calculated 95% CI is [0, 1] bounded for parameters (like ! or ?) that are [0, 1]
bounded. Because the logit transform is not linear, the reconstituted 95% CI will not be symmetrical

around the parameter estimate, especially for parameters estimated near the [0, 1] boundaries.

The first 4 (of 20) values generated from this script are shown below:

p se lci uci

[1,] 0.9461528 0.08466548 0.4035014 0.9978138

[2,] 0.9445008 0.08076792 0.4537064 0.9971406

[3,] 0.9428013 0.07662883 0.5043041 0.9962693

[4,] 0.9410530 0.07225869 0.5540990 0.9951479

We can use the full output from the script to plot predicted encounter probability with 95% CI to

those predictions:

�����

� � 	
 �� �� �� �	 �
 ��

�
�
�
�
�
�
��
�
��
�
�
�
��
��
�
��
�
�

���

���

���

��	

���

��

���

���

Chapter 6. Adding constraints: MARK and linear models

6.9. A special case of ‘real covariates’ – linear trend 6 - 52

As mentionedearlier, the reconstituted 95% CI willnotbe symmetrical around the parameterestimate,

especially for parameters estimated near the [0, 1] boundaries, as is clearly the case here. Also, we note

that as the value for the covariate HOURS is much greater or lesser than the mean value (≈ 12 hours),

the 95% CI gets progressively larger. This is expected as there is less ‘information’ at either end of the

distribution of HOURS on which to base our inference, and thus, more uncertainty in our estimate.

end sidebar

6.9. A special case of ‘real covariates’ – linear trend

Although we are not usually interested in a simple demonstration of temporal variation in ourparameter

estimates (as discussed in the preceding section), there is one ‘special’ case where we might be. If our

estimates are believed to be increasing or decreasing over time (i.e., showing a trend). We will now

explore how to use MARK to test for ‘trend’ in the data – linear increase or decrease in survival or

encounter.

To demonstrate the mechanics, we created a simple data set (linear.inp), which contains simulated

data which we will use for our analysis of linear trend. There are 8 occasions in the data set. Assume that

the ‘simulated animals’ are all marked as adults. We started with fitting the basic CJS, time-dependent

model. Since the data were simulated, we can safely assume that this is an acceptable model, and fits

the data (i.e., you can leave 2̂ at the default value of 1.000).

Since there is only one group, this analysis is very easy, and should take you only a few minutes with

MARK. At this stage, we’ll assume you know the steps for fitting this model, so we’ll proceed directly

to the results. The deviance of the CJS model fit to these data was 185.388, and the AIC2 value was

7,980.78. The estimates for both survival and encounter probabilities are tabulated below:

survival encounter

Parm Estimate Parm Estimate

1 0.7237 8 0.5492

2 0.7022 9 0.5040

3 0.6280 10 0.5403

4 0.5836 11 0.5256

5 0.6267 12 0.4316

6 0.4586 13 0.5428

7 0.5027 14 0.5027

Note that the value of the last estimate forbothsurvivalandencounter is the same (0.5027) – remember,

this is the �8 term. Thus, for this model, we have 13 total potentially identifiable parameters. The

deviance for the model was 185.39, and the AIC2 for this model is therefore 7980.78. Note that the

time-specific estimates show a clear trend (not surprising, since they were simulated this way).

Now, let’s proceed to see how to use MARK to fit a model with a linear trend – this will allow us to

formally test our hypothesis that there may be a decline in survival over time. Doing this in MARK is

very straightforward. Mechanically, we again make some simple modifications to the CJS design matrix.

First, what are the index values of the survival parameters we want to constrain (i.e., constrain to be a

linear function of time)? Clearly, parameters 1 → 7.

Now, as hinted in the last section, to fit a linear trend model, we need to modify the design matrix –

how would we do this? Think back to the first example using the dipper data set – the FLOOD analysis.

Chapter 6. Adding constraints: MARK and linear models

6.9. A special case of ‘real covariates’ – linear trend 6 - 53

Recall that in the design matrix, we had 4 columns of numbers in that file: one for the intercept, one

for SEX, one for FLOOD, and one for the interaction term (SEX.FLOOD). Concentrate on the FLOOD column.

We coded FLOOD as a simple binary variable: there was either a flood (‘1’) or there wasn’t (‘0’). In our

present example, however, things aren’t quite so simple. We are trying to build a model with a linear

trend. In other words, a systematic change in survival (up or down) through time.

What do we know about a ‘trend’, and how does it differ from the flood example? By definition, a

trend has a slope which is significantly different from 0. Given that the slope differs from 0, then on

average, H(8−1) < H8 < H(8+1) for an increasing trend with (i), and the reverse for a decreasing trend.

Second, a trend is ‘continuous’ through time – it is not a simple binary condition, as was the case with

flood. Thus, we need to code a ‘trend’ through time in such a way that it meets these 2 conditions.

As it turns out, this is very simple to do. To code for a linear trend, all you need to do is write a series

of ordinal, evenly spaced increasing (or decreasing) numbers, 1 through n (where n is the number of

occasions you want to fit the ‘trend’ to). You don’t have to start with the number 1, but you do need

to use the sequence {starting value} + 1, {starting value} + 2, and so on. So, what would the survival

elements of the design matrix look like for this 8 occasion study?

Just like this:

1 1

1 2

1 3

1 4

1 5

1 6

1 7

Hmmm. . .pretty strange looking (perhaps) – what do we have here? The first column corresponds

to the intercept, while the second column is the dummy variable coding for the linear trend. In other

words,

logit(!) = INTERCEPT + �1(T),

where T (commonly referred to as ‘cap T’) indicates a linear trend (we use a capital T for trend, to

distinguish a trend model from a simple time-dependent model, which is usually indicated using a

lower-case t).

So, only 2 � terms: one for the intercept, and one for the linear relationship between the response

variable (!, in this case), and the value for ‘trend’. You should see the connection (at least structurally)

between this linear model, and how we coded for the ‘effort’ covariate in the previous section. The order

of the numbers (1 to 7, or 7 to 1) makes no difference – MARK will simply use the numbers to fit a linear

trend – it will let the data determine if the trend is up or down (if any trend exists). Get it? The design

matrix for this model (‘Phi(linear)p(t)’) is shown below at the top of the next page.

Note that this model has 9 parameters (1 for the intercept, 1 for the slope of the ‘regression’ of survival

on time as a linear covariate, and 7 encounter parameters – no non-identifiable product � terms. Make

sure you know why!). The deviance was 189.53, and the AIC2 was 7976.88. The model where survival

was constrained to vary linearly with time (note we do not specify increase or decrease) is a more

parsimonious model than the initial time-dependent model – in fact, it is approximately 7 times better

supported by the data. This is perhaps not surprising – the data were simulated with a decline in

survival!

Chapter 6. Adding constraints: MARK and linear models

6.9. A special case of ‘real covariates’ – linear trend 6 - 54

Now, one subtle variation in this theme: suppose that we want to test for a non-linear trend. How

would we do this? Well, there are several ways to analyze non-linear relationships. Perhaps the easiest

is to use multiple regression, fitting a series of power terms to the function. For example, a comparison

of the model . = - + -2 to model . = - is a formal test of the significance of the -2 term. If the -2

term is not significant, and if the model . = - fits the data, then we can conclude that the relationship

is linear. How would we do this? In fact, it is very simple. All you need to do is add another column to

your design matrix file to accommodate the -2 term. It’s that easy!

Warning: While the mechanics of what we’ve just demonstrated for fitting a ‘trend’ model appear

straightforward, there is a conceptual limitation to this particular approach which you need to consider.

Fitting a linear trend model using the approach we described in this section ‘forces’ the parameter

estimates to fall precisely on a line. Clearly, this ‘statistical constraint’ enforces a ‘biological’ hypothesis

which is implausible – the estimates are no more likely to fall precisely on a line than they are to be

exactly the same in a ‘constant over time’ model. In addition, inference concerning the estimated ‘slope’

of the trend from a ‘cap T’ model is problematic – in such models, the estimated standard errors are

based only on sampling variation, and would be biased low compared to a direct regression on true

estimates (which is clearly not possible because the true estimates are not known).

However, an approach based on random effects solves this problem. In this context, random effects

models assume that ‘true’ annual estimates do not fall exactly on any simple, smooth model; the

deviation of estimates of some parameter from such models are treated as random. So, rather than

assume the estimates fall precisely on a straight line (i.e., applying a simple ‘cap T’ model approach),

the random effects regression assumes that the actual ‘true’ estimates vary randomly around some

trend line (where the trend line represents the mean estimate if multiple samples were available from

the same range of years in the data). Random effects models are covered in detail in Appendix D.

begin sidebar

Another type of ‘trend’: the cumulative logit link

The cumulative logit link (CLogit) function is useful for constraining a set of parameters to monoton-

ically increase. Suppose that you desire the relationship of (1 ≤ (2 ≤ (3, but do not want to enforce

the relationship on the logit scale that

logit[(2] − logit[(1] = logit[(3] − logit[(2]

Chapter 6. Adding constraints: MARK and linear models

6.9. A special case of ‘real covariates’ – linear trend 6 - 55

as a trend model (discussed in the preceding section) would do.

The CLogit link would generate this relationship as:

(1 =
4�1

1 + 4�1 + 4�2 + 4�3
(2 =

4�1 + 4�2

1 + 4�1 + 4�2 + 4�3
(3 =

4�1 + 4�2 + 4�3

1 + 4�1 + 4�2 + 4�3

To use the CLogit link, you have to specify a separate CLogit link for each set of parameters that

are to be constrained. In addition, you also have to specify the order of the parameters for the set.

For the preceding example, the link function for each of the 3 survival probabilities would be:

S(1): CLogit(1,1)

S(2): CLogit(1,2)

S(3): CLogit(1,3)

If you have a second set of parameters (in the same model) that you also want to enforce a monotonic

increase on, say (4 ≤ (5 ≤ (6, the appropriate links would be:

S(4): CLogit(2,1)

S(5): CLogit(2,2)

S(6): CLogit(2,3)

Note that you can force a monotonic decrease by reversing the order of the real parameters in the

CLogit set. For example, to enforce a monotonic decrease on parameters (1, (2, and (3, you would use

S(1): CLogit(1,3)

S(2): CLogit(1,2)

S(3): CLogit(1,1)

You specify these link functions by selecting the ‘Parm-Specific’ option as the link function, and

entering the appropriate specification directly in the edit box next to the parameter name.

We’ll demonstrate the use of the CLogit link by means of a worked example, based on simulated live

encounter data (6 occasions, 250 individuals marked and released at each occasion), where apparent

survival ! tends to increase monotonically, while the encounter probability ? is constant over time

(the simulated data are contained in clogit_demo.inp). The true values for the survival parameters

are: (1 = 0.500, (2 = 0.600, (3 = 0.625, (4 = 0.700 and (5 = 0.725. Note that (2
∼= (3, and (4

∼= (5.

As shown in the following

�������	

� � � � �

�
�
�
��
�
	

����

����

����

��	�

��	�

��
�

��
�

Chapter 6. Adding constraints: MARK and linear models

6.9. A special case of ‘real covariates’ – linear trend 6 - 56

even though there is an obvious tendency for survival to increase over time, the increase is clearly not

strictly linear, as indicated by the square symbols in the following figure:

However, the question is whether a model which constrains the estimates to be strictly linear (red line)

is a better fit to the data than one which allows for possible equality between some of the estimates

(darker line).

Recall that fitting a linear trend using the design matrix forces the reconstituted estimates to fall on

a perfectly straight line. So, in this example, it might seem possible (perhaps likely) that a model based

on the cumulative logit link (which allows for possible equality between some of the estimates) may

prove to be more parsimonious than a strictly linear trend model (even though the latter will often

have fewer parameters).

First, buildmodel {!C ?·}, and add the results to the browser. Note that the real parameter estimates

from this model (shown below)

are not particularly close to the true parameter values used to simulate the data. Given the small

sample size of newly marked individuals released at each occasion, this is perhaps not surprising.

Now, let’s fit two additional models: model {!trend ?·} (simple linear trend on apparent survival),

and model {!CLogit ?·}, where we use the cumulative logit link to impose an increasing, ordinal – but

not strictly linear – structure on the apparent survival values.

If you followed the material covered in this section, fitting the simple linear trend model should be

relatively easy. Here is the design matrix corresponding to the simple linear trend model:

Go ahead, fit this model, and add the results to the browser:

We see clearly that model {!T ?·} is not particularly well-supported by the data (at least, relative

to the time-dependent model {!C ?·}).

Chapter 6. Adding constraints: MARK and linear models

6.9. A special case of ‘real covariates’ – linear trend 6 - 57

Now, let’s fit model {!CLogit ?·}, where we impose an increasing, ordinal constraint on the estimates

of apparent survival. In other words, we’re constraining the estimates of (1 , (2, · · · , (5 such that

(1 ≤ (2 ≤ (3 ≤ (4 ≤ (5

Now, if you look closely at the above, you’ll see that there are a very large number of possible

models which would satisfy this constraint – MARK will effectively test all of them, and select the

most parsimonious of the set.

To build this model in MARK, first retrieve model phi(t)p(.) from the browser. You can do this

easily by selecting the model in the browser, right-clicking, and selecting ‘Retrieve’. Then, select ‘Run’

again, and change the name of the model to phi(CLogit)p(.).

Now, before clicking the ‘OK to Run’ button, we need to specify the cumulative logit link for the 5

apparent survival parameters. To do this, you need to select the ‘Parm-specific’ radio button option

in the list of link functions. Now, when you click the ‘OK to Run’ button, MARK will respond with a

window where you will specify the parameter specific link functions you want to use:

Note that in this case, MARK defaults to the logit link for all parameters (the default link for each

parameter will either be the sin or logit link, depending on whether or not you are using an identity

design matrix).

To fit our model, we need to change from the default logit link to the cumulative logit link, for

parameters 1 → 5, corresponding to !1 → !5. To enforce a monotonic increase in apparent survival,

subject to the condition that

(1 ≤ (2 ≤ (3 ≤ (4 ≤ (5

we simply specify the CLogit link for each of the survival parameters. For this example, here the

completed link specification window:

Note that you cannot select the CLogit link function from the drop-down list of link functions like as

with all of the other link functions, because you have to specify the set and the order of the parameter

Chapter 6. Adding constraints: MARK and linear models

6.9. A special case of ‘real covariates’ – linear trend 6 - 58

within the set. Therefore, you have to manually enter the link function in each edit box next to the real

parameter value to which it pertains.

Once you’ve specified the link functions, go ahead and run the model, and add the results to the

browser:

We see clearly that the model using the cumulative logit link has considerable AIC weight in the

data, relative to the other models in the model set. The estimates from this model are shown below:

You see that the results follow the basic constraint specification

(1 ≤ (2 ≤ (3 ≤ (4 ≤ (5

In this case, the most parsimonious model was one where

(1 ≤ (2 = (3 ≤ (4 = (5

whichseems quite reasonable given that for the true parametervalues (noteda fewpages back),(2
∼= (3,

and (4
∼= (5.

So, how many parameters are estimated, subject to the constraint (below)?:

(1 ≤ (2 ≤ (3 ≤ (4 ≤ (5

Given that the most parsimonious ML estimates for these simulated data subject to this constraint

are

(1 ≤ (2 = (3 ≤ (4 = (5

it is clear that 3 parameters are estimated.

Now, it is worth noting here that what we have done is essentially equivalent to an ‘all subsets’

regression – MARK has simply found the most parsimonious model from the set of models specified

by the constraint that

(1 ≤ (2 ≤ (3 ≤ (4 ≤ (5

Chapter 6. Adding constraints: MARK and linear models

6.10. More than 2 levels of a group 6 - 59

This may be potentially useful for finding a parsimonious model for improving precision of recon-

stituted parameter estimates, or if you believe that there is a general monotonic increase or decrease in

some parameter, where you have no a priori expectation to the particular form of the function (other

than it being monotonic in one direction or the other). In this case, the most parsimonious model was

one where

(1 ≤ (2 = (3 ≤ (4 = (5

was not motivated by a particular a priori hypothesis.

If in fact you had reason to include a model with this constraint in your model set (i.e., if you

had an a priori expectation that (2 = (3 and (4 = (5, with a monotonic increase from (1 → (2 =

(3 → (4 = (5), then it would be more appropriate to (i) first construct a PIM with the basic structure

{(1, (2 = (3 , (4 = (5} (shown below) to which you then (ii) apply a cumulative logit constraint to

parameters 1 → 3. If you try it for this example problem, you’ll see that you generate exactly the

same reconstituted parameter estimates as you did from the cumulative logit link applied to the fully

time-dependent PIM.

However, by applying the cumulative logit to the PIM that reflects our a priori beliefs about equality

of certain parameters, then we avoid the risk of having to concoct a post hoc ‘story’ (not withstanding

their frequent entertainment value) to explain the particular CLogit model that MARK has found to

be most parsimonious. The distinction here is subtle, but important.

end sidebar

6.10. More than 2 levels of a group

It is not uncommon to have more than 2 levels of a classification variable in an analysis. For example,

you may have a control and 2 or more treatment groups. How would you code the design matrix for

such a situation? In fact, it’s easy (well, relatively), if you remember some basic principles from analysis

of variance (ANOVA). The number of columns used to characterize group differences (e.g., belonging

to one group or not) will always equal the number of dummy variables (coded ‘0’ or ‘1’) that you need

to characterize group differences. For any variable that we treat as ‘categorical’ or ‘classification’ (i.e.,

both COLONY and TIME in the swift example) with k levels, the number of columns needed is (:−1), which

happens to be the numbers of degrees of freedom associated with a factor in a standard ANOVA (note –

it’s not a coincidence). In short, the number of columns (hence, the number of dummy variables) needed

Chapter 6. Adding constraints: MARK and linear models

6.10. More than 2 levels of a group 6 - 60

equals the degrees of freedom associated with that variable. So, the minimum number of columns of

dummy variables needed to specify our model are defined by the number of degrees of freedom for

each factor, plus any interaction terms.

Of course, it is possible to specify a model with more columns than the minimum set we’ve just

described. Would this be wrong? Not exactly – your estimates would be ‘correct’, but it becomes very

difficult to count (separately) identifiable parameters. And since counting parameters is essential to

model testing, using more columns than necessary in your design matrix to specify the model should

be avoided.

Consider an example of a study over 5 occasions, where we have 3 ‘groups’, or levels of our ‘main

effect’. Thus, we need (3 − 1) = 2 columns of ‘dummy variables’ to specify group association. Again, it

is important to understand the logic here: we need (= − 1) = (3 − 1) = 2 columns, because we have an

intercept in the model – the intercept codes for one level of the treatment, and the other two columns

code for the remaining two levels of the treatment.

Suppose we also have a quantitative covariate (say, hours of observation). Linear terms have 1 degree

of freedom, so one column of covariate values. Finally, for the interaction, we need (3 − 1) × (1) = 2

columns.

Here is the design matrix – we have formatted it slightly to emphasize the ‘logical connection’ amongst

the columns.

INTCPT GROUP HOURS GROUP.HOURS

1 0 0 1.1 0 0

1 0 0 0.2 0 0

1 0 0 3.4 0 0

1 0 0 4.1 0 0

1 0 1 1.1 0 1.1

1 0 1 0.2 0 0.2

1 0 1 3.4 0 3.4

1 0 1 4.1 0 4.1

1 1 0 1.1 1.1 0

1 1 0 0.2 0.2 0

1 1 0 3.4 3.4 0

1 1 0 4.1 4.1 0

The first column is the intercept. The next 2 columns on the left indicate group: group is identified

depending upon the pair of dummy variables across these 2 columns: ‘0 0’, ‘0 1’, and ‘1 0’. The middle

column (of the 5 total columns), is the ‘covariate’ column.

The last 2 columns are the interaction columns (interaction of group and covariate). Remember,

the interaction term can be thought of as a ‘multiplication term’ – the product of the various factors

contained in the interaction. Since this interaction is the interaction of ‘group’ (2 columns) and ‘covariate’

(1 column), then we have (2×1) = 2 columns for the interaction. We simply multiply each element of the

group column vectors by its corresponding element in the ‘hours’ column vector. Therefore, 6 columns

total.

Now, if we were applying this design matrix, and we wanted to test for the significance of the

interaction term, we would first run the constraint using all 6 columns in the matrix, and then a second

time using only the first 4 columns – 4 because we want to drop the interaction term, which is ‘stored’

in columns 5 and 6.

Chapter 6. Adding constraints: MARK and linear models

6.11. > 1 classification variables: n-way ANOVA 6 - 61

Note that it is important to use the minimum number of columns of ‘0’ or ‘1’ dummy variables

to characterize your groups. Why? Because each column in your matrix becomes a slope, which is

an estimated parameter. Our goal is to use as few parameters as possible to specify a model. Extra

columns wouldn’t make your model ‘wrong’, but would make the counting of (separately) identifiable

parameters more difficult.

It is also important to note that all that is necessary is that you use (=−1) columns to code the ‘group’

variable (in this case, (3 − 1) = 2 columns). However, the actual ‘dummy variable’ coding you use to

specify group is arbitrary. For example, in the preceding example, we used ‘0 0’ for group 1, ‘0 1’ for

group 2, and ‘1 0’ for group 3.

However, we could have used ‘1 1’ for group one, ‘1 0’ for group 2, and ‘0 1’ for group 3, or any of

a number of other combinations. They would all yield the same results (although, clearly, the coding

in the interaction columns will change from the preceding example to reflect whatever coding you use

for group columns). Try a few examples to confirm this for yourself.

6.11. > 1 classification variables: n-way ANOVA

Back in Chapter 2, we briefly considered the formatting of the .INP file for situations where you have

> 1 classification factors. We considered an example where both males and females were sampled at

each of two colonies: a good colony, and a poor colony. Thus, two classification factors: SEX and COLONY.

Recall that in the input file, we included a frequency column for each (SEX.COLONY) combination:

one frequency column for females from the good colony, one frequency column for females from the

poor colony, one frequency column for males from the good colony, and finally, one frequency column

for males from the poor colony. We simulated a simple data set (multi_group.inp) including these 4

combinations.

Here, we focus on building models which have both SEX and COLONY effects. Suppose, for example,

we want to build the following linear model for !:

! = SEX + COLONY + TIME + SEX.TIME + COLONY.TIME + SEX.COLONY + SEX.COLONY.TIME

In other words, a 3-way ANOVA (in effect, TIME is the third classification variable in this analysis).

How do we go about building this model? Start program MARK, and begin a new project. Select

multi_group.inp. Specify 5 occasions. Now, for your first challenge – how many attribute groups? You

might think either 2, or 3. Well, perhaps you’re comfortable enough now with MARK to think just two

– SEX and COLONY (realizing that TIME is an implicit attribute, and doesn’t need to be counted).

Unfortunately, you’d not be correct. In fact, there are 4 attribute groups – corresponding to each of

the 4 ‘SEX.COLONY’ combinations (i.e., the number of frequency columns in the .INP file). So, you need

to tell MARK that there are 4 attribute groups.

Next, what to call them? In the .INP file (first few lines of which are shown below)

Chapter 6. Adding constraints: MARK and linear models

6.11. > 1 classification variables: n-way ANOVA 6 - 62

we see that the first two frequency columns are for females sampled at the good and poor colonies,

respectively, and the last two frequency columns are for males, sampled at the good and poor colonies,

respectively. So, let’s label the 4 attribute groups as FG, FP, MG, and MP, respectively.

Now, let’s build our model – to simplify, let’s assume that the encounter probability ? is the same for

both sexes and both colonies, and constant over time. Here is the PIM chart for this model:

Make sure you see the connection between the PIM chart, and the model we’re trying to build. Go

ahead and run the model – call it ‘phi(S.C.T)p(.) - PIM’. We add the PIM label to the model name to

remind us that the model was built using the PIM chart.

The real estimates from this model are shown below:

Now, we want to try to construct this model using the design matrix approach (since we want to be

able to use the flexibility of the design matrix to build models we can’t build with the PIMs).

Chapter 6. Adding constraints: MARK and linear models

6.11. > 1 classification variables: n-way ANOVA 6 - 63

First – how many columns should the design matrix have? Well, if you ‘cheat’ and look at the results

browser, you might guess 17 – one column for each of the estimated parameters. But, we want to confirm

our hunch – we do this by writing out the linear model in full.

Remember, SEX has two levels (male and female), so 1 column for sex. Similarly, COLONY has two levels

(good and poor), so again, 1 column for COLONY. There are 5 occasions, so 4 TIME intervals, and thus we

need 3 columns to code for TIME.

Finally, we need to code for the various interaction terms as well. Remember, there are interactions

of SEX.TIME, COLONY.TIME, SEX.COLONY and SEX.COLONY.TIME.

Here is the linear model:

logit(!) = �1 + �2(SEX) + �3(COLONY)
+ �4(T1) + �5(T2) + �6(T3)
+ �7(S.T1) + �8(S.T2) + �9(S.T3)
+ �10(C.T1) + �11(C.T2) + �12(C.T3)
+ �13(S.C)
+ �14(S.C.T1) + �15(S.C.T2) + �16(S.C.T3).

So, we see that there are 16 � terms for !, plus 1 � term for the constant encounter probability ?, for

a total of 17 columns (looks like our guess was correct). Now, let’s build the design matrix.

We’ll start by adding the INTCP, SEX, COLONY and TIME columns to the design matrix. As you no doubt

by now realize, there is no ‘hard rule’ for how you code the various effects in the design matrix – as

long as the coding, and the number of columns, are consistent with the model you’re trying to fit, and

the data in the .INP file.

Here is one possible dummy variable coding for these terms:

Look closely. The INCTP is coded by a column of 16 ‘1’s. There are 4 intervals, and 4 attribute groups,

so 16 underlying ! parameters. Next, the SEX column (labeled S). We’ll let ‘1’ represent males, and ‘0’

represent females. Since the first 2 frequency columns in the .INP file represent females, then the first

8 elements of the SEX column are 0’s, followed by 8 1’s for the males. Next, the COLONY column (labeled

Chapter 6. Adding constraints: MARK and linear models

6.11. > 1 classification variables: n-way ANOVA 6 - 64

C). Now, remember that in the .INP file, the frequency columns were ‘good’ and ‘poor’ colonies for

the females, followed by ‘good’ and ‘poor’ colonies for the males. Here, we’ve used a ‘1’ to indicate

the ‘good’ colony, and a ‘0’ to represent the ‘poor’ colony, alternating for each sex. Next, the 3 columns

coding for TIME (labeled T1, T2 and T3), in the standard way (using reference cell coding) – here, we’ve

set the final time interval (between occasion 4 and 5) as the reference interval.

What about interactions? Well, let’s start with the easy ones: S.T, C.T, and S.C. Look closely at the

following figure:

For convenience, we’ve labeled the columns in the design matrix so you can see which columns

correspondto which interaction terms: columns 7 → 9 correspondto theSEX.TIME interactions,columns

10 → 12 correspond to the COLONY.TIME interactions, and column 13 corresponds to the SEX.COLONY

interaction.

Finally, the S.C.T interaction, indicated in columns 14 → 16 in the following:

The element in the lower right-hand corner of the completed design matrix codes for the constant

encounter probability, p.

Now, go ahead and run this model, and label it ‘phi(S.C.T)p(.) - DM’, with DM indicating it was

constructed using a design matrix, and add the results to the browser (top of the next page).

As expected, the two models yield identical results: the numberofparameters and the modeldeviance

Chapter 6. Adding constraints: MARK and linear models

6.12. Time + Group – building additive models 6 - 65

is the same, regardless of whether or not the model was built using the PIMs, or via the design matrix.

As a final check, though, we want to look at the real estimates (below) for our parameters with those

from the model constructed using the design matrix. We see that the results are identical, as expected:

Handling > 1 classification variable can sometimes be a bit tricky – but most of the challenges

are ‘book-keeping’. Just remember that the dummy variable coding in the design matrix needs to be

consistent with both the linear model you’re trying to fit, and the structure of the .INP file.

6.12. Time + Group – building additive models

Most newcomers to MARK find building design matrices the most daunting part of the ‘learning curve’.

However, if you’ve understood everything we’ve covered up to now, you should find building design

matrices for additive models very straightforward. What do we mean by an ‘additive model’? As you

may remember from earlier chapters, an additive model is one where we express variation in survival

or encounter as a function of the additive contributions of 2 or more factors.

Recall our comparison of the ‘good’ and ‘poor’ swift colonies (Chapter 4). Our linear model was

represented by

logit(!) = �1 + �2(COLONY) + �3(TIME) + �4(COLONY.TIME)

In this model, we have two ‘factors’ – COLONY (‘good’ and ‘poor’) and TIME (!1, !2 . . . !7). Each ‘time

interval’ is considered as a different level of the TIME factor. In this case, we are treating time as a

‘categorical’ variable, as opposed to a quantitative linear covariate as we did in the ‘trend’ example

presented earlier.

You may have noted that this is, in fact, the default MARK CJS model with 2 groups – as long as you

tell MARK to use the same parameter structure between groups, but let the parameter values differ (i.e.,

same qualitative structure between the PIMs, but different indexing), then MARK uses the ‘full model’,

with both factors (COLONY and TIME), and the interaction term (COLONY.TIME). When we run MARK, but

Chapter 6. Adding constraints: MARK and linear models

6.12. Time + Group – building additive models 6 - 66

set the PIMs for the 2 groups to be the same (same structure, same index values), we are testing model

logit(!) = �1 + �2(TIME).

The difference between these two models is, in fact, the effect of COLONY + COLONY.TIME, not just

COLONY alone. As noted in Chapter 4, we are, in fact, leaving out the ‘intermediate model’:

logit(!) = �1 + �2COLONY + �3TIME.

Here, we are considering the additive effects of the 2 factors – hence, we refer to it as an ‘additive’

model. To fit this model we simply need to take our design matrix for the fully time-dependent model

logit(!) = �1 + �2(COLONY) + �3(TIME) + �4(COLONY.TIME),

and delete the interaction columns! It’s that easy! In fact, we already saw this earlier when we analyzed

the dipper data with the flood model. Go back to the swift analysis, pull up the design matrix for the

full model {!6∗C ?6∗C}, and simply delete the columns corresponding to the interaction of group and

time (for survival).

The design matrix (the upper-left quadrant for survival) should look like the following:

What MARK does with this design matrix is to estimate a coefficient (‘slope’) for each dummy

variable. This coefficient tells us how any one particular level differs from the baseline level (i.e., the last

time interval). We can put all the coefficients together in one regression equation (for COLONY and TIME):

logit(!) = �1 + �2(COLONY) + �3(t1) + �4(t2) + �5(t3) + �6(t4) + �7(t5) + �8(t6).

In this expression,�1 tells us how much,on average, survival in the ‘good’ colony differs from survival

in the ‘poor’ colony. Note that when COLONY = 0 (say, for the ‘poor’ colony), the �2 term drops out of the

regression equation, resulting in our estimating survival in the ‘good’ colony. Each of the remaining

�-terms specifies how much survival in one year period (average over both colonies) differs from the

baseline year. The greater the magnitude of a particular � the greater that year’s survival probability

differs from the baseline year, and the greater the statistical significance of a particular �, the greater

the contribution to the overall significance of the TIME factor.

Chapter 6. Adding constraints: MARK and linear models

6.12. Time + Group – building additive models 6 - 67

It should be easy to see that, for example, for the ‘poor’ colony (COLONY = 0) in year 3, the �2 term

drops out of the equation, and we are left with

logit(!) = �1 + �5,

because C3 = 1, and all other t values (C1, C2, . . . , C6) are equal to zero. Thus, �5 tells us how much survival

in year 3 differed from the baseline year (year 7).

Similarly, the equation for year 5 in the ‘good’ colony (COLONY = 1) would be

logit(!) = �1 + �2 + �7.

One last thing to consider. Counting parameters for the additive model (model {!6+C ?6∗C}) is not

quite as simple as for other models. First, we’ll consider how to count the number of potentially available

parameters in an additive model. The easiestway to do it is to rememberwhatwe’re after– we’re testing a

model where there is time variation in survival forboth colonies,but that the difference between colonies

is due to a constant, additive, component. This additive component is simply 1 more parameter (like

estimating a constant). This should not be surprising, especially if you think of the additive model in

the ANCOVA example we dealt with earlier – in the Lebreton et al. (1992) monograph, they give you an

explicit ‘hint’ when they use the word ‘parallelism’. If any pair of lines in an - − . plane are parallel

then for any value X, the two lines differ in Y by some constant amount. It is the constant ‘difference’

between the lines which constitutes one of the estimable parameters.

So, for our present example, simply count the number of parameters you would expect for 1 colony

alone, for the underlying model (CJS – 13 parameters for either colony alone). Then, add 1 for the

additivity (i.e., the ‘constant difference’) in survival (you would add 2 if you had additivity in survival

and encounter simultaneously).

Now, the tricky part (potentially) – if survival in one colony is simply survival in the other colony

plus a constant, then the survival probability is identifiable (by linear interpolation) for all intervals in

the second colony, and thus all of the encounter probabilities are estimable (no confounding of terminal

? and ! parameters). So, since there are 7 encounters, we add 7, bringing our total to (13 + 1 + 7) = 21

total parameters.

Still don’t get it? Here’s another way to think of it. First, in this example, we are constraining the CJS

model by colony. What was estimable in this starting model will remain estimable in the same model

with a constraint – in this case, the additive model. Thus, if some parameters are not identifiable in the

additive model, they must be those from the last time interval: !7,6 and !7,? and ?8,6 and ?8,? (where

‘g’ = good, and ‘p’ = poor). Let’s focus our attention on them. In the unconstrained CJS model, we could

identify the products �9,6 = (!7,6?8,6) and �9,? = (!7,??8,?).
In essence, we had 2 equations and 4 unknowns. If we pick some value for (say) !7,6 , then we can

solve for ?8,6 . Similarly, we could pick an arbitrary value for !7,? and solve for ?8,? . Thus, we have 2

arbitrary parameters to discount from the initial total of 28 parameters in the model – in other words,

(28− 2) = 26 identifiable parameters. Of course, we knew this already – we simply want to confirm that

this approach yields the same results.

Now, let’s apply this same line of reasoning to the additive model case. We still have the same 2

equations as before, plus 1 new one; !7,6 = !7,? + 2 (from the constraint). ‘c’ is a known constant,

because ‘c’ is common to all intervals. Therefore, if we pick a value for !7,6 then !7,? is known, and thus

also both ?8,6 and ?8,? . Thus, we have just one arbitrary parameter to discount from the total number

of parameters originally included in the additive model; for survival, 7 slopes + 1 intercept = 8, and for

encounter, 14. Thus, (8 + 14) = 22 − 1 (the arbitrary parameter) = 21 identifiable parameters. However,

if we run the additive model, we find that MARK has estimated only 19 parameters. It has 1 intercept,

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 68

and 7 slopes, but of the encounter parameters, 2 are not identifiable – so (1 + 7 + 12) = (20 − 1) (the

arbitrary parameter) = 19.

In fact,Lebreton et al. (1992) analyzed a large number of different models for this data set (see Table 14).

They found that the most parsimonious model has constant survival within colony, but different colony

values, and additivity (‘parallelism’) in encounter probabilities, {!2 ?2+C}.

Before we leave this chapter, it is important to keep in mind that the ‘parallelism’ we have been

discussing refers only to the logit scale – i.e., it is not linear parallelism, but logit parallelism. Thus, if

you plot the reconstituted values from an additive model, they may not ‘look’ to be parallel, but on the

logit scale, they indeed are.

In addition, you need to think carefully about the ‘biological realism’ of additive models. Suppose

we had found additivity of survival between colonies for the swift data. What would this mean? It

would mean that whatever factor made the survival differ overall between the colonies had a constant

additive effect over time. This would imply that there is some ‘real difference’, possibly genetic or age,

between the two colonies such that, although both of them are subject to fluctuations over time, one

colony always does relatively better (or worse) than the other (and by a constant amount on the logit

scale). Is this ‘biologically plausible’? Perhaps. Or, perhaps not. But, even if an additive model is not

‘biologically plausible’, it represents a model that is ‘intermediate’ between a model with no group

(colony) effects (time only), and one with full (group × time) interactions. Such a an ‘intermediate’

model might be parsimonious, even if not ‘biologically plausible’. You will need to justify for yourself

if ‘additive’ models should be included in your candidate model set.

6.13. Linear models and ‘effect size’: a test of your understanding. . .

Recall that in chapter 4, we introduced the question of ‘significance’ and ‘effect size’. We considered

the ‘swift analysis’, and asked the question: is there a difference in survival between the colonies (good

colony versus poor colony), and is it ‘significant’? In addressing these questions, we considered the

matter of ‘effect size’. In the swift analysis, we concluded that there was good support for the contention

that there is a difference in survival between the two colonies, based on relative AIC model weights. The

remaining questions were – how big is this difference, and is the difference ‘biologically meaningful’?

As we note in chapter 4, the first question relates to ‘effect size’ – we consider colony as an ‘effect’, strictly

analogous to an ‘effect’ in ANOVA. The ‘effect size’ is the estimate of the magnitude of the difference in

survival between the two colonies. Further, since the effect size is ‘estimated’, it will have an associated

uncertainty which we can specify in terms of a confidence interval (CI).

The key question then becomes

‘what are the plausible bounds on the true effect size, and are

biologically important effects contained within these bounds?’

In chapter 4, we concentrated on simple interpretation of effect size. Here, we explore this a little

more deeply, introducing some of the considerations involved in estimating effect size in the first place.

This exercise will also serve as a test of your basic understanding of linear models (the subject of this

chapter).

We’ll consider a situation similar to the ‘swift analysis’ we introduced earlier. We’ll imagine there

are 2 colonies (good and poor), and that survival over a given interval in the poor colony is 10% lower

than survival in the good colony over that same interval (warning: keep awake for scaling issues here!).

We simulated some data, 8 occasions, 150 newly marked birds released in each colony on each occasion.

We assumed a constant survival probability over time for each colony: 0.80 for the poor colony, and

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 69

(0.80 + 10%) = 0.88 for the good colony. We also assumed a constant encounter probability of 0.75 for

both colonies. The simulated data are contained in effect_size.inp (where the first frequency column

corresponds to the poor colony, and the second frequency column corresponds to the good colony).

Again, 2 groups (poor and good) and 8 occasions.

While you could fit this model by (i) building the fully time-dependent model {!6∗C ?6∗C} using

PIMs, (ii) constructing the corresponding design matrix, and then (iii) reducing the design matrix by

eliminating the columns involving TIME for !, and the columns involving both TIME and COLONY for ?,

for this demonstration it’s easier to simply start with a PIM structure that corresponds to our underlying

model, {!6 ?·}.

Here are the PIMs for the survival

1 1 1 1 1 1 1 2 2 2 2 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

1 1 1 1 2 2 2 2

1 1 1 2 2 2

1 1 2 2

poor 1 good 2

and encounter probabilities:

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3

poor 3 good 3

For this analysis, we’re primarily interested in estimating the ‘effect size’ – effect of colony on survival.

How do we do that? The answer in this case is fairly easy if you consider the linear model corresponding

to this particularanalysis. We have 2 groups (COLONY),withno variation over time. Thus,our linearmodel

for survival would be:

logit(!) = �1 + �2(COLONY).

If you’ve read this far, and understood the theory behind linear models, you’ll recall that �1 and �2

together code for the colony effect. How this coding works depends on the design matrix used.

For example, if you use the following design matrix coding

then how do we interpret the intercept (�1) and the first slope (�2)? If the poor colony is coded in the 2nd

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 70

column (B2 column) of the design matrix as ‘0’, and we use ‘1’ for the good colony, then if the colony is

poor, the intercept gives the survival for the poor colony (since the �2 term drops out of the equation).

So, if the intercept is the estimate for the poor colony, then when the dummy variable is ‘1’ (specifying

a good colony), then �1 + �2 = (poor) + (good-poor) = good. Clearly – the �2 value is the effect of colony –

it is the degree to which estimated survival for the poor colony differs from estimated survival for the

good colony. In other words, the estimate for �2 is the estimate of the effect size.

How do we actually get an estimate of the effect size on the familiar probability scale (i.e., in the range

[0, 1])? In fact, we can do this in a couple of ways. Let’s start by using the identity link function. Recall

that in many (perhaps most) cases, we fit models using either the logit or sin link functions. For now,

though, let’s re-run our model, using the identity link, which you select during the numerical estimation

part of the run. Our general starting model will be {!2>;>=H ?·}. Go ahead and run it using either the

default sin link, or the logit link. Then, run the model a second time using the identity link.

Note for these data that the model fit is identical regardless of whether you use the logit, sin or identity

link (although by now you probably appreciate that this is not always the case).

OK, on to the next step. We want the estimate for �2 – the slope for the colony term in the design

matrix, which we understand to be the effect size – in this case, the difference between the good and

poor colonies. All you need to do is look at the ‘beta estimates’ for the model with the identity link.

The estimated value for �̂2 = 0.0845106, with a 95% CI of [0.0635335, 0.10548780]. For completeness, the

estimate of the intercept is �̂1 = 0.7897399. So, the linear model is

’survival’ = logit(!̂) = �̂1 + �̂2(’colony’)

= 0.7897399+ 0.0845106(’colony’).

Now, what do these numbers tell us? Well, recall that the estimate for �̂1 is the estimate of survival

for the poor colony. Look back at the parameter values used in the simulation for the poor colony: the

‘true’ value for the survival probability for the good colony is 0.8 – our estimated value for the intercept,

�̂1 = 0.79, is very close. What about effect size? Well a 10% difference in survival corresponds to an

absolute difference of 0.08 (since 0.8 is 10% smaller than 0.88, the true survival probability of the good

colony). Since �1 corresponds to the poor colony, then �2 is the deviation (‘effect’) of the good colony on

survival – in this case, �̂2 = 0.0845106 (the positive sign indicating an increase in survival for the good

colony, relative to the poor colony). The estimate of �̂2 = 0.0845106 is quite close to the true difference

(effect size) of 0.08 (the true difference clearly falls within the 95% CI for the estimate). Recall that these

are simulated data, so we anticipate some difference between estimated and ‘true’ parameter values.

OK – so the estimate of the effect of colony on survival is �̂2 = 0.0845106. Is this ‘significant’? The 95%

CI for the estimate of the effect size ranges approximately from 0.064 to 0.105. Since this 95% CI doesn’t

bound 0, then we might conclude that there is a ‘statistically significant’ effect of colony on survival. But,

as every experienced analyst knows, if you have a big enough sample size, even minute differences can

be ‘statistically significant’. What about ‘biologically significant’ – isn’t that more relevant than ‘statistical’

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 71

significance?

Here is where ‘biological insight’ comes into play. Whether or not the effect estimated in this study

is ‘significant or not’ depends on your thoughts on what is or is not ‘biologically significant’. Suppose,

for example, that you decide a priori that a difference in survival between the colonies of ≥ 10% to be

‘biologically significant’, then in this case, our results would be considered as ‘biologically inconclusive’

(despite being ‘statistically significant’), since the 95% CI includes values <10%. If instead we believed

that a difference in survival of 5% was ‘biologically important’, then we could conclude with 95%

confidence that in this case there was a biologically significant result, since the 95% CI do not include

this value (since the lower CI is >5%).

Some additional comments. In the preceding, we used the identity link. We did so for convenience

– the identity link gave us an estimate of the absolute value of the effect size directly, on the [0, 1]
probability scale we’re typically interested in. But, what if the numerical estimation ‘doesn’t work’ with

the identity link (typically, because of difficulties with convergence)? Can we use the logit or sin link to

get estimates of the effect size, and the standard error?

The answer is ‘yes’, but it does require a bit more work. Let’s run the analysis of the simulated

data using the logit link. The estimates for �̂1 and �̂2 on the logit scale are 1.3233584 and 0.6157168,

respectively. Remembering that the linear model we’re fitting is

logit(!̂) = �̂1 + �̂2(colony),

then since �1 = (poor), and �1+ �2 = (poor + effect of good), we can write

effect of ‘good’ =

(
4 �̂1+�̂2(1)

1 + 4 �̂1+�̂2(1)

)
−
(

4 �̂1

1 + 4 �̂1

)

= 0.8742505− 0.789740

= 0.0845106,

which is exactly the same value as the one estimated (for �2) using the identity link.

What about the SE of the estimated effect size? As noted earlier, the discussion of effect size is really

a discussion of whether or not the confidence limits on the effect size bound a difference that we think

is ‘biologically significant’. From the identity link analysis, we know that the SE and confidence limits

to our effect size are 0.0107 and [0.0635, 0.1055], respectively.

We can derive the same values using the estimates from the logit link analysis, but it requires a few

more steps. First, recall that the variance of a difference (of say two parameters �8 and �9) is

var
(
�8 − �9

)
= var

(
�̂8

)
+ var

(
�̂9

)
− 2 cov

(
�̂8 , �̂9

)
.

Thus, the estimated SE for the difference (i.e., effect size) between the ‘good’ and ‘poor’ colony is

√
var(good) + var(poor) − 2cov(good,poor)

where the variance and covariances of the two estimates can be output directly in MARK.

To do this, select the appropriate model in the results browser (in this case, the logit link model). Then,

select ‘Output | Specific Model Output | Variance-Covariance matrices | Real Estimates’,and

output the values to a Dbase file (to maintain full numerical precision). The variance-covariance values

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 72

for the estimates of interest (i.e.,good and poor) on the real probability scale are: V̂ar(poor) = 0.00007377,

V̂ar(good) = 0.00004534, and ĉov(poor,good) = 0.0000022834.

Thus, our estimate of the SE for the effect size is√
0.00004534+ 0.00007377− 2(0.0000022834) = 0.0107,

which is the same as the estimate using the identity link (to within rounding error). The estimated 95%

CI would then be (effect size±2SE), or 0.0846± 2(0.0107) = [0.0632, 0.1060], which is virtually identical

to the estimated 95% CI derived using the identity link (again, to within rounding error).

begin sidebar

Variance of a difference – say what??

Where does this formula for the variance of a sum, or a difference, come from? Well, if � = -1 + -2
for example, then

B2� =
1

=

∑(
� − �̄

)2
=

1

=

∑[(
-1 + -2

)
− 1

=

(
-1 + -2

)]2

=
1

=

∑[(
-1 + -2

)
− 1

=

∑(
-1

)
+ 1

=

∑(
-2

)]2

=
1

=

∑ [(
-1 + -2

)
− -̄1 − -̄2

]2

=
1

=

∑ [(
-1 − -̄1

)
+

(
-2 − -̄2

)]2

=
1

=

∑ [
G1 + G2

]2

=
1

=

∑ [
G2

1 + G2
2 + 2G1G2

]

= B21 + B22 + 2B12

= var
(
-1

)
+ var

(
-2

)
+ 2cov

(
-1 , -2

)
.

Similarly, if � = (-1 − -2) (i.e., a difference rather than a sum), then

B2� = var
(
-1

)
+ var

(
-2

)
− 2cov

(
-1 , -2

)
.

Bet you’re glad you asked!

Well, now that we’ve impressed ourselves, a more intuitive explanation. You may recall that the

variance of a sum is equivalent to the sum of the variances, if the elements are independent (you should

be able to prove this to yourself fairly easily).

We can write this as

var
(∑

Ĝ8

)
=

∑
var

(
Ĝ8

)
.

But, if there is any sampling covariance (i.e., if the terms are dependent), then we write

var
(∑

Ĝ8

)
=

∑
var

(
Ĝ8

)
+

∑
8

∑
9

cov
(
Ĝ8 , Ĝ 9

)
.

Thus, ‘intuitively’, given two values G8 and G 9 , we write

var
(
Ĝ8 + Ĝ 9

)
= var

(
Ĝ8

)
+ var

(
Ĝ 9

)
+ 2 cov

(
Ĝ8 , Ĝ 9

)
,

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 73

or, equivalently for a difference,

var
(
Ĝ8 − Ĝ 9

)
= var

(
Ĝ8

)
+ var

(
Ĝ 9

)
− 2 cov

(
Ĝ8 , Ĝ 9

)
.

And, if that wasn’t enough, we can also derive this expression using the Delta method (Appendix B).

For example, if � = (-1 −-2) (i.e., the difference between -1 and -2), then we can show that if the

variances of the -8 are small (and this is an important assumption), then to first-order

var(Y) = D�D
Ë
,

where D is a row-vector of the partial derivative of the function (in this case,� = -1−-2) with respect

to each variable (i.e., -1 and -2, respectively), D
Ë is the column-vector transpose of D, and Σ is the

variance-covariance matrix of -1 and -2. The concepts underlying this expression are presented in

detail in Appendix B.

Thus,

var(D) = DΣD
Ë

=

[
∂�

∂-1

∂�

∂-2

] [
var

(
-1

)
cov

(
-1 , -2

)
cov

(
-2 , -1

)
var

(
-2

)
]

∂�

∂-1
∂�

∂-2

= [1 − 1]

[
var

(
-1

)
cov

(
-1 , -2

)
cov

(
-2 , -1

)
var

(
-2

)
] [

1

−1

]

= var
(
-1

)
+ var

(
-2

)
− 2 cov

(
-1 , -2

)
,

which is identical to the expression we introduced on the preceding page.

end sidebar

Now, let’s consider a slightly more complex example – same basic scenario, but now with 3 colonies,

instead of 2. Again, we simulate a data set (effect_size3.inp) with 3 colonies. Assuming constancy

of survival over time for all 3 colonies, but let the survival differ among the colonies: for colony 1, 0.65,

for colony 2, survival is 10% higher (i.e., 0.715), and in colony 3, survival is 15% higher than in colony

1 (i.e., 0.7475). Thus, colony 3 has a survival probability that is 4.55% higher than colony 2. Please note

the scale – we’re speaking of differences in terms of percentages – not arithmetic differences.

So, forexample, is a 10% difference in survival between colony 1 and colony 2 biologically meaningful?

You need to think carefully about scaling, since a 10% increase in survival from a reference value of 0.5

(to 0.55) is different (arithmetically) than a 10% increase from a reference value of (say) 0.7 (to 0.77).

The arithmetic difference is 0.05 in the first case, and 0.07 in the second case.

However, the effect size we’re working with (as in the preceding example) is on the ‘real’ scale – it is

not proportional (or, in terms of percent differences). So, for the present example, the effect (difference)

between colony 1 and colony 2 is (0.715−0.650) = 0.065,between colony 1 and colony 3 is (0.7475−0.65) =
0.0975, and between colony 2 and colony 3 is (0.7475 − 0.715) = 0.0325. We set ? = 0.75, and released

500 individuals on each occasion, for 8 occasions.

Let’s see if we can derive estimates for the effect sizes. We’ll save ourselves a few steps by simply going

ahead and fitting the true model, which is {!2>;>=H ?·}. If we do this using the PIM chart approach (the

quickest way to fit this model), we get estimates of survival of 0.6600 for colony 1, 0.7211 for colony 2,

and 0.7447 for colony 3, which are all fairly close to the ‘true’ values specified in the simulation. So, if we

wanted to quickly derive estimates of the effect size, we have to do no more than pull out our calculator,

and take the pair-wise differences among these 3 values: so the effect size between colony 1 and colony

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 74

2 is (0.7211−0.6600) = 0.0611, between colony 1 and colony 3 is (0.7447−0.6600) = 0.0847, and between

colony 2 and colony 3 is (0.7447 − 0.7211) = 0.0236. Again, these are all close to the ‘true’ differences

expected given the values using in the simulations.

How would we get these estimates in a more ‘elegant’ fashion (i.e., other than by simply calculating

the arithmetic difference)? Well, first, we need to specify the model using a design matrix. But, as we’ve

seen earlier, there are a number of ways in which such a design matrix could be constructed. In this

case, we’re interested in looking at the magnitude of differences among levels of an effect. This is most

easily done using an intercept-based model (remember the preceding example where the effect size

was measured as the relative difference between the intercept term and the colony factor term in the

linear model).

In this example, we have 3 levels of the ‘colony’ effect, so we need 2 columns of dummy variables to

code for this. Thus, our linear model would have an intercept term, plus 2 other terms to specify the

colony. This much should be familiar (given that you’ve made it this far in the chapter). However, how

should you code the different colonies? The following 3 design matrices (for the survival parameter;

for now, we’ll ignore encounter rate) are all equivalent in terms of the ‘results’ (i.e., the colony-specific

estimates of survival), but have different interpretations:

�1 �2 �3 �1 �2 �3 �1 �2 �3

1 0 0 1 1 0 1 1 0

1 1 0 1 0 0 1 0 1

1 0 1 1 0 1 1 0 0

The differences among these design matrices have to do with what colony is used as the ‘reference’

or ‘control’ colony. In the left-most matrix, the design matrix corresponds to a coding scheme wherein if

both �2 and �3 are 0, then the intercept corresponds to colony 1. Why? Well, here you need to remember

that in the .INP file, colony 1 was the first group, colony 2 was the second group, and colony 3 was the

third group. In effect, each row in the design matrix corresponds to each of the different colonies. Thus,

if both �2 and �3 are 0, then the intercept corresponds to colony 1, and as such, both colony 2 and colony

3 are then estimated ‘relative’ to colony 1 (remember the basic structure of the linear model: intercept +

effect terms). Thus, in this case, colony 1 (given by the intercept) is the ‘reference’ colony – in fact, this

sort of design matrix coding is often referred to as ‘reference cell’ coding, since whichever level of a

given treatment is coded by ‘all zeros’ is the ‘reference’ (or control) level of the treatment. Got it? If so,

then you should see that for the middle matrix, where the row representing colony 2 (the second row)

is the reference colony. Finally, in the right-most matrix, colony 3 is the reference colony. Make sure

you see this. Note that there is an interaction of the design matrices, and the order in which groups are

presented in the .INP file.

Why do we care in this case? We care because the effect size in the linear model is calculated relative

to the reference level – in this example, relative to the reference colony. Let’s see how this works. We’ll

start by fitting the data to our model, using a design matrix with colony 1 designated as the reference

colony (i.e., making use of the structure in the left-most of the 3 example matrices noted above).

Since by now you can probably do this fairly easily,we’ll jump right to the ‘results’. Using the logit link

(the default link whenever the design matrix is modified from the identity matrix), the ‘beta’ estimates

are: �̂1 = 0.6635, �̂2 = 0.2863, and �̂3 = 0.4070. The signs of the estimates indicate that the ‘effect’ for

colony 2 and colony 3 are both positive with respect to colony 1 (the reference colony given our design

matrix). Thus, the estimate of survival for both colony 2 and colony 3 are both expected to be bigger

than for colony 1 (which is exactly what we expect).

What about the estimates of effect size? Well, here, we need to be somewhat careful. First, recall that

if both �2 and �3 are 0, then the intercept refers to colony 1. Thus, the effect size between colony 2 and

Chapter 6. Adding constraints: MARK and linear models

6.13. Linear models and ‘effect size’: a test of your understanding. . . 6 - 75

colony 1 is ‘colony 2’ - ‘colony 1’ = (�1 + �2) − (�1). Why does (�1 + �2) correspond to colony 2? Note

that there is no �3 term – indicating that �3 = 0. Thus, if �3 = 0, but both �1 and �2 are not 0, then this

refers to colony 2.

OK,so the estimate of the effect size for the difference between colony 2 andcolony 1,back-transformed

from the logit scale, is

4 �̂1+�̂2

1 + 4 �̂1+�̂2

− 4 �̂1

1 + 4 �̂1

= (0.7211 − 0.6600)

= 0.0610,

which is precisely what we calculated ‘by hand’ from the real estimates of survival for both colonies.

We could do the same thing to calculate the difference between colony 1 and colony 3 (try it as a test of

your understanding – the effect size (difference) should be 0.0942).

But, what about the difference between colony 2 and colony 3? Well, there are a couple of approaches.

First, you could change the design matrix, setting colony 2 or colony 3 as the reference, and then using

the same approach as just described, except that you have a different reference colony.

But, in fact, you don’t need to go to all that trouble; simply remember that colony 2 is (�1 + �2) and

that colony 3 is (�1 + �3). Thus, the difference between colony 2 and colony 3 is

4 �̂1+�̂2

1 + 4 �̂1+�̂2

− 4 �̂1+�̂3

1 + 4 �̂1+�̂3

= (0.2553 − 0.2789)

= −0.0236.

So, estimated survival for colony 2 is −0.0236 lower than estimated survival for colony 3 – exactly

what we ‘calculated by hand’ using the real estimates of survival for colonies 2 and 3. So, obviously, you

can get the estimate of ‘effect size’ right from the ‘real estimates’, without going through all the effort

of getting the � estimates, and back-transforming the equation (as we have done here).

But, what about the SE for the estimates of effect size? Again, since we’re dealing with the variance (or

SE) of a difference (in this case, between any pair of colonies), we simply output the variance-covariance

values for the real estimates. For this example, the variance for �1 is 0.00004, for �2 is 0.00003, and for �3

is 0.00003. Since each of the colonies is ‘independent’ of each other, we don’t anticipate any sampling

covariance – this is what we see: Cov(colony 1, colony 2) = Cov(colony 1, colony 3) = Cov(colony 2,

colony 3) = 0. Thus, given the variances, the SE for the difference between colony 1 and colony 2 (for

example) is

√
(0.00004 + 0.00003 − 0) = 0.0084.

And thus, the approximate 95% CI for the effect (difference) between colony 1 and colony 2 is

[0.0442, 0.0778]. In fact, if you fit these data using the identity link, you’ll see that this estimated SE

matches that given by the identity link almost exactly (remember – while the identity link is generates

estimates of the effect size and the SE directly on the normal [0, 1] probability scale, not all data sets can

be fit using the identity link – usually due to convergence issues. In such cases, a transformation – like

a logit or sin transform – is required).

So, we see that we can fairly easily come up with estimates of the effect size, and the SE of these

estimates. We leave it to you to tackle the more difficult (at least conceptually) question of what

constitutes a ‘biologically meaningful’ effect size. However, that ’debate’ notwithstanding, we suggest

that you routinely consider – and report – effect size where possible.

Chapter 6. Adding constraints: MARK and linear models

6.13.1. Linear models: # estimates and odds ratios 6 - 76

6.13.1. Linear models: # estimates and odds ratios

The � terms in the linear model are interpretable as the natural log of the odds ratios. The odds of

‘success’ (e.g., survival, movement) is the ratio of the probability of ‘success’ (say, �, where � is some

[0, 1] bounded parameter) to the probability of ‘failure’ (given by the complement, 1 − �). Note we

assume binary states – success or failure (live or die, move or stay...).

In other words, the ‘log-odds of success’ is given by

ln

(
�

1 − �

)
,

which you should by now recognize is the logit transform of �.‗

The log-odds ratio between (say) two levels of some classification (treatment) variable, would be

ln

(
�1/

(
1 − �1

)
�2/

(
1 − �2

)
)
.

As written, we see that the odds ratio is a way of comparing whether the probability of a certain event

is the same for two groups. A log-odds ratio of 0 implies that the event is equally likely in both groups.

A log-odds ratio > 0 implies that the event is more likely in the first group. Conversely, a log-odds ratio

< 0 implies that the event is more likely in the second group.

Consider the following example – males and females marked with a radio-telemetry device, which

allows us to know the fate of the marked individual with certainty (known-fate analysis is covered in

detail in chapter 17). Suppose we mark 60 males, and 45 females. Over the sampling interval, 9 males

and 11 females died. Thus, the estimated survival for males is (̂< = (51/60) = 0.85, and for females is

(̂ 5 = (34/45) = 0.756, with corresponding log-odds of a male surviving the interval is ln(0.85/0.15) =
1.735 (i.e., the odds of a male surviving the interval is 1.735 to 1), with the log-odds of a female surviving

the interval given as ln(0.756/0.244) = 1.131.

The difference in the odds ratio of survival between the two sexes is

ln

(
(̂</

(
1 − (̂<

)
(̂ 5 /

(
1 − (̂ 5

)
)
= ln

(
0.85/0.15

0.756/0.244

)

= ln(1.829)
= 0.604

Since the log-odds ratio is > 0, then the odds of survival is greater for males than for females.

OK,fine,buthow do log-odds ratios connect to the � estimates in a linearmodel? Let’s revisit the ‘good

colony’ versus ‘poor colony’ analysis we introduced earlier in this section. Recall that we simulated data

where survival in the ‘good’ colony was 0.88, and 0.8 in the ‘poor’ colony (a 10% difference). Assuming a

time-invariantmodel (whichwas the true modelunderwhich the data were simulated),this corresponds

to an expected log-odds of survival in the ‘good’ colony of ln(0.88/0.12) = 1.992, and an expected log-odds

of survival in the ‘poor’ colony of ln(0.80/0.20) = 1.386.

Recall that we fit the following linear model to those simulated data:

logit(!) = �1 + �2(COLONY).

‗ In fact, the logit transform is so named because it transforms probabilities into log odds: log odds → logit; ‘log it’.

Chapter 6. Adding constraints: MARK and linear models

6.13.1. Linear models: # estimates and odds ratios 6 - 77

The actual estimates for �̂1 and �̂2 were 1.3234 and 0.6157, respectively. Since �1 = (poor), then the

estimated log-odds for survival in the ‘poor’ colony is simply 1.3234 (remember, this parameter is

estimated on the logit scale), which is fairly close to the expected value of 1.386. For the ‘good’ colony,

the estimated log-odds ratio for survival is (�̂1 + �̂2) = (1.3234 + 0.6157) = 1.9391, which again is quite

close to the expected value of 1.992.

Final step – the expected log-odds difference between the two colonies is ln[(0.88/0.12)/(0.80/0.20)] =
ln(1.833) = 0.606 – meaning, that for a unit change in ‘colony’ (whatever that might actually mean – here

it means ‘poor’ to ‘good’), the log-odds of survival increases by 0.606 (which when back-transformed

from the log scale, means a change in the odds of survival of 1.833). Since �1 = (poor), and �1+ �2 =

(poor + effect of good), then �2 is the effect of the ‘good’ colony. Notice that �̂2 = 0.6157, which is close

to the expected log-odds ratio of 0.606.

Coincidence? No! The natural log of the odds ratio between the ‘good’ and ‘poor’ colonies is a measure

of the difference between the two colonies – i.e., the effect size. Since the log-odds ratio in this example

is >0, we conclude that the event (survival) is more likely in the ‘good’ colony (numerator) than in the

‘poor’ colony (denominator).

It can be helpful to remember that we can easily shift between ‘odds’ and ‘probability’. Go back to the

telemetry survival example introduced earlier. For males, we observed 51 individuals surviving over an

interval out of 60 released at the start of the interval. Thus, (̂< = (51/60) = 0.85, while the log-odds of a

male surviving the interval is ln(0.85/0.15) = 1.735 (i.e., the log-odds of a male surviving the interval is

1.735 to 1 – when back-transformed from the log scale, this corresponds to 5.¤6 to 1). So, given the odds

of survival of 5.¤6 : 1, we can transform this into a probability as (5.¤6/(5.¤6 + 1)) = 0.85.

In the preceding examples, we considered effect sizes and odds ratios for discrete levels of a factor

(e.g., ‘good’ versus ‘poor’ colony). What about interpreting � coefficients for continuous covariates? In

fact, there is nothing particularly new to consider – the � estimates give you information about change

in log-odds for a unit change in the particular covariate.

But, what about models with interaction terms? Let’s re-visit the example introduced in section 6.8

– encounter probability of European dippers was hypothesized to vary as a function of the number

of hours of observation in the field, and that the relationship between hours of observation and the

encounter probability might differ between males and females. For our analysis, we used the following

‘fake’ observation data:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

We assumed that survival varied over time, but did not differ between the sexes,!C. For the encounter

probability, we fitted the following linear model:

logit(?8) = �1 + �2(SEX) + �3(HOURS) + �4(SEX.HOURS),

which yielded the following estimates

logit(?̂8) = 1.4115996+ 1.4866142(SEX) + 0.0463413(HOURS) − 0.0783021(SEX.HOURS).

What is of note, here, is the interaction between SEX and HOURS. As shown in the following figure (top

of the next page), the encounter probability decreases with increasing hours of observation for males,

but increases for females (before you start trying to come up with some clever ‘biological explanation’

for this result, remember the observation hours covariate data are ‘fake’).

Chapter 6. Adding constraints: MARK and linear models

6.13.1. Linear models: # estimates and odds ratios 6 - 78

������������	�
����

� � �� �� �� �� �� ��

	
�
�
�
�
�	
�
�	
�
�
�
�
�
�	
��
�
��
�
�
�
�
�
�

����

����

����

����

��	�

��	�

��	�

��	�

���

�
���

What is important to remember about interactions such as shown above is that is makes consideration

of the ‘significance’ of main effects difficult at best – whether encounter probability is higher or lower

for (say) males is a function of the value of the HOURS covariate.

But, suppose you were interested in the odds ratio between the sexes for some specific value of

HOURS. Or, flipped around, suppose you were interested in the change in odds for a given sex, given a

unit change in hours of observation – how would you handle the calculations?

In fact, it really isn’t much more difficult that what we’ve already looked at. First, remember that the

odds ratio reflects change in odds for a unit change in some variable. Let’s consider the case where

we’re interested in a change in odds of detection for a particular sex, given a unit change in the number

of hours of observation.

Recall that the log-odds ratio is given as

ln

(
�1/

(
1 − �1

)
�2/

(
1 − �2

)) .
We’ll modify this expression slightly, using ?(H) to indicate the probability of encounter, ?, as a

function of the number of hours of observation, H. Let ?(H) be the probability of encounter given

observation hours H, and let ?(H+1) be the probability of encounter given (H+1) hours of observation

(i.e., a 1 unit change in HOURS).

Thus, we can write:

ln

(
?(H+1)/

(
1 − ?(H+1)

)
?(H)/

(
1 − ?(H)

)
)
.

Next, recall that the log-odds for some parameter � is simply the logit transform for �:

ln

(
�

1 − �

)
.

Thus,we can write out the numerator and denominator terms of the log-odds ratio expression (above)

Chapter 6. Adding constraints: MARK and linear models

6.13.1. Linear models: # estimates and odds ratios 6 - 79

in terms of the linear model corresponding to both.

In other words, for the numerator,

ln
(
?(H+1)/

(
1 − ?(H+1)

))
= �1 + �2

(
SEX

)
+ �3

(
H+1

)
+ �4

(
SEX.(H+1)

)
,

while for the denominator

ln
(
?(H)/

(
1 − ?(H)

))
= �1 + �2

(
SEX

)
+ �3

(
H
)
+ �4

(
SEX.H

)
.

Remembering that we can write the log of a fraction as the difference of the log of the numerator and

denominator,

ln

(
?(H+1)/

(
1 − ?(H+1)

)
?(H)/

(
1 − ?(H)

)
)
= ln

[
?(H+1)/

(
1 − ?(H+1)

)]
− ln

[
?(H)/

(
1 − ?(H)

)]
,

then given the linear model expressions for the numerator and denominator (above), we can show (with

a bit of algebra) that the log-odds ratio given a unit change in hours of observation is

ln
[
?(H+1)/

(
1 − ?(H+1)

)]
− ln

[
?(H)/

(
1 − ?(H)

)]
=

[
���1 +✘✘✘✘�2

(
SEX

)
+ �3

(
H+1

)
+ �4

(
SEX.(H+1)

)]
−

[
���1 +✟✟✟✟�2

(
SEX

)
+ �3

(
H
)
+ �4

(
SEX.H

)]
= �3

(
H+1

)
+ �4(SEX.(H+1)) − �3

(
H
)
− �4(SEX.H)

= ✟✟✟�3(H) + �3 +✘✘✘✘✘�4(SEX.H) + �4(SEX) −✟✟✟�3(H) −✘✘✘✘✘�4(SEX.H)

= �3 + �4(SEX)

= 0.0463413− 0.07830219(SEX).

So, for males (SEX=1), the log-odds for the probability of encounter is calculated simply as

0.0463413− 0.07830219(1) = −0.0319608.

Negative log-odds, indicating that the log-odds decrease – slightly – with each unit increase in the

hours of observation, as expected given the figure on p. 76. If we back-transform from the log scale,

4−0.0319608 ≈ 0.969, i.e., the odds of detection of a male with an additional hour of observation are

0.969 : 1, which is less than 1 : 1, so...decreasing odds.

For females, (SEX=0),

0.0463413− 0.07830219(0) = 0.0463413.

In other words, positive log odds, indicating that the log-odds for detecting a female increase – again

slightly – with each unit increase in the hours of observation, consistent with the figure shown on the

previous page.

Finally, if you wanted to express the uncertainty in your estimate of the log-odds, you can do this

relatively easily by applying the Delta method. From the preceding, recall that the function relating the

change in the log-odds of detection with increasing hours of observation, for a given sex, was given as

ln($̂') = ln
[
?(H+1)/

(
1 − ?(H+1)

)]
− ln

[
?(H)/

(
1 − ?(H)

)]
= �̂3 + �̂4(SEX).

Chapter 6. Adding constraints: MARK and linear models

6.13.2. ĉ and effect size: a cautionary note 6 - 80

In other words, the RHS is the sum of 2 correlated random variables, �̂3 and �̂4, where the correlation

structure is determined by the variance-covariance matrix for these 2 parameters (i.e., randomvariables).

Earlier, we showed that the estimated variance of a sum of correlated random variables is given as

B2
� = var(-1) + var(-2) + 2 cov(-1, -2).

So, for the present example,

V̂ar
(
ln($')

)
= V̂ar

(
�̂3

)
+ V̂ar

(
�̂4

)
+ 2 Cov

(
�̂3, �̂4

)
,

where the needed estimates of the parameter variances and covariances can be output directly from

MARK.

begin sidebar

AIC, P-values and effect size – a tautology?

Hmmm...you might suspect that you smell a tautology here (it’s either that, or the aroma of your frying

brain cells). Up until now, we’ve considered the use of AIC as a robust means of model selection – part

of the motivation being to avoid the use (and abuse) of classical ‘P-value’ approaches to doing science.

While there are very good motivations for doing this (see relevant sections of the Burnham &

Anderson text, and any number of other discussions of the issue), one of the motivations was to force

us (biologists, analysts) to focus our attention more on the ‘biological significance’ of the effect size,

rather than on some nominal ‘P-value’. We all know that it is not hard to generate a situation where

we can show ‘statistical significance’ that has no biological meaning (this commonly occurs with very

large data sets). So, we consider the effect size – the absolute magnitude of the difference.

Recall that our purpose is to consider

‘what are the plausible bounds on the true effect size, and are

biologically important effects contained within these bounds?’

The potential problem is with the word ‘plausible’. In theory, we are supposed to decide, a priori,

on what the biologically plausible bounds are. And yet, in practice, to determine whether or not a

calculated effect size falls within those bounds is based on assessing the confidence bounds estimated

for the effect size, relative to the plausibility bounds designated by the scientist.

Herein is the potential tautology – we use ‘biological insight’ to a priori determine what we think

a plausible (or biologically meaningful) effect should be, and yet we typically end up relying on use

of 95% CI to test whether or not the effect size is plausible. And what do we base the 95% CI on? You

got it – a nominal = 0.05 level.

Remember, that it is in part the arbitrariness of selecting the appropriate level which underlies one

of the several criticisms of the ‘P-value’ approach. And yet, we potentially use the same underlying

logic (and, arbitrariness) to derive the 95% CI for the effect size. There is perhaps good reason to

wonder if we’re not engaged in some sort of circular thinking here...stay tuned.

end sidebar

6.13.2. ĉ and effect size: a cautionary note

In the preceding, we illustrate the basic idea (and some of the mechanics) for estimating effect size.

As we noted in Chapter 4, model selection (whether you use an information theoretic approach based

on AIC, or the more traditional approach based on LRT) is conditional on adequate fit of the model

Chapter 6. Adding constraints: MARK and linear models

6.14. Pulling all the steps together: a sequential approach 6 - 81

to the data. Some degree of lack of fit can be accommodated using a quasi-likelihood approach. This

involved estimation of c, perhaps by using a median-2̂, for example. However, one thing which may not

be immediately obvious is the effect that using a quasi-likelihood adjustment has on model selection.

Consider, for example, what adjusting model fit using a 2̂ > 1. One of the things you’ll quickly

notice if you progressively experiment by increasing 2̂ from 1, 1.25, 1.5, and so on, is that as you do so,

the rankings of the models changes. Invariably, as 2̂ increases, models with fewer parameters take on

progressively more support in the data, as indicated by the normalized AIC weights.

This should make some intuitive sense: a large value of 2̂ indicates significant lack of fit of the data to

the general model. As such, increasing 2̂ is analogous to ‘taking a more conservative’ view of the data.

The general model doesn’t fit, so you tend to favor the more parsimonious model. Try it – pick a model

set, and slowly, progressively, try increasing 2̂ from the default of 1. Watch closely to see how the model

weights change, such that (typically) reduced parameter models get increasing amounts of weight.

What is not so intuitive is that changing 2̂ also changes the relative scaling of differences in model

support. In short form, if 2 models differ in normalized AIC weights by some factor x for 2̂ = 1, then this

same difference x is not the same difference if 2̂ > 1; it is less. For example, suppose you have 2 models,

with 2̂ = 1.0,where the difference in relative weight is (say) 2.5 times (in other words, one model has

2.5 times more weight than the other model). At this point, you look at effect size, and interpret the

biological plausibility of this difference, given that one model has 2.5 more support in the data.

However, suppose instead that 2̂ = 1.5, instead of 1. With increasing 2̂, a difference of 2.5 times

support in the data is scaled differently, and must be interpreted differently, than it would be if 2̂ = 1.

Since increasing 2̂ increases the degree of ‘conservatism’ in the analysis, a difference of 2.5 times model

support with 2̂ = 1.5 is ‘less of a difference’ than the same 2.5 times difference would be with 2̂ = 1.0.

Confused? Fair enough – it is rather non-intuitive, at first. Give it some thought. For those who

want all the details, we suggest you have a look at Richard Royall’s 1997 text on ‘Statistical Evidence:

A Likelihood Paradigm’ (a Chapman & Hall publication – part of the Monographs Series on Statistics and

Applied Probability). In short – be a little cautious in how you interpret relative differences in normalized

AIC weights if 2̂ > 1.

6.14. Pulling all the steps together: a sequential approach

In this section, we summarize the basic sequence of steps of building design matrices, and interpreting

the values of the estimate � terms (the ‘slopes’ of the linear model).

Broadly speaking, the sequence involves:

• Step 1: decide which model you want to fit

• Step 2: set up the PIMS for the general model

• Step 3: set up the linear model equation for the model you want to fit

• Step 4: set up the design matrix

• Step 5: confirm the design matrix with the corresponding linear model equations

To illustrate this sequence of steps, we’ll assume we have collected live mark-encounter data from 2

groups, over 4 time periods (i.e., 5 sampling occasions). To simplify the presentation somewhat, we’ll

focus only on the survival parameter ! (the same basic idea holds for the encounter parameter ? – and

any other parameters you might have in your model – equally as well).

Chapter 6. Adding constraints: MARK and linear models

6.14. Pulling all the steps together: a sequential approach 6 - 82

Step 1: decide which model you want to fit.

For now, let’s assume the model we’re interested in is model {!6} – in other words, a model where

survival varies only as a function of the GROUP, but not TIME.

Step 2: set up PIMs for general model

For a starting model {!6∗C} (i.e., a model with a full interaction of GROUP and TIME) our PIMs would

look like

1 2 3 4 5 6 7 8

2 3 4 6 7 8

3 4 7 8

group 1 4 group 2 8

Step 3: set up the linear model equation for model you want to fit

We want to fit model {!6}, which we write in our symbolic linear model notation as

logit(!) = �1 + �2(GROUP).

Step 4: set up the design matrix

In the following, the rows of the table correspond to the PIM index values for each time interval. The

design matrix corresponding to logit(!) = �1 + �2(GROUP) is given by the columns labeled �1 and �2.

INTCP GROUP

PIM Param �1 �2

group 1 1 !61,1 1 1

2 !61,2 1 1

3 !61,3 1 1

4 !61,4 1 1

group 2 5 !62,1 1 0

6 !62,2 1 0

7 !62,3 1 0

8 !62,4 1 0

Note that as written, we have specified GROUP 2 to be the reference group (i.e., if �2 = 0, then the

intercept, �1, corresponds to GROUP 2).

Step 5: confirm the design matrix with the equations

Here (top of the next page), we simply take the dummy coding for each GROUP and TIME combination,

and substitute into the linear model equation logit(!) = �1 + �2(GROUP).

Chapter 6. Adding constraints: MARK and linear models

6.14. Pulling all the steps together: a sequential approach 6 - 83

group 1 logit(!61,1) = �1(1) + �2(1) logit(!61,1) = �1 + �2

logit(!61,2) = �1(1) + �2(1) logit(!61,2) = �1 + �2

logit(!61,3) = �1(1) + �2(1) logit(!61,3) = �1 + �2

logit(!61,4) = �1(1) + �2(1) logit(!61,4) = �1 + �2

group 2 logit(!62,1) = �1(1) + �2(0) logit(!62,1) = �1

logit(!62,2) = �1(1) + �2(0) logit(!62,2) = �1

logit(!62,3) = �1(1) + �2(0) logit(!62,3) = �1

logit(!62,4) = �1(1) + �2(0) logit(!62,4) = �1

On the right hand side we see the result of substituting in the dummy variables. We see clearly that

GROUP 2 is coded by the intercept: thus, �2 represents the difference (‘effect size’) between GROUP 2 and

GROUP 1.

Step 6: plot a graph to illustrate the model

Plotting a graph of the model is a very useful way to visualize (and thus, truly understand) the

structure of the model, and what the individual �8 terms represent.

For this model, the graph of the � terms is shown below. Note that the meaning of the �8 terms is

explicitly represented, as is the effect size (which, in this case, is the value of �2, which is the difference

between the two horizontal lines on the logit scale):

Got it? Well, let’s test our understanding by trying several more scenarios.

Let’s take the same basic data model (2 groups, 5 occasions), and now consider fitting model !C –

TIME variation in !, but no GROUP effect (i.e., essentially the opposite of the model we just considered).

Chapter 6. Adding constraints: MARK and linear models

6.14. Pulling all the steps together: a sequential approach 6 - 84

Step 1: decide which model you want to fit.

As noted, let’s consider model {!C} – in other words, a model where survival varies only as a function

of the TIME, but not GROUP.

Step 2: set up PIMs for general model

As above, our general model would still be {!6∗C} (i.e., a model with a full interaction of GROUP and

TIME). For this model, our PIMs would look like the following:

1 2 3 4 5 6 7 8

2 3 4 6 7 8

3 4 7 8

group 1 4 group 2 8

Step 3: set up the linear model equation for model you want to fit

We want to fit model {!C}, which we write in our symbolic linear model notation as

logit(!) = �1 + �2(C1) + �3(C2) + �4(C3).

Now, make sure you understand why this is the appropriate linear model. We have 5 sampling

occasions, which means 4 intervals. To uniquely code the intervals, we need (= − 1) = (4 − 1) = 3

columns of dummy variables, or (more specifically) 3 �8 ,8≠1 terms in addition to the intercept term �1.

Step 4: set up the design matrix

In the following table the rows correspond to the PIM index values for each time interval. The design

matrix corresponding to logit(!) = �1 + �2(C1) + �3(C2) + �4(C3) is given by the columns labeled �1 → �4.

Note that as written, we have specified TIME 4 (i.e., the intervals between sampling occasion 4 and 5) to

be the reference group (i.e., if �2 = �3 = �4 = 0, then the intercept – �1 – corresponds to TIME 4).

INTCPT TIME1 TIME2 TIME3

PIM Param �1 �2 �3 �4

group 1 1 !61,1 1 1 0 0

2 !61,2 1 0 1 0

3 !61,3 1 0 0 1

4 !61,4 1 0 0 0

group 2 5 !62,1 1 1 0 0

6 !62,2 1 0 1 0

7 !62,3 1 0 0 1

8 !62,4 1 0 0 0

Step 5: confirm the design matrix with the equations

Here, we simply take the dummy coding for each GROUP and TIME combination, and substitute into

the linear model equation logit(!) = �1 + �2(C1) + �3(C2) + �4(C3).

Chapter 6. Adding constraints: MARK and linear models

6.14. Pulling all the steps together: a sequential approach 6 - 85

group 1 logit(!61,1) = �1(1) + �2(1) + �3(0) + �4(0) logit(!61,1) = �1 + �2

logit(!61,2) = �1(1) + �2(0) + �3(1) + �4(0) logit(!61,2) = �1 + �3

logit(!61,3) = �1(1) + �2(0) + �3(0) + �4(1) logit(!61,3) = �1 + �4

logit(!61,4) = �1(1) + �2(0) + �3(0) + �4(0) logit(!61,4) = �1

group 2 logit(!62,1) = �1(1) + �2(1) + �3(0) + �4(0) logit(!62,1) = �1 + �2

logit(!62,2) = �1(1) + �2(0) + �3(1) + �4(0) logit(!62,2) = �1 + �3

logit(!62,3) = �1(1) + �2(0) + �3(0) + �4(1) logit(!62,3) = �1 + �4

logit(!62,4) = �1(1) + �2(0) + �3(0) + �4(0) logit(!62,4) = �1

On the right hand side we see the result of substituting in the dummy variables. We see clearly that

TIME 4 is coded by the intercept: thus, �2 → �4 represents the various differences (‘effect sizes’) between

the different TIME intervals, and the final TIME interval (TIME 4).

Step 6: plot a graph to illustrate the model

Note (in the figure, top of the next page) that the meaning of the �8 terms is explicitly represented,

as are the effect sizes (which, in this case, is the value of the difference
(
�1 + �8≠1

)
and �1.

Now, for a final test, to really make sure you’ve got it. You’ve probably anticipated model {!6∗C}. Here

it is!

Step 1: decide which model you want to fit.

For our final example, let’s consider model {!6∗C} – in other words, a model where survival varies

as a function of the both GROUP and TIME, with full interaction between the two.

Chapter 6. Adding constraints: MARK and linear models

6.14. Pulling all the steps together: a sequential approach 6 - 86

Step 2: set up PIMs for general model

Clearly, our general model must be {!6∗C} (i.e., a model with a full interaction of GROUP and TIME),

since this is in fact the model we’re trying to fit! For this model, our PIMs are, again

1 2 3 4 5 6 7 8

2 3 4 6 7 8

3 4 7 8

group 1 4 group 2 8

Step 3: set up the linear model equation for model you want to fit

We want to fit model {!6∗C}, which we write in our symbolic linear model notation as

logit(!) = �1 + �2(GROUP) + �3(t1) + �4(t2) + �5(t3)
+ �6(GROUP.t1) + �7(GROUP.t2) + �8(GROUP.t3).

Now, make sure you understand why this is the appropriate linear model. We have 2 groups, and

5 sampling occasions, which means 4 intervals. To uniquely code the for intervals, we need (= − 1) =
(4− 1) = 3 columns of dummy variables for TIME, (= − 1) = (2− 1) = 1 column for GROUP, and (3× 1) = 3

columns for the interaction of GROUP.TIME. So, a total of (1 + 3 + 1 + 3) = 8 columns (�8 terms).

Step 4: set up the design matrix

In the following, the rows of the table correspond to the PIM index values for each time interval. The

design matrix corresponding to our linear model (above) is given by the columns labeled �1 → �8.

Note that as written, we have specified GROUP 2 during TIME 4 to be the reference group and time (i.e.,

if �2 = �3 = . . . �8 = 0, then the intercept – �1 - corresponds to GROUP 2 during TIME 4).

INTCPT GROUP TIME1 TIME2 TIME3 G.T1 G.T2 G.T3

PIM Param �1 �2 �3 �4 �5 �6 �7 �8

group 1 1 !61,1 1 1 1 0 0 1 0 0

2 !61,2 1 1 0 1 0 0 1 0

3 !61,3 1 1 0 0 1 0 0 1

4 !61,4 1 1 0 0 0 0 0 0

group 2 5 !62,1 1 0 1 0 0 0 0 0

6 !62,2 1 0 0 1 0 0 0 0

7 !62,3 1 0 0 0 1 0 0 0

8 !62,4 1 0 0 0 0 0 0 0

Step 5: confirm the design matrix with the equations

Here, we simply take the dummy coding for each GROUP and TIME combination, and substitute into

the linear model equation, which again is

logit(!) = �1 + �2(GROUP) + �3(t1) + �4(t2) + �5(t3)
+ �6(GROUP.t1) + �7(GROUP.t2) + �8(GROUP.t3).

Chapter 6. Adding constraints: MARK and linear models

6.14. Pulling all the steps together: a sequential approach 6 - 87

gr 1 logit(!61,1) = �1(1) + �2(1) + �3(1) + �4(0) + �5(0) + �6(1) + �8(0) + �8(0) logit(!61,1) = �1 + �2 + �3 + �6

logit(!61,2) = �1(1) + �2(1) + �3(0) + �4(1) + �5(0) + �6(0) + �7(1) + �8(0) logit(!61,2) = �1 + �2 + �4 + �7

logit(!61,3) = �1(1) + �2(1) + �3(0) + �4(0) + �5(1) + �6(1) + �7(0) + �8(1) logit(!61,3) = �1 + �2 + �5 + �8

logit(!61,4) = �1(1) + �2(1) + �3(0) + �4(0) + �5(0) + �6(0) + �7(0) + �8(0) logit(!61,4) = �1 + �2

gr 2 logit(!62,1) = �1(1) + �2(0) + �3(1) + �4(0) + �5(0) + �6(0) + �7(0) + �8(0) logit(!62,1) = �1 + �3

logit(!62,2) = �1(1) + �2(1) + �3(0) + �4(1) + �5(0) + �6(0) + �7(0) + �8(0) logit(!62,2) = �1 + �4

logit(!62,3) = �1(1) + �2(1) + �3(0) + �4(0) + �5(1) + �6(1) + �7(0) + �8(0) logit(!62,3) = �1 + �5

logit(!62,4) = �1(1) + �2(1) + �3(0) + �4(0) + �5(0) + �6(0) + �7(0) + �8(0) logit(!62,4) = �1

On the right hand side we see the result of substituting in the dummy variables. We see clearly that

GROUP 2 at TIME 4 is coded by the intercept: thus, �2 → �8 represents the various differences (‘effect

sizes’) between the different TIME and GROUP combinations intervals, and GROUP 2 during TIME 4.

Step 6: plot a graph to illustrate the model

The figure for model {!6∗C} is shown below – pay close attention to all the interactions, and effects.

Spend enough time here so that each of the elements of the figure make some sense to you.

Got it? Hopefully you’ve now got the basic idea.

Going through some version of this sequence for any model you might want to build will build

understanding,and confidence. We demonstrate this is the next section,where we apply it to ‘alternative

design matrix’ approaches for additive models.

Chapter 6. Adding constraints: MARK and linear models

6.14.1. Application – alternative design matrices for additive models 6 - 88

6.14.1. Application – alternative design matrices for additive models

Back in section 6.2, we introduced the idea of the design matrix (DM), and suggested that there are

frequently many different forms of the DM that are equivalent, in terms of fit of the model to the data,

and the real parameters, but where the structure resulted in different interpretations of the � parameters.

For example, the � estimates from the following two design matrices have different interpretations

(although they yield identical back-transformed real parameter estimates):

Xoffset =

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

Xidentity =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

In the first example, Xoffset, �1 represents the ‘reference’ (intercept), which in this case, corresponds

to the final parameter estimate. The other parameters, �2 → �4, represent the ‘offset’ (difference, effect)

between the parameter value for that interval or occasion, and the reference. For matrix Xidentity, there is

no reference – each � estimate represents the parameter for that interval or occasion. The real parameter

estimates are the same using either DM, but the interpretation of the � parameters differs.

While most of the examples in this chapter have used ‘offset coding’, with a single intercept against

which everything else is ‘compared’, it is often useful to re-structure the DM, either to generate �

parameters which have a particular interpretation of interest, or, potentially, some utility given their

structure. We’ll demonstrate this basic idea by re-structuring the DM for an additive model (additive

models were introduced earlier, in section 6.12). Here we assume that we have a simple CJS analysis, 2

groups, with 5 sampling occasions (4 intervals).

The following DM shows standard ‘intercept-offset’ coding for an additive model for (say) ! = grp+
time:

The corresponding linear model is

! = �1 + �2(grp) + �3(time1) + �4(time2) + �5(time3).

As in the preceding section, we use the plot shown at the top of the next page to illustrate the

relationship between the � parameters in the linear model. As shown in the figure, each parameter

(i.e., at each combination of grp and time) is estimated by the intercept (�1) plus the ‘effect’ of one or

more of the other � parameters. Parameter �2 is the ‘additive effect size’ – the difference between the 2

groups.

Chapter 6. Adding constraints: MARK and linear models

6.14.1. Application – alternative design matrices for additive models 6 - 89

� � � �

�

�
��
��

���

���

���

���

��

���

�������

�������

��

��	��

��	�
��	����	��

��	��	�

��	��	��

��	��	��

Now, instead of intercept-offset coding, let’s consider two other parameterizations. First, instead of

a common intercept, let’s consider the case where we might be interested in each group having it’s

own intercept (representing, say, the final time interval for that group), with each of the time intervals

representing a deviation (offset) from that reference interval, for that group.

The design matrix corresponding to this approach would be:

The plot at the top of the next page shows the relationship between the � parameters in the linear

model – in this case, each parameter is the group-specific intercept (�1 for group 1, �2 for group 2), plus

the ‘effect’ of one or more of the other � parameters as time-specific deviation for that group, using

the final interval as the ‘reference’. Make sure you see the connection between this diagram and the

corresponding DM (above).

You might wonder about the motivation for using such a DM. As we’ll see in later chapters, it is

occasionally useful to create a set of parameters that correspond to groups (grp) specified in your

analysis (classification levels, factors). This happens naturally for time, which by default is modeled

as a fixed effect factor, but allowing each grp to have its own intercept can be useful. It also means

that �1 and �2 now represent the parameter value for each group separately, not as referenced to some

common intercept. In effect, this is analogous to creating an ‘identity matrix’ structure, but for only one

class of parameters (in this case, grp) – time still has the ‘offset’ structure, but now it is ‘offset’ from the

Chapter 6. Adding constraints: MARK and linear models

6.14.1. Application – alternative design matrices for additive models 6 - 90

�������	

� � � �

�

�
��
��

���

���

���

���

��

���

�������

�������

��

����	�

��	��

��	��

��	�

��	��

��	��

group-specific intercept.

We can illustrate this idea more clearly by next considering the case where we want an identity-matrix

structure for time, with each of the � parameters representing a deviation from that reference interval,

for that group.

The design matrix achieving this objective would be:

Again, we use the plot shown at the top of the next page to show the relationship between the �

parameters in the linear model – in this case, parameters �2 → �5 represent each of the 4 time intervals,

respectively, whereas �1 is the offset due to being in group 1 (here, we use group 2 as the reference).

Each of these 3 different DM would, if applied to the same data, yield identical real parameter

estimates. However, the meaning/interpretation of the � parameters is different. And, in the second two

examples, we’ve created DM where one of the parameters is ‘offset-coded’, while the other is ‘identity’

coded. These different codings can be useful for some purposes.

Chapter 6. Adding constraints: MARK and linear models

6.14.1. Application – alternative design matrices for additive models 6 - 91

�������	

� � � �

�

�
��
��

���

���

���

���

��

���

�������

�������

�	

��
�	

������

��
��

��
��

��
��

begin sidebar

Design matrix coding and parameter estimability

At various points in this chapter, including in the preceding section, we’ve noted that there are any

number of ways to code the design matrix, each yielding equivalent estimates, but differing in how

the individual � terms of the linear model are interpreted.

However, sometimes, there are some subtle steps to constructing a design matrix which are well

worth keeping in mind. For example, consider the basic structure for the encounter part of the design

matrix – up until now, we’ve used a reference coding scheme where we usually make the final element

of the matrix the reference element.

For example, if we had the following matrix for (say) !C for a design with 6 time intervals

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0

we’re specifying that the last time interval is used as the reference (such that the intercept �1 is the

estimate of survival (on some scale) for this interval, and all the other � terms represent deviations

from this reference.

But, suppose instead we had constructed our design matrix using

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

such that the estimate of survival over the first interval is now the reference value. We know from

everything we’ve covered up until now that changing the reference coding scheme used in the design

matrix will change the interpretation of the �8 terms, but does it change anything else?

Chapter 6. Adding constraints: MARK and linear models

6.14.1. Application – alternative design matrices for additive models 6 - 92

The general answer is, ‘no’ – it shouldn’t. At least, most of the time. In general, the model deviance

(fit) and the reconstituted estimates should not be influenced by the choice of the coding scheme used

in the design matrix. But, there are some somewhat ‘pathological’ cases where it might. We’ll have a

quick look at one example, if only to prove a point.

Consider the European dipper (yes, again) – this time, using the input file containing data from both

males and females (ed.inp). We fit model {!6∗C ?6∗C} to these data, using the design matrix shown

below (which you’ll recall is the default full ‘time × group’ design matrix in MARK):

Look closely at the coding. Note that we’ve made the terminal time periods the reference cell. This

is the default in MARK (which you can change by selecting the appropriate option under ‘File |

Preferences’).

OK – so what’s wrong with that? Well, perhaps nothing obvious, but what do we know about this

analysis: 2 groups, 7 occasions, so 24 columns in the design matrix (as shown). But, how many of the

parameters (columns in the DM) are estimable?

Well, if you remember when we first introduced this data set, you might recall that the final !6?7
values for both sexes aren’t separately identifiable (the so-called ‘beta’ parameters). So, (24 − 2) = 22

estimable parameters. But, if you run this model, using this design matrix and the logit link function,

MARK reports only 21 parameters. Why? Because with the logit link, MARK was unable to estimate

the second encounter probability for males (?<,3).

The relevant sections of the full output for this model are shown below:

Chapter 6. Adding constraints: MARK and linear models

6.14.1. Application – alternative design matrices for additive models 6 - 93

We see clearly that from the conditional S-vector that 3 parameters are below the threshold (24−3 = 21

estimated parameters, as indicated).

So, what does this have to do with how we coded the design matrix? Well, think about what this

design matrix does – it makes the final time step the reference. And this might be a problem...because?

Because the final time step involves a non-identifiable � term! So, we’re using for our reference a

parameter which can’t be separately identified anyway! Perhaps this isn’t such a good idea.

What happens if instead we make the first time step the reference, for both parameters? [in fact,

MARK has a ‘File | Preferences’ option to do this for you by default, for any new design matrix

you create.]

This change in coding is shown in the following design matrix:

Look closely, and compare it to the default coding (on the preceding page). Make sure you see the

differences.

Now, does this subtle change in what we use for the reference change our results? In this case,

yes – if you fit a model using this design matrix to the dipper data, MARK will correctly report 22

parameters. The offending parameter ?<,3 is now estimated and counted properly.

Here is the conditional S-vector for this modified (re-coded) model:

Chapter 6. Adding constraints: MARK and linear models

6.15. A final example: mean values 6 - 94

Note that in the results browser (below), the two models have exactly the same model deviance –

the two models have the identical likelihood and deviance values, but different conditional S-vectors –

leading MARK to conclude they have a different number of estimable parameters, which they clearly

should not (since they are equivalent models).

While we selected this ‘pathological’ example intentionally, the general point we want to make is

that you probably should not make a non-identifiable parameter the reference cell in your design matrix. Doing

so can have unintended results, as this example shows. As noted earlier (-sidebar-, p. 18) you can set

a preference in MARK to use the first row (i.e., first interval or occasion) as the reference by default.

end sidebar

6.15. A final example: mean values

A final example to emphasize the power and flexibility of design matrices in MARK. Suppose you’re

working on a final report for some study of some organism. In your report, you’ve been asked to report

the ‘average’ survival value over the years of the study. Now, if a model where apparent survival is

constant over time (i.e., !·) fits the data much better than the model where survival is allowed to vary

over time (i.e., !C), then it might seem reasonable to simply report the constant survival estimate as

the mean. However, suppose instead that the model with time-specific variation in survival is strongly

supported – what do you do then? Well, the obvious answer might be to simply add up the individual

time-specific estimates, and take the arithmetic average. Is this correct? What about the SE for this

average?

In fact, the mostdirect (andrigorous) way to estimate the mean survivalover time,and the appropriate

standard error, is to fit a model with an appropriately coded design matrix. To show how this might

be accomplished, assume a design matrix with 4 estimates of survival. The default in MARK for a

time-specific estimate of survival would be a (4 × 4) identity matrix. Recall that for the identity matrix,

each row corresponds to a real parameter, and each column corresponds to a � parameter. Thus, each �

parameter represents a treatment estimate (where in this case, each level of the ‘treatment’ corresponds

to a different time interval). Alternatively, we could use the intercept-based ‘reference’ coding we’ve

used throughout most of this chapter – for this example, with 4 intervals, we would use

X =

1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0

.

Now recall from earlier in the chapter we saw that there was yet another way we could modify the

design matrix:

X =

1 1 0 0

1 0 1 0

1 0 0 1

1 -1 -1 -1

.

Chapter 6. Adding constraints: MARK and linear models

6.15. A final example: mean values 6 - 95

With this design matrix, the back-transformed �1 provides the mean of the survival estimates. The

estimates of �2 through �4 provide the time variation around the estimated mean. To see how this works,

compute the mean of the rows of the matrix: [(�1 + �2) + (�1 + �3) + (�1 + �4) + (�1 − �2 − �3 − �4)]/4 =

4�1/4 = �1. Pretty nifty!

Now, to obtain the estimate of mean survival, the estimate of �1 must be transformed using the link

function used for the model. For example, with the logit link, we write

¯̂(=
4 �̂1

1 + 4 �̂1

≡ 1

1 + 4−�̂1

.

So, again we see that by use of the design matrix, we can estimate many things of interest.

begin sidebar

Caution 1: estimating the mean

Now, while the preceding discussion seems fairly straightforward, there is a small little problem

involving ‘bias’. It turns out that estimates of the mean are potentially biased as a result of transforming

back and forth from the non-linear link function. For example, suppose (8 are 0.5, 0.6, 0.7 and 0.8. The

arithmetic mean of these 4 values is 0.65. With the logit link, the transformed values are 0, 0.40547,

0.8473 and 1.38629, respectively, giving an intercept of 0.659765. Back transforming from this value

gives 0.6592, not 0.6500.

Thus, all of the link functions in MARK, except the identity link (the only ‘linear’ link function), will

provide slightly biased estimates of the mean value. (Note: the direction of the bias in the logit link will

vary depending on whether the mean parameter value is above or below 0.5). Because the identity link

is a linear function, estimates of the mean calculated using the identity link will be unbiased; however,

the identity link doesn’t always work. In most cases, standard errors of the estimates will typically

dominate such transformation bias, so that the bias in the back-transformed estimate of the mean is

frequently ignored.

Caution 2: ‘dot’ models and other approaches

You might wonder ‘why not simply fit a time-invariant ‘dot model’ to derive mean values for the vital

rates?’. After all, a ‘dot model’ yields the same value for all intervals.

Unfortunately, this approach, while simple to implement, is not strictly correct. While the estimated

‘mean’ from the ‘dot’ model will be relatively robust (i.e., fairly unbiased), the estimated SE will be

negatively biased wrt to the true process variance – often by a considerable amount. Here is a simple

example – we simulated a data set of live-encounter data (calc_mean.inp), 16 occasions (15 intervals;

250 newly marked individuals released at each occasion), where ‘true survival’ over a given interval

was generated by selecting a random normal deviate drawn from N(0.7, 0.005) (in the generating

model, encounter probability ? was constant; ? = 0.35).

Here is the set (i.e., ‘sample’ from the underlying random distribution) of the 15 parameter values

we used for simulating survival for each of the 15 intervals:

{0.636, 0.615, 0.620, 0.627, 0.644, 0.646, 0.692, 0.701, 0.720, 0.730, 0.733, 0.737, 0.746, 0.790, 0.863}.

Based on these values, the true sample mean survival is (̄ = 0.700, with a sample variance of

�
2
= 0.005, both of which conveniently happen to match the true mean and process variance of the

distribution used to generate the values in the first place (this was intentional).

We’ll consider several different approaches to estimating the mean survival probability: (i) using

the estimate of !̂ from a ‘dot’ model, {(· ?·}, (ii) using the estimates from a design matrix for a {(C ?·}
model constructed such that one of the estimated � terms (the intercept) corresponds directly to

the mean, (iii) a Taylor series approximation known as the ‘Delta method’ (introduced in detail in

Chapter 6. Adding constraints: MARK and linear models

6.15. A final example: mean values 6 - 96

Appendix B), and (iv) a variance components decomposition (the subject of random effects models

and variance components analysis is considered in some detail in Appendix D).

Fitting the ‘true’ (generating) model, {(C ?·}, to the data yielded the following estimates of survival:

The simple arithmetic mean from these estimates was ¯̂(= 0.7045, fairly close to the true sample

mean of (̄ = 0.7. The naïve estimate of the sample variance is 0.00733, somewhat higher than the

true underlying process variation �
2
= 0.005. As discussed in Appendix D, this is because the naïve

estimate includes sampling as well as process variation (and thus will generally be larger than process

variation alone).

If we next fit the data using a simple ‘dot’ model, {(· ?·}, the estimate for survival was ¯̂(= 0.7041,

while the estimated SE of the was (̂�
2
= 0.00605. If we (naïvely) take the square-root of the SE as

our estimate of the variance, we’d come up with a value (0.0778) that would appear to be strongly

positively biased. So, the ‘dot’ model does reasonably well at estimating the mean, but seems to fail

miserably at estimating the correct variance.

Next, we try fitting the data using the PIM for the true model {(C ?·}, using a design matrix

constructed such that one of the estimated � terms (the intercept) correspondsdirectly to the arithmetic

mean (shown below):

Chapter 6. Adding constraints: MARK and linear models

6.15. A final example: mean values 6 - 97

[This particular DM is sometimes referred to as a ‘sum contrast’.] When run using an identity link

(for reasons discussed earlier), theestimate for the first � term in this design matrix (�1) is the estimated

mean survival probability. For our simulated data, the estimated mean is �̂1 = 0.7045,which is identical

to the arithmetic mean of the individual estimates derived from the ‘true’ generating model, {!C ?·}
(0.7045, above).

What about the variance? If you look at the output, you see that the estimated standard error for

�̂1 = 0.007354. If we (naïvely) take the square-root of the estimated SE as our estimate of the variance,

we’d come up with a value (0.0858) that would appear to be quite strongly positively biased. This

might make some sense to you – you’d expect the estimated variance (the sum of sampling + process)

to be larger than process variance alone. More on this in a moment – for now, keep this value of

(̂� = 0.007354 in mind.

Next, an approach based on a Taylor series approximation to the variance of a function, using what

is known as the ‘Delta method’ (introduced – briefly – earlier in this and earlier chapters, and in detail

in Appendix B). Skipping the technical details for now,we are interested in approximating the variance

of a function of parameters. In this case, the function is the mean of the survival estimates. So, for a

set of : survival estimates {!̂1 , !̂2 , . . . , !̂:}, the function (which we’ll call .) is the simple arithmetic

mean of the set of estimates:

. = ˆ̄! =

(
!̂1 + !̂2 + · · · + !̂:

)
:

.

Using the Delta method, the variance for the function . can be approximated as

v̂ar(.̂) ≈ D�D
Ë ,

where D is the vector of the partial derivatives of the function with respect to each parameter in the

function (i.e., the Jacobian of the function), and � is the variance-covariance matrix:

ĉov(.̂) =
∑̂

=

v̂ar(!̂1) ĉov(!̂1 , !̂2) ĉov(!̂1 , !̂3) · · · ĉov(!̂1 , !̂:)

ĉov(!̂2 , !̂1) v̂ar(!̂2) ĉov(!̂2 , !̂3) · · · ĉov(!̂2 , !̂:)

ĉov(!̂3 , !̂1) ĉov(!̂3 , !̂2)
. . . · · ·

...

...
... · · ·

. . .
...

ĉov(!̂: , !̂1) ĉov(!̂: , !̂2) · · · · · · v̂ar(!̂:)

So, estimates of the variances of the (real) parameter estimates along the diagonal, and covariances

off the diagonal.

The variance-covariance matrix for the real parameters can be easily output from MARK – in the

following we output it to the Windows clipboard, which we can then save to a space-delimited ASCII

file which we can read into some other piece of software we might use to handle the calculations:

Chapter 6. Adding constraints: MARK and linear models

6.15. A final example: mean values 6 - 98

All thats left is ‘a little bit of calculus’ (i.e., deriving the Jacobian), which for this particular problem

is trivial – it is a vector of 15 elements (i.e., the function, differentiated with respect to each of the 15

survival parameters in turn), which for this function, is simply:

[
1

15

1

15
· · · 1

15

]
.

So,using the variance-covariance matrix for the survival estimates from model {!C ?·},‗ we estimate

the variance for our function (i.e., mean survival) as:

v̂ar
(
.̂
)
≈ D�DË

= 0.00005407449290.

But, this value isn’t even remotely close to the estimates from the previous two methods we tried.

That is, until you realize that

√
0.00005407449290 = 0.007353536081

≈ 0.007354.

which is identical to the estimated standard error for �̂1 = 0.007354 from the DM-based approach we

just tried (above).

In fact, what we have just derived (using either the DM-based model or the Delta method) is an

estimate of the sampling variance of the estimates. Remember, the parameter values used to simulate

the encounter data (p. 93) were simply one realization of the true underlying mean of 0.7, with true

process variance of 0.005.

A simple numerical experiment will help make it clear what is going on, in terms of estimating the

variance. Using the simulation capabilities in MARK (covered in detail in Appendix A), we simulated

' = 100, 250, 500, 1,000 and 2,500 new individuals marked and released per occasion.At each occasion,

we sampled from a beta distribution centered on mean of 0.7, with process variance of 0.005, i.e.,

B(28.7, 12.3), to set the true survival probability for that sampling occasion. For each simulation, we

derived an estimate of �̂1, and the SE for the estimate, using model {!C ?·}, constrained using the DM

described above.

The summary results over 1,000 simulations for each design point, for �̂1 and (̂�(�1) respectively,

are tabulated in the following:

�̂1 (̂�(�1)

' mean var SD mean var SD

100 0.701 0.0004405 0.020988 0.011 «0.001 0.001

250 0.700 0.0003667 0.019150 0.007 «0.001 0.000

500 0.700 0.0003638 0.019074 0.005 «0.001 0.000

1,000 0.700 0.0003388 0.018406 0.004 «0.001 0.000

2,500 0.700 0.0003293 0.018148 0.002 «0.001 0.000

Before we try to interpret the numbers in this table, recall that the true process variance is 0.005. As

such, given 15 occasions, we’d expect a true process SE of
√

0.005/15 = 0.01825742. Remember that the

SE is an estimate of the SD of a sample of statistics (in this case, the mean), based on a set of replicated

samples from an underlying distribution.

‗
MARK outputs the full variance-covariance matrix, over all of the parameters in the model. For this example, we need to
truncate/subset the matrix to include the variances and covariances of the survival estimates only – here, we want the upper-
left (15 × 15) sub-matrix of the full variance-covariance matrix.

Chapter 6. Adding constraints: MARK and linear models

6.15. A final example: mean values 6 - 99

For example, the following code snippet simulates 15 random beta deviates (corresponding 15

occasions), with mean 0.7 and process variances 0.005, calculates the mean, and then outputs it. This

process is repeated 1,000 times. The SD of this sample of 1,000 randomly generated means is the SE of

the mean:

simulate Beta for mu=0.7, sigma2=0.005

samples <- 1000; n_occas <- 15;

hold <- array(samples)

for (rep in 1:samples) { sim <- rbeta(n_occas,28.7,12.3);

hold[rep]=mean(sim); }

print(mean(hold)); # mean

[1] 0.7000336

print(sqrt(var(hold))); # SD (= SE)

[1] 0.01827892

The SD of the simulated distribution (0.018279) is quite close to the expected SE given a true process

variance of 0.005 and 15 occasions (0.018257). The approximation would be improved by drawingmore

samples.

Now, look back at the tabulated results from our MARK simulations, on the previous page. We see

that the mean of the survival values is close to the true parametric value of 0.7, regardless of the number

of releases. Perhaps not surprisingly, though, the variance (and SD) of �̂1 decreases as the number of

releases increases. In addition, the mean (̂�(�1) decreases with increasing number of releases.

Look closely at the SD for the mean estimate �̂1 – it decreases nonlinearly with increasing number

of releases, approaching an asymptote at ≈ 0.018257. That number might look familiar – it is, in fact,

the expected SE given a true process variance of 0.005 and 15 occasions!

OK – so what? Well, this is important since as the number of releases' at each occasion increases, all

other things being equal, then the proportion of total variance owing to sampling variation decreases,

with a corresponding increase in the proportion of total variance due to process variance. In that case,

the estimated SE for �̂1 decreases, approaching 0 as ' gets very large (as we see in the table on the

preceding page).

This implies that the variance of the estimates of �̂1 represents total variance (process + sampling),

while the mean (̂�(�1) represents sampling variance (specifically, the square of the mean (̂�(�1)).
As such, the difference between the total variance and the sampling variance should be the process

variance. For a given number of releases, and 15 occasions, we can express this difference simply as(
var

(
�̂1

)
− (̂�

(
�1

)2
)
× 15.

So, to complete the table, by including a column of our estimate of process variance derived using

this equation:

�̂1 (̂�
(
�1

)
' mean var mean �̂

2
process

100 0.701 0.0004405 0.011 0.004688

250 0.700 0.0003667 0.007 0.004766

500 0.700 0.0003638 0.005 0.005082

1,000 0.700 0.0003388 0.004 0.004842

2,500 0.700 0.0003293 0.002 0.004880

Ḡ = 0.004856

Chapter 6. Adding constraints: MARK and linear models

6.15. A final example: mean values 6 - 100

So, in fact, we do pretty well at estimating the process variance: rounding to 4 digits, 0.0049 is pretty

close to the true value of 0.005.

However, while all this is ‘interesting’, the only way the SE estimated using either �̂1 from the ‘sum

contrast’ DM, or the Delta method, would make any sense (i.e., be interpretable in terms of interest in

process variance), would be if we knew the variance of the mean of the survival parameters, which

we don’t. In other words, you can’t really get there from here.

Fear not – there is a solution, which we now introduce. To get a robust estimate of not just the

mean (which the other methods outlined above would give you), but the process variance as well

(which the preceding methods don’t), we need to apply a variance components approach (based on

a random effects intercept only model). While variance components and random effects models are

introduced in more detail in Appendix D, for now we’ll demonstrate the simple mechanics of deriving

an estimate of the mean, and process variation using the variance components capabilities in MARK,

basedon a ‘methods ofmoments’ approach(we couldalso accomplish the same thing using the MCMC

capabilities in MARK – see Appendix E). In fact, for the simple objective at hand, the mechanics are

very easy.

First, retrieve model {!C ?·} in the browser. Then,select the menu option ‘Output | Specific Model

Output | Variance Components | Real Parameter Estimates’. This will spawn another window

(shown below) asking you to select the parameter(s) you want to work with, plus some other options:

On the right hand side, we’ve selected ‘intercept only’ (corresponding to the mean only model),

plus various output options. We’ll defer ‘deep understanding’ of what the various options in this

window ‘do’ for now.

Once you hit the ‘OK’ button, MARK will output various ‘estimates’ into the editor. The estimates

for our example data are shown at the top of the next page. The top line gives the estimated mean

(‘Beta-hat’) as 0.7286, which is close to (but slightly different than) the simple arithmetic mean. Both

are very close to the true sample mean of 0.72. More important, here, is the reported SE(Beta-hat)

of 0.01961. SE(Beta-hat) is the standard error of the estimated mean and includes both process and

sampling variance. We use this estimated SE in the usual way to derive 95% CI to the estimated mean.

The table immediately below these two values represent the interval-specific survival estimates,

their standard errors, and corresponding shrinkage estimates (if you don’t know what a ‘shrinkage’

estimate is, don’t worry at this stage). Skipping the technical details, these shrinkage estimates are

part of the calculation(s) MARK uses to separate the process and sampling variance.

This table of survival estimates is followed by two ‘estimates’ of the process variance (i.e., the total

variance minus the sampling variance) – the ‘naive estimate of sigma^2’ (which is an estimate of

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 101

the total variance minus the sampling variances), and the ‘estimate of sigma^2’ (from Burnham’s

‘moments’ estimator). These are the estimates we’re after – for various technical reasons (see Ap-

pendix D), the second estimate is preferred. For our simulated data, the process variance is calculated

as 0.00522, which is very close to the true value 0.005.

In conclusion, to get a robust estimate of the process variance (and a less-biased estimate of the

mean), you need to do a bit more work than you might have anticipated.

end sidebar

6.16. Model averaging over linear covariates

As introduced in Chapter 4, model averaging is a very important concept. Deriving model averaged

estimates of different parameters explicitly accounts for model selection uncertainty. In many cases, the

mechanics of model averaging are pretty straightforward.

Let’s consider, again, the full dipper data set, where we hypothesize that the encounter probability,

?, might differ as a function of (i) the sex of the individual, (ii) the number of hours of observation

by investigators in the field, with (iii) the relationship between encounter probability and hours of

observation potentially differing between males and females.

Recall that our ‘fake’ observation effort covariates (in hours) were:

Occasion 2 3 4 5 6 7

hours 12.1 6.03 9.1 14.7 18.02 12.12

Now, when we introduced this example earlier in this chapter, we fit only a single model to the data:

logit(?) = �1 + �2(SEX) + �3(HOURS) + �4(SEX.HOURS).

But, here, we acknowledge uncertainty in our candidate models, and will fit the following candidate

model set (top of the next page) to our data:

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 102

model "1 logit(?) = �1 + �2(SEX) + �3(HOURS) + �4(SEX.HOURS),
model "2 logit(?) = �1 + �2(SEX) + �3(HOURS),
model "3 logit(?) = �1 + �2(HOURS),
model "4 logit(?) = �1 + �2(SEX).

This is not intended to be an ‘exhaustive, well-thought-out’ candidate model set for these data. We’re

using these models to introduce some of the considerations for model averaging. In particular, we’re

using this example to consider how – and what – we model average when some models include the

environmental covariate (HOURS), and some don’t.

Let’s fit these 4 candidate models ("1 → "4) to the full dipper data set. We’ll build all of the models

using a design matrix approach. Note that models "2 → "4 in the model set are all nested within

the first model, "1. For all 4 models, we’ll assume that apparent survival, !, varies over time, but not

between males and females.

Here are the results of fitting our 4 candidate models to the full dipper data. We see from the AIC2

weights that there is considerable model selection uncertainty. In fact, the ΔAIC2 values among all

models is < 4.

Now, if we simply wanted to generate a ‘time-’ and ‘sex-specific’ average encounter probability, for

each time interval and sex, we can use the standard model averaging routine(s) in MARK, as introduced

in Chapter 4. MARK allows you to model average for each combination of classification factors in the

model – for this analysis, that would include TIME (which is implicitly included in all models) and SEX

(which was specified as a ‘grouping’ variable’ when you set up the analysis.

For example, for males, we would simply select any one element in each of the ‘PIM columns’ (each

of which corresponds to a particular time interval) in the model averaging interface, as shown below:

The model averaged estimate for ?̂2,<0;4B for the first encounter occasion, for males is shown at the

top of the next page. In looking at the output, we’re reminded about the basic mechanics for model

averaging. The actual estimate, ?̂2,<0;4B = 0.9152981, is simply the average of the estimate from each of

the 4 candidate models, weighted by the normalized AIC weights. This is a straightforward calculation.

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 103

You might recall, though, that the calculation of the ‘correct’ standard error for the weighted average

is somewhat more involved. The SE for each estimate from each model is called the conditional standard

error. While it might seem intuitive to simply take the AIC weighted average of these model-specific

conditional standard eros (which results in an estimate of 0.0341803),doing so ignores variation among

models. As introduced in Chapter 4, the correct way to calculate the unconditional SE (i.e., the standard

error for the average that is not conditional on a particular model) is

v̂ar
(¯̂?) = '∑

8=1

F8

[
v̂ar

(
?̂8

�� "8

)
+

(
?̂8 − ¯̂?

)2
]
, where ¯̂? =

'∑
8=1

F8 ?̂8 ,

and the F8 are the normalized Akaike weights. The subscript 8 refers to the 8Cℎ model. The value, ?̄, is

the model averaged estimate of ? over ' models (8 = 1, 2, . . . , '). While this isn’t that difficult to do

by hand, it isn’t necessary in this case, since MARK handles the calculation for you. In this case, the

unconditional SE of ?̂<,2 is ŜE = 0.0358703.

But, what if instead of sex- and time-specific model averaged estimates for ?, you instead want the

model averaged estimate of ? as a function of the environmental covariate, HOURS? Here is where things

get more interesting. You want to derive the model averaged estimate of the encounter probability, as

a function of the number of hours of observation.

You might appear to have a couple of options. First, you might be interested in the model average of

the � parameter in each model for the HOURS covariate. That seems quite reasonable – the � coefficient

for HOURS is the measure of the effect of a unit change in HOURS of observation on encounter probability.

You average over models to generate an average of the effect of HOURS on detection probability.

But, while this seems reasonable, there are in fact a couple of problems with this approach. First, and

perhaps most obviously, what do you do for models where HOURS is not a term in the model? For our

present example, model "4 does not include HOURS as a term in the model – how would we account for

this model when averaging over all models in the model set?

One approach which at first seems reasonable (and somewhat clever) is to use the logical argument

that ‘if a model doesn’t contain HOURS as a term, then the � coefficient for HOURS is logically 0’. Let’s adopt

this approach, and create a table of the model-specific estimates for the � coefficient, corresponding to

the HOURS covariate, from each of our 4 candidate models:

model �̂ AIC weight

"1 0.0463428 0.06378

"2 0.0195470 0.15968

"3 0.0169393 0.33773

"4 0.0000000 0.43880

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 104

At this point, you might simply take a weighted average of the model-specific estimates for � (which

for this example, would be ˆ̄� = 0.01180).

But, there are at least two important issues which we need to consider. First, recall from earlier in this

chapter that the interpretation of � does not directly take into account the other terms in the model. For

example, consider model "1, which corresponds to

logit(?) = �1 + �2(SEX) + �3(HOURS) + �4(SEX.HOURS)

The estimate for �̂3(HOURS) = 0.0463428, which suggests that as the hours of observation increases,

then so too does the probability of encounter.

But, what about the interaction of HOURS and SEX? Recall from section 6.8.2 that there is a strong

interaction between SEX, HOURS, and encounter probability. As shown in the following figure,

������������	�
����

� � �� �� �� �� �� ��

	
�
�
�
�
�	
�
�	
�
�
�
�
�
�	
��
�
��
�
�
�
�
�
�

����

����

����

����

��	�

��	�

��	�

��	�

���

�
���

encounter probability increases with HOURS, but only for females! For males, encounter probability

actually declines with more HOURS of observation.

The point we’re trying to make here is that considering a � estimate ‘by itself’, without taking the

other terms of the model into account, can lead to all sorts of conclusions which may not actually reflect

reality. And, as such, model averaging over those estimates is subject to the same problem.

The second potential problem concerns the standard error calculation. While � for model "4 is

logically 0, what is the SE for this ‘value’? We say ‘value’, because it is not an ‘estimate’, and thus, it isn’t

immediately obvious how to include (or not) the conditional SE for model "4 (which we might set to

0) into our calculation of the unconditional SE for �̄.

So, in short summary, don’t try to model average �’s – it will get you into trouble, and there are a

number of technical considerations which are not solved. In fact, these are some of the reasons that

MARK does not have an option for model averaging � terms.

But, what if you really want a model averaged estimate of the relationship between HOURS and

encounter probability? In your mind you might be imagining a plot of HOURS on the horizontal axis,

encounter probability, ?, on the vertical axis (like the figure shown above), but averaged over all models.

In fact, you can generate exactly what you want, albeit with a bit of work. The first part of the process,

deriving model averaged estimates of ? as a function of the HOURS covariate is easy – you simply take

the estimated linear model for each of the candidate models, and derive estimates for ? as a function of

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 105

different values for the covariate HOURS. Then, simply take the average over models for a given covariate

value, weighting by the model-specific normalized AIC weights.

In the following table, we show the calculated average accounter probability, ¯̂?, for each of 4 different

values of the HOURS covariate (5, 10, 15, and 20 hours). In order to make the calculations for this example,

we either need to (i) pick one sex or the other (SEX=1, or SEX=0), or (ii) use the average value for sex

(based on the proportion of males and females in the sample). In other words, we need to specify (or

‘control for’) the other variables in the models. We’ll use SEX=1 (males) for our demonstration:

HOURS

model AIC weight 5 10 15 20

"1 0.0638 0.9392547 0.9294700 0.9182464 0.9054185

"2 0.1600 0.9111449 0.9187497 0.9257566 0.9322038

"3 0.3377 0.8894343 0.8974927 0.9050265 0.9120609

"4 0.4388 0.9227652 0.9227652 0.9227652 0.9227652
¯̂? 0.91098 0.91429 0.91724 0.91983

To make sure you know how the numbers in this table are generated, take the estimated linear model

for model "1:

logit(?̂) = �̂1 + �̂2(SEX) + �̂3(HOURS) + �̂4(SEX.HOURS)
= 1.4115973+ 1.4866197(SEX) + 0.0463460(HOURS) + (−0.0783101)(SEX.HOURS).

If we substitute in SEX=1, and HOURS=5, we get the value

logit(?̂) = 1.4115973+ 1.4866197(1) + 0.0463460(5) + (−0.0783101)(5)
= 2.738396,

which, when back-transformed from the logit scale, yields 0.9392547, which is the value shown in the

table, above. We leave it as an exercise to confirm the remaining values in the table, and weighted

averages over those models.

Let’s plot these model averaged values:

���������������	
����

� �� �� ��

�

�
�
�

��
��
�
��
�
�
��
��
�
��
�

��
�
�

����

����

����

����

��	�

��	�

����

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 106

The figure looks a bit ‘out of scale’, but that’s only because we’re ‘leaving enough room’ on the

vertical axis, for what comes next – the SE calculations! What we want to add to the plot now are the

unconditional SE for each point on the line (which we’ll calculate for the 4 points only: 5, 10, 15 and 20

HOURS. Normally, you would use more points, but our intent is only to demonstrate the mechanics).

How do we derive the unconditional SE for each model averaged estimate of ?? The steps are easy

in principle, but somewhat laborious in practice. First, we derive the conditional SE for ?̂ for different

values of the covariate HOURS, for a given model, using the approach outlined in the -sidebar- back on

p. 49 (if you skipped reading it before, you might need to go back and have a look at it now). Then, once

you’ve calculate the conditional SE for each value for HOURS, for each model, you (ii) use the normalized

AIC model weights to generate unconditional SE estimates using the formula noted earlier:

v̂ar
(¯̂?) = '∑

8=1

F8

[
v̂ar

(
?̂8

�� "8

)
+

(
?̂8 − ¯̂?

)2
]
, where ¯̂? =

'∑
8=1

F8 ?̂8 .

The laborious part of all this is deriving the conditional SE’s for each estimate of ? for a given value of

HOURS, for each model. As noted on p. 49, this involves application of the Delta method, for each model

in turn. In fact, because the models in our candidate model set are all nested within the most general

model ("1), this process can be automated fairly well.

Let’s run through the complete calculations for HOURS = 5. As noted on p. 49, we can approximate

the variance of some multi-variable function Y as

v̂ar(.̂) ≈ D�D
Ë ,

where D is the matrix of partial derivatives of the function Y with respect to each parameter, and � is

the variance-covariance matrix for the parameters in the function.

So, all we need to do is (i) take the vector of partial derivatives of the function (i.e., the linear

model) with respect to each parameter in turn (i.e., derive the Jacobian of the model with respect to the

model parameters), D, (ii) right-multiply this vector by the variance-covariance matrix,�, and (iii) right-

multiply the resulting product by the transpose of the original vector of partial derivatives, D
Ë. Step (i)

involves trivial calculus, step (ii) involves extracting the variance-covariance matrix from MARK output

for that model, and step (iii) involves a bit of linear algebra. No one step in this process is particularly

difficult – there are simply lots of steps.

Here are the Jacobian vectors for our 4 models:

model model structure Jacobian

"1 �1 + �2(SEX) + �3(HOURS) + �4(SEX.HOURS) [1 SEX HOURS SEX.HOURS]
"2 �1 + �2(SEX) + �3(HOURS) [1 SEX HOURS]
"3 �1 + �2(HOURS) [1 HOURS]
"4 �1 + �2(SEX) [1 SEX]

You should notice immediately that the Jacobian for the linear model is simply the linear model

without the � coefficients, using a ‘1’ for the intercept, �1. As a result, depending on your facility with

a computer, you might be able to generate the Jacobian very quickly over your model set. For smaller

model sets, even doing it ‘by hand’ should only take a few minutes.

The next step is to extract the variance-covariance matrix, �8 , for the �8 coefficients, for each model

"8 in the model set. This is quite straightforward to do in MARK – all you need to do is select the

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 107

model from the results browser, and then ‘Output | Specific Model Output | Variance-Covariance

Matrices | Beta Estimates’:

You may recall that your preferred options are to output to the clipboard (as show), or a dBase file

(which you can open in Excel). In general, do not use the ‘Editor’ output option, since outputting to

the editor will truncate (round) the values in the matrix to degree that your results might be suspect.

Beyond that, the only challenge is in figuring out which rows and columns in the variance-covariance

matrix you need to extract. In other words, which rows and columns correspond to the �8 coefficients

in your linear model.

Consider for example, model "2, which corresponds to

model "2 logit(?̂) = �̂1 + �̂2(SEX) + �̂3(HOURS)

We see there are 3 coefficients (�1, �2 and �3) in this model, and thus the variance covariance matrix

for model"2,�2, would be a (3×3)matrix, with the variances for each �8 parameter along the diagonal,

and the covariances between parameters off the diagonal (the matrix is shown at the top of the next

page).

�2 =

V̂ar
(
�̂1

)
Ĉov

(
�̂1 , �̂2

)
Ĉov

(
�̂1 , �̂3

)
Ĉov

(
�̂2, �̂1

)
V̂ar

(
�̂2

)
Ĉov

(
�̂2 , �̂3

)
Ĉov

(
�̂3, �̂1

)
Ĉov

(
�̂3 , �̂2

)
V̂ar

(
�̂3

)

.

However, when you output the variance-covariance from MARK, it outputs the matrix over all of the

� terms, not just the ones you are interested in. You will need to keep track of which rows and columns

correspond to the parameters you are interested in.

For model {!C ?S+H}, there are 9 total � parameters (6 for apparent survival probability, and 3 for the

encounter probability). So, MARK outputs a (9 × 9) matrix. We want the variance-covariance matrix

for the encounter probability parameters only, which corresponds to the (3× 3) sub-matrix in the lower

right-hand corner of the full matrix output by MARK (shaded, below):

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 108

You simply need to extract this (3 × 3) sub-matrix, and ‘paste it’ in some fashion into the software

application you might use for the final step, which involves the ‘linear algebra’ of multiplying the

Jacobian and variance covariance-matrices together.

Now, at this point, you have a decision to make – the variance-covariance matrix output by MARK is

‘numeric’, whereas in the first step, we derived the Jacobian for each model ‘symbolically’. While there

are many available software applications that can handle mixing numeric and symbolic calculations

(e.g., Maple, Mathematica, Maxima...), it is mechanically simpler to use one or the other (i.e., numeric,

or symbolic). Since the variance-covariance matrix output by MARK is numeric, it is probably simplest

to translate our Jacobian from ‘symbolic’ to ‘numeric’. All this translation requires is entering the

appropriate numeric value(s) into the symbolic Jacobian vector.

For our present example, we’re considering males (SEX = 1) and 5 hours of observation (HOURS = 5).

Thus, our translation of the Jacobian from symbolic → numeric for our 4 models would look like:

model symbolic Jacobian numeric Jacobian

"1 [1 SEX HOURS SEX.HOURS] [1 1 5 5]
"2 [1 SEX HOURS] [1 1 5]
"3 [1 HOURS] [1 5]
"4 [1 SEX] [1 1]

Make sure you understand how the numerically evaluated Jacobian matrices were derived.

All that’s really left is to take the numeric Jacobian, D8 , and the variance-covariance matrices, �8 , for

the different models, and ‘do the linear algebra’. In other words, calculate

D8�8D
Ë
8 .

For example, for model "2 (SEX+HOURS), this might be implemented in an R script as follows:

enter numeric Jacobian vector

jac <- matrix(c(1,1,5),1,3,byrow=T);

transpose Jacobian vector

t_jac <- t(jac);

enter variance-covariance matrix (cut and paste from MARK)

vc <- matrix(c(1.1435035261, -0.1827007130, -0.0749623706,

-0.1827007130, 0.4077519211, 0.0016836049,

-0.0749623706, 0.0016836049, 0.0057802739),3,3,byrow=T);

multiply jac x vc matrix x transpose(jac)

var_logit <- jac %*% vc %*% t_jac;

print(var_logit);

If we run this script, we find that the approximate variance for our estimate of ?̂HOURS=5,SEX=1 from

model "2, on the logit scale, given SEX = 1, HOURS = 5, is

V̂ar ≈ D8�8D
Ë
8

= 0.5975732.

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 109

with ŜE =
√

0.5975732 = 0.773029.

All we really need to do next is (i) repeat this calculation of the conditional variance and SE for each

of the remaining models, and then (ii) from these estimates, derive the estimate of the unconditional

variance and standard error, over all the candidate models.

The following tabulates the conditional variances for ?̂SEX=1,HOURS=5, on the logit scale, for all 4 candidate

models:

model AIC weight logit(?̂) conditional variance

"1 0.0638 2.7383960 1.4069833

"2 0.1600 2.3276955 0.5975763

"3 0.3377 2.0849753 0.4738056

"4 0.4388 2.4805252 0.2573784

Now, at this point, you could either (i) derive the unconditional variances on the logit scale, and then

back-transform everything, or (ii) back-transform the conditional variances each individual model from

the logit scale to the real probability scale, and then do the calculations of the unconditional variance

on the real scale. While this seems almost like a semantic point, it isn’t entirely so – because of Jensen’s

inequality. The finer points are discussed in the following -sidebar-. Since the 95% CI are derived on the

logit scale, and then back-transformed, perhaps it makes sense to use the value of the model-averaged

value on the logit scale. We’ll adopt this convention here.

begin sidebar

Jensen’s inequality – logit or probability scale?

Jensen’s inequality says that the expected value of the function is not (in general) equal to the function

of the expected value, �[5 (G)] ≠ 5 (�[G]). If you take the average of the data and then apply the

function to it, you’ll get a different (usually wrong, i.e., not what you meant) answer than if you apply

the function to each data value first and then take the average of the values.

For example, let the function of x be 5 (G) = G2 . Let the set of x be (3, 2, 4, 6, 3). The mean of the set is

3.6. The function applied to the mean is 3.62
= 12.96. The set of the function of x is (9, 4, 16, 36, 9). The

average of this set of the function of G is 14.8. So, we see that, as per Jensen’s inequality, the expectation

(average) of the function is different than the function of the average – in fact, as expected the mean

of the function of x is greater than the function of the mean of x.

In the present context, the back-transform of the model averaged value of logit(?̂), for example, is

not the same as the model averaged value of the back-transforms of the individual estimates of ?̂ from

each model. In other words, if the model-averaged value for ? on the logit scale is

logit(¯̂?) = F1logit
(
?̂"1

)
+ F2logit

(
?̂"2

)
+ F3logit

(
?̂"3

)
+ F4logit

(
?̂"4

)
,

where F8 is the normalized AIC weight for model 8, and if the model averaged value for ? on the

normal probability scale is

¯̂? = F1 ?̂"1
+ F2 ?̂"2

+ F3 ?̂"3
+ F4 ?̂"4

,

then

4

(
logit(¯̂?)

)
1 + 4

(
logit(¯̂?)

) ≠ ¯̂?.

Even though the SE are calculated on the logit scale before back-transforming to the real scale,

because the calculation of the unconditional SE is a function of the model average of the parameter,

which model averaged value you use (the back-transform of the model averaged value of logit(?̂),

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 110

versus the model averaged value of the back-transforms of the individual estimates of ?̂ from each

model), will make a difference in your calculations.

While the difference between the two is generally quite small, you do need to decide which model

averaged parameter to use.

end sidebar

The model averaged estimate of ¯̂?, on the logit scale, is 2.339692.

Given

v̂ar
(¯̂?) = '∑

8=1

F8

[
v̂ar

(
?̂8

�� "8

)
+

(
?̂8 − ¯̂?

)2
]
,

then we can show that for SEX=1,HOURS=5,

logit
(
v̂ar

(¯̂?)) = '∑
8=1

F8

[
v̂ar

(
?̂8

�� "8

)
+

(
?̂8 − ¯̂?

)2
]

= 0.0638
[
1.40698 + (2.73840 − 2.33969)2

]
+ 0.1600

[
0.59758 + (2.32770 − 2.33969)2

]
+ 0.3377

[
0.47381 + (2.08498 − 2.33969)2

]
+ 0.4388

[
0.25738 + (2.40538 − 2.33969)2

]
= 0.499097,

with logit(ŜE) =
√

0.499097 = 0.70647.

Finally,we want to use ourestimatedvariance to derive a 95% confidence intervalaroundourestimate,

and we want both the estimate and the 95% CI for the estimate on the normal probability scale.

estimate encounter probability on logit scale - parameter estimates from MARK

logit_avg_p <- 2.33969

logit_var <-0.499097; logit_se <- sqrt(logit_var);

now derive LCI and UCI on logit scale

logit_uci <- logit_avg_p+1.96*logit_se;

logit_lci <- logit_avg_p-1.96*logit_se;

back-transform everything from logit -> probability scale

p <- exp(logit_avg_p)/(1+exp(logit_avg_p));

uci <- exp(logit_uci)/(1+exp(logit_uci));

lci <- exp(logit_lci)/(1+exp(logit_lci));

put everything together

results <- cbind(p,lci,uci)

print(results);

The output from this script is

[1,] 0.9121112 0.7221222 0.9764401

where the back-transformed model-averaged estimate of ¯̂?(SEX=1,HOURS=5) on the normal probability scale

is 0.9121112, with an estimated 95% CI of [0.7221222, 0.9764401].

Chapter 6. Adding constraints: MARK and linear models

6.16. Model averaging over linear covariates 6 - 111

Again, note that the SE and 95% CI are first derived on the logit scale, and then back-transformed.

This is done to guarantee that the calculated 95% CI is [0, 1] bounded for parameters (like ! or ?) that

are [0, 1] bounded.

And, a reminder that because the logit transform is not linear, the reconstituted 95% CI will not

be symmetrical around the parameter estimate, especially for parameters estimated near the [0, 1]
boundaries.

Taking this approach, and replicating it for the other values of the HOURS covariate (i.e., repeat the

preceding, but for HOURS = 10, HOURS = 15, and HOURS = 20), we can derive estimates of the model

averaged values for ?, for 5, 10, 15 and 20 observation HOURS, and their unconditional 95% CI. These

estimates are tabulated here:

HOURS ¯̂? L̂CI ÛCI

5 0.91211 0.72212 0.97644

10 0.91480 0.79678 0.96711

15 0.91742 0.81080 0.96644

20 0.92000 0.76477 0.97598

Shown below is a plot of these model averaged estimates for male encounter probability as function

of HOURS of observation, along with their associated confidence intervals (extrapolated over a more

continuous range from 5 → 20 HOURS).

���������������	
����

� �� �� ��

�

�
�
�

��
��
�
��
�
�
��
��
�
��
�

��
�
�

����

����

����

����

��	�

��	�

����

The calculated 95% CI will not be symmetrical around the parameter estimate – as the value for the

covariate HOURS is much greater or lesser than the mean value (≈ 12 hours), the 95% CI gets progressively

larger. This is expected as there is less ‘information’ at either end of the distribution of HOURS on which

to base our inference, and thus, more uncertainty in our estimate.

Now, while this particular approach involves a lot of ‘manual work’ (although some facility with

programming can speed things up considerably), the basic procedure can largely be automated to

some extent, and executed within program MARK. Recall from section 6.8.2 that we mentioned that

if we treat environmental covariates as individual covariates, then we can use the individual covariate

Chapter 6. Adding constraints: MARK and linear models

6.17. RMark – an alternative approach to linear models 6 - 112

plotting (and model averaging) capabilities in MARK, to generate the model averaged values, and

the confidence limits for these averaged values, as we’ve done ‘by hand’ in the preceding. The use of

individual covariates in MARK is covered in Chapter 11.

6.17. RMark – an alternative approach to linear models

If you’ve made it this far, then you probably have a pretty good feel for the relationship between the

design matrix and linear models in MARK. Good! But, by now, you may have already run into a few

instances – even with our relatively simple practice examples – where you’ve made a typo (or several)

in entering the appropriate design matrix. Or, in some cases, it may not be clear how to construct the

design matrix corresponding to the linear model of interest. While you will get better with practice, it is

also probably true that the ‘mechanics’ of designing and building design matrices in MARK is the single

greatest source of ‘frustration’. This is especially true for very large design matrices, which may include

a large number of parameters, and complicated ultrastructural relationships within a parameter.

Jeff Laake (NOAA – National Marine Mammal Laboratory) has developed a comprehensive library of

functions for the R statistical package called RMark (naturally), which allow you to build, and analyze,

linear models in MARK – without ever having to ‘get your hands dirty’ with design matrices. In effect,

what RMark does is provide a logically consistent ‘natural language’ (well, the R scripting language is

becoming sufficiently familiar that it is relatively ‘natural’) way of building models – analogous to what

you might do in SAS (or, in the current context, M-SURGE). RMark is a very robust, and elegant way

to build a large number of complex models, quickly, and relatively easily. There is a fair learning curve

(somewhat conditional on how much prior experience you may have with R, if any), but once you’ve

mastered the conceptual material presented in this book, it is well worth exploring RMark – details and

full documentation are provided in Appendix C.

6.18. Summary

We’re done...at last! Chapter 6 is a long chapter, with many concepts and technical details. However, it

is also one of the most important chapters, since it covers one of the most useful tools available with

program MARK – linear models. It is very important that you understand this material, so if you’re

at all unsure of the material, go through it again. Your efforts will ultimately be rewarded – you’ll find

that using the linear models approach with MARK will enable you to fit a wide variety of complex

analytical models, quickly and (relatively) easily.

6.19. References

Box, M. J. (1966) A comparison of several current optimization methods, and the use of transformations

in constrained problems The Computer Journal, 9, 67-77.

Dobson, A. J., and Barnett, A. G. (2008) An Introduction to Generalized Linear Models (3rd edition), CRC

Press.

Lebreton, J.-D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992) Modeling survival and testing

biological hypotheses using marked animals: a unified approach with case studies. Ecological

Monographs, 62, 67-118.

McCullagh, P., and Nelder, J. A. (1989) Generalized Linear Models (2nd edition). London. Chapman &

Hall.

Chapter 6. Adding constraints: MARK and linear models

	6 Adding constraints: MARK and linear models
	6.1 A (brief) review of linear models
	6.2 Linear models and the `design matrix': the basics
	6.3 The European dipper – the effects of flooding
	6.3.1 Design matrix options: full, reduced, and identity

	6.4 Running the model: details of the output
	6.5 Reconstituting parameter values
	6.5.1 Subset models and the design matrix

	6.6 Some additional design matrix tricks
	6.7 Design matrix...or PIMs?
	6.8 Constraining with `real' covariates
	6.8.1 Reconstituting estimates using real covariates
	6.8.2 Plotting the functional form – real covariates

	6.9 A special case of `real covariates' – linear trend
	6.10 More than 2 levels of a group
	6.11 >1 classification variables: n-way ANOVA
	6.12 Time + Group – building additive models
	6.13 Linear models and `effect size': a test of your understanding…
	6.13.1 Linear models: normalnormal estimates and odds ratios
	6.13.2 and effect size: a cautionary note

	6.14 Pulling all the steps together: a sequential approach
	6.14.1 Application – alternative design matrices for additive models

	6.15 A final example: mean values
	6.16 Model averaging over linear covariates
	6.17 RMark – an alternative approach to linear models
	6.18 Summary
	6.19 References

