
CHAPTER 5

Goodness of fit testing...

In the preceding chapter,we took our first look at a fundamental topic – comparing models. In particular,

we considered the different ‘paradigms’ of AIC, or LRT, as tools to allow us to robustly ‘select’ among a

candidate set of models. More generally, however, these approaches both rest fundamentally on issues

of fit – how well does a particular model fit the data. This is a very important consideration, regardless

of which ‘flavor’ of model selection you prefer – both AIC comparisons, and LRT, require assessment

of model fit as part of the process.

In this chapterwe will provide a brief introduction to this very important topic – goodness of fit testing

(GOF). All of the models and approaches we have discussed so far make very specific assumptions

(concerning model fit) that must be tested before using MARK. Thus, as a first step, you need to confirm

that your starting (general) model adequately fits the data, using GOF tests. We will make frequent

reference to this, directly or indirectly, at several points throughout the book.

There are a number of ways in which GOF testing can be accomplished, and a variety of GOF

procedures have been implemented in several different CMR software applications. For example,

programs RELEASE, SURVIV, JOLLY, and JOLLYAGE all provide GOF statistics for various models.

Some applications do not provide any ‘built-in’ GOF testing. As a starting point, we will assert that

there are two primary purposes for GOF testing.

The first, which we’ve already noted, is that it is a necessary first step to insure that the most general

model (i.e., the model with the most parameters) in your candidate model set (see Chapter 4) adequately

fits the data. Comparing the relative fit of a general model with a reduced parameter model provides

good inference only if the more general model adequately fits the data.

However, suppose you construct a candidate model set, based on a priori hypotheses concerning

the data in hand. This model set contains at least one ‘general’ model, containing enough parameter

structure so that, you believe, it will fit the data. Suppose however, it does not – suppose you have a

means of assessing GOF, and that based on this ‘test’ you determine that the general model does not

adequately fit the data. What next?

Well, in addition to providing a simple ‘yes/no’ criterion for fit, the GOF testing procedure can in

itself reveal interesting things about your data. While significant lack of fit of your general model to

your data is in some senses a nuisance (since it means you need to carefully reconsider your candidate

model set), in fact the lack of fit forces you to look at, and think about, your data more carefully than you

might have otherwise – the key question becomes – why doesn’t the model fit the data? The answers to

this question can sometimes be extremely valuable in understanding your problem.

What do we mean by ‘lack of fit’? Specifically, we mean that the arrangement of the data do not

meet the expectations determined by the assumptions underlying the model. In the context of simple
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mark-recapture, these assumptions, sometimes known as the ‘CJS assumptions’ are:

1. every marked animal present in the population at time (i) has the same probability

of recapture (?8)

2. every marked animal in the population immediately after time (i) has the same

probability of surviving to time (i+1)

3. marks are not lost or missed.

4. all samples are instantaneous, relative to the interval between occasion (i) and (i+1),

and each release is made immediately after the sample.

We will generally assume that assumptions 3 and 4 are met (although we note that this is not always

a reasonable assumption. For example, neck collars, commonly used in studies of large waterfowl, have

a significant tendency to ‘fall off’ over time). It is assumptions 1 and 2 which are typically the most

important in terms of GOF testing.

In this chapter, we will look at GOF testing in two ways. First, we shall discuss how to do basic GOF

testing in program MARK, using a parametric bootstrapping approach. Then, we show how to use

program MARK to call another, vintage program (RELEASE) to more fully explore potential reasons

for lack of fit for the CJS model only. Then, we introduce two newer approaches to estimating lack of

fit. We finish by discussing how to accommodate lack of fit in your analyses.

5.1. Conceptual motivation – ‘c-hat’ (ĉ)

GOF testing is a diagnostic procedure for testing the assumptions underlying the model(s) we are trying

to fit to the data. To accommodate (adjust for, correct for...) lack of fit, we first need some measure of

how much extra binomial ‘noise’ (variation) we have. The magnitude of this overdispersion cannot be

derived directly from the various significance tests that are available for GOF testing, and as such, we

need to come up with some way to quantify the amount of overdispersion. This measure is known as

a variance inflation factor, or 2̂ (phonetically, ‘c-hat’).

We start by introducing the concept of a saturated model. The saturated model is loosely defined as

the model where the number of parameters equals the number of data points or data structures. As

such, the fit of the model to the data is effectively ‘perfect’ (or, as good as it’s going to get).

begin sidebar

saturated models in MARK

In the following, the method used to compute the saturated model likelihood is described for each type

of data. This is the method used when no individual covariates are included in the analysis. Individual

covariates cause a different method to be used for any data type.

Live Encounters Model. For the live encounters model (Cormack-Jolly-Seber model), the encounter

histories within each attribute group are treated as a multinomial. Given n animals are released

on occasion i, then the number observed for encounter history j [= 9] divided by n is the parameter

estimate for the history. The−2 ln(L) for the saturated model is computed as the sum of all groups

and encounter histories. For each encounter history, the quantity (= 9×ln[= 9/=]) is computed, and

then these values are summed across all encounter histories and groups.

Dead Encounters Model – Brownie. The method used is identical to the live encounters model. For

this type of data, the saturated model can be calculated by specifying a different value in every

PIM entry. The resulting−2 ln(L) value for this model should be identical to the saturated model

value.
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Dead Encounters Model – Seber. For dead encounters models with ( and 5 coding. The saturated

model for this data type is the same as the usual (Brownie) dead encounters model.

Joint Live and Dead Encounters Model. The method used is identical to the live encounters model.

Known Fate Model. The known fate data type uses the (group×time) model as the saturated model.

For each occasion and each group, the number of animals alive at the end of the interval divided

by the number of animals alive at the start of the interval is the parameter estimate. The −2 ln(L)

value for the saturated model is the same as the −2 ln(L) value computed for the (group × time)

model.

Closed Captures Model. The saturated model for this type of data includes an additional term over

the live encounters model, which is the term for the binomial coefficient portion of the likelihood

for #̂ . For the saturated model, #̂ is the number of animals known to be alive ["C+1], so the log

of #̂! factorial is added to the likelihood for each group.

Robust Design Model. The saturated model for this data type is the same as the closed captures

model, but each closed-captures trapping session contributes to the log likelihood.

Multi-strata Model. The saturated model for this data type is the same as for the live encounters

model.

BTO Ring Recovery Model. The saturated model for this data type is the same as for the live

encounters data.

Joint Live and Dead Encounters,Barker’s Model. The method used is identical to the live encounters

model.

Pradel and Link-Barker Models. These models assume that an animal can enter the study on any

occasion, so the saturated model is computed with the parameter estimate as the number of

animals with the encounter history divided by the total number of animals encountered. The

same procedure is used for the Burnham Jolly-Seber model and the POPAN model, but because

these data types include population size, complications result.

All Data Types with Individual Covariates. For any of the models with individual covariates, the

sample size for each encounter history is 1. The saturated model then has a −2 ln(L) value of

zero. The deviance for any model with individual covariates is then just its −2 ln(L) value.

end sidebar

Consider the following example of a logistic regression of some medical data. Suppose there is a

sample of male and female cardiac patients. Interest is focussed on whether or not the amplitude (high

or low) of a particular waveform in an electrocardiograph test (EKG) was a good predictor of cardiac

disease (0 = no disease, 1 = disease), and whether the predictions were influenced by the gender of the

patient. Here are the data, presented as a frequency table:

female EKG male EKG

disease h l disease h l

0 10 15 0 12 11

1 16 9 1 9 17

If we use bothsex andEKG and their interaction in the model,we will use up all the degrees of freedom.

That is, we are fitting each cell in the contingency table with its own parameter, which constitutes a

saturated model:

disease = sex + EKG + (sex× EKG)

If we fit this model to the data (using the logistic regression program from your favorite statistics

package),−2 ln(L) = 132.604. The AIC for this model is 140.604 (132.604+[2×4] = 140.604). Remember
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– the saturated model is the model where the model structure is saturated with respect to the data.

In other words, it is sufficiently parameterized that every data point is effectively encompassed by the

model. As such, the likelihood for the saturated model is as small as it’s ever going to get.

Now, in this case, the parameter values for the terms in the saturated model are all estimable. This will

not generally be the case. Moreover, in many cases, the saturated model is not a plausible, or interesting

general starting model. For the moment, let’s pretend that is the case here. Suppose that instead of the

saturated linear model proposed above, our general starting model is

disease = sex + EKG

If we fit this model to the data, the model likelihood is −2 ln(L) = 136.939, with an AIC of 142.939. As

expected, the fit isn’t as good as the saturated model. But, the point of interest here is – how different

is the fit? The numerical difference between the likelihood for the saturated model and the general

model is (136.939 − 132.604) = 4.335. The difference in the degrees of freedom (number of estimable

parameters) between the two models is 1 (the interaction term).

Now, for the key conceptual step – the difference in fit (deviance) between the saturated model

and any other model (in this case, the general model in the candidate model set) is asymptotically "2

distributed (at least, in theory). In MARK, the deviance (as reported in the results browser) is defined as

the difference in−2 ln(L) between the current model and the saturated model. For our example analysis,

"2
1 = 4.335 is marginally significant (% = 0.0373) based on a nominal  = 0.05 level. This suggests that

the general model does not quite adequately fit the data.

So, why is this important? Well, suppose we didn’t know that the general model in our model set

has some lack of fit to the data (relative to the saturated model), and proceeded to compare the general

model with a reduced parameter model

disease = EKG

In other words, we’re comparing

disease = SEX + EKG + error

versus disease = EKG + error

SEX

which amounts to a test of the importance of SEX in determining the presence or absence of the cardiac

disease. The likelihood for the reduced model (disease = EKG) is −2 ln(L) = 137.052, with an AIC of

141.052. If we use a LRT to compare the fits of the general and reduced models, we get a test statistic of

"2
1 = (137.052− 136.939) = 0.0113, which is clearly not significant by usual statistical standards.

However, in making this comparison we’ve ignored the fact that our general model has marginally

significant lack of fit to the data (relative to the saturated model). Does this make a difference in our

analysis? In fact, the generally accepted approach to this would be to ‘adjust’ (correct) the likelihood of

both the general model and the reduced model to account for the lack of fit between the general and

saturated models.

For a correctly specified model, the "2 statistic (or the deviance) divided by the degrees of freedom,

should be approximately equal to one. When their values are much larger than one, the assumption of

simple binomial variability may not be valid and the data are said to exhibit overdispersion. Underdisper-

sion, which results in the ratios being less than one, occurs less often in practice.

The most common approach to correcting for overdispersion in linear models is to multiply the

covariance matrix by a dispersion parameter (note: this approach is most robust when the sample sizes
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in each subpopulation in the analysis are roughly equal). In other words, we use a function of the lack

of fit (typically, some function of the "2
/35 for the general model), to adjust the fit of the general and all

other models in the candidate model set. For our present example, applying a "2/35 ‘correction’ yields

−2 ln(L) = 31.590 for the general model, and −2 ln(L) = 31.616 for the reduced model.

Do we need to modify the LRT in any way? In fact, the LRT, which is normally a "2 test between two

models, is transformed into an �-test, with (df!') ,df<>34;) degrees of freedom:

� =

(

"2
!')/df!')

)

2̂
,

where

2̂ ≈
"2

35
= 1.

For this example, no big difference in the subsequent LRT between the two models.

What about the AIC approach? Well, recall from Chapter 4 that the sample-size corrected AIC2 is

estimated as

AIC2 = −2 ln
(

L(�̂)
)

+ 2 +

(

2 ( + 1)

= −  − 1

)

.

Do we need to adjust the AIC2 for lack of fit between the general model and the saturated model?

Perhaps given the preceding discussion it is not surprising that the answer is ‘yes’. We have to adjust

the likelihood term, yielding the quasi-likelihood adjusted AIC, the QAIC2

QAIC2 =
−2 ln(L)

2̂
+ 2 +

(

2 ( + 1)

= −  − 1

)

,

where 2̂ is the measure of the lack of fit between the general and saturated models.‗

Now, since

2̂ ≈
"2

35
= 1,

for a saturated model, then as the general model gets ‘further away’ from the saturated model, 2̂ > 1.

If 2̂ = 1, then the expression for QAIC2 reduces back to AIC2 (since the denominator for the likelihood

term disappears). If 2̂ > 1, then the contribution to the QAIC2 value from the model likelihood will

decline, and thus the relative penalty for a given number of parameters K will increase. Thus, as 2̂

increases, the QAIC2 tends to increasingly favor models with fewer parameters.

begin sidebar

What if ĉ < 1?

What if 2̂ < 1? In the preceding, we mention the case where 2̂ > 1, indicating some degree of lack of

fit, reflecting (in all likelihood) overdispersion in the data. Now, if instead, 2̂ < 1, then we generally

‗ Some people feel that every model should have one additional parameter included if a value of 2 is estimated for the set of
models. The is an option in MARK (under ‘File | Preferences’) to automatically add 1 to  , the number of parameters
estimated, for each model. However, the effect on model selection results is typically extremely small, and can result in errors
in the value of  . Use at your own risk.

Chapter 5. Goodness of fit testing...



5.2. The practical problem – estimating ĉ 5 - 6

consider this as reflecting underdispersion. While the intuitive thing to do is to simply enter the 2̂

as estimated (discussed below), there is lack of unanimity on how to handle 2̂ < 1. Some authors

recommend using the estimated 2̂, regardless of whether or not it is > 1 or < 1. However, still others

suggest that if 2̂ < 1, then you should set 2̂ = 1 (i.e., make no adjustment to various metrics). For the

moment, the jury is out – all we can recommend at this stage is – if 2̂ > 1, then adjust. If 2̂ < 1, then

set 2̂ = 1, and ‘hold your nose’.

end sidebar

5.2. The practical problem – estimating ĉ

In a recent paper, Gary White commented:

“ The Achilles’ heel...in capture- recapture modeling is assessing goodness-of-fit (GOF).

With the procedures presented by Burnham & Anderson (1998), quasi-likelihood ap-

proaches are used for model selection and for adjustments to the variance of the estimates

to correct for over-dispersion of the capture-recapture data. An estimate of the over-

dispersion parameter, c, is necessary to make these adjustments. However, no general, ro-

bust, procedures are currently available for estimating c. Although much of the goodness-

of-fit literature concerns testing the hypothesis of lack of fit, I instead view the problem

as estimation of c.

”
So, the objective then becomes estimating the lack of fit of the model to our data. In other words,

how to estimate 2̂? The general challenge of estimating 2̂ is the basis for a significant proportion of the

remainder of this chapter.

As we’ll see, there are a number of approaches that can be taken. The most obvious approach is to

simply divide the model "2 statistic by the model degrees of freedom:

2̂ ∼=
"2

35
.

However, in many (most?) cases involving the sorts of multinomial data we analyze with MARK,

this approach doesn’t work particularly well. Although the distribution of the deviance between the

general and saturated models is supposed to be asymptotically "2 distributed, for the type of data we’re

working with it frequently (perhaps generally) isn’t because of sparseness in the frequency table of some

proportion of the possible encounter histories. For example, for live encounter mark-recapture data, for

the CJS model (Chapter 4), there are [(2= − 1) − 1] possible encounter histories for = occasions, and for

typical data sets, many of the possible encounter histories are either rare or not observed at all. The

asymptotic distribution of the deviance assumes that all encounter histories are sampled (which would

be true if the sample were infinitely large, which is of course the underlying assumption of ‘asymptopia’

in the first place).

Given that the asymptotic assumptions are often (perhaps generally) violated for these sorts of data,

alternative approaches are needed. Moreover, an estimate of "2 is not available for all models (in

particular, for models where the saturated model is not defined), and there can be some non-trivial

difficulties involved in the calculation of the "2 statistics, especially for sparse data sets. On the other

hand, the advantage of using a "2 approach is that the frequency tabulations used in deriving the "2

statistic are often very useful in determining the ‘sources’ of lack of fit.

In the following we’ll discuss two broadly different approaches for estimating 2̂. The first approach

we’ll describe, using program RELEASE, provides estimates of 2̂ for CJS live-encounter data using a
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contingency table (i.e., "2) approach. However, this is not generalizable to other data types, so other

approaches are required.

The second approach we’ll discuss (the bootstrap, and median-2̂) uses simulation and resampling to

generate the estimate of 2̂. Rather than assuming that the distribution of the model deviance is in fact "2

distributed (since it generally isn’t for typical ‘MARK data’, as noted above), the bootstrap and median-2̂

approaches generate the distribution of model deviances, given the data, and compare the observed

value against this generated distribution. The disadvantage of the bootstrap and median-2̂ approaches

(beyond some technical issues) is that both merely estimate 2̂. While this is useful (in a practical sense),

it reveals nothing about the underlying sources of lack of fit. In a similar vein, we’ll also introduce an

approach (the Fletcher-2̂) that is somewhat similar to the approach based on program RELEASE, but is

more general, and like the bootstrap and median-2̂ approaches, provides no guidance as to the causes

for the lack of fit.

Each approach has different strengths and weaknesses, so a good understanding of each of these

procedures is important to assessing model fit using MARK.

5.3. Program RELEASE – details, details. . .

For testing the fit of the data to a fully-time-dependent CJS model, program RELEASE (introduced

in the Burnham et al. 1987 monograph) has been the de facto standard approach for many years. In

the following, we describe the use of RELEASE for GOF testing (and estimation of 2̂). We will discuss

the use of RELEASE to generate specific GOF statistics, and give some broad suggestions for how to

interpret lack-of-fit (from both a statistical and biological point of view),and what remediesare available.

Note, RELEASE is primarily intended for standard live-recapture models, although it can be tweaked

to handle some dead recovery models as well. While this may not be appropriate for your particular

analysis (e.g., if you’re working with telemetry, for example), there is still value in understanding how

RELEASE works, since the principles underlying it are important for all analyses, not just standard

live-recapture studies.

5.4. Program Release – TEST 2 & TEST 3

Program RELEASE generates 3 standard ‘tests’, which are given the absolutely uninformative names

‘TEST 1’, ‘TEST 2’, and ‘TEST 3’. The latter 2 tests, TEST 2 and TEST 3, together provide the GOF

statistics for the reference model (the time-dependent CJS model). TEST 1 is an omnibus test that is

generated only if you are comparing groups, and tests the following hypothesis under model {!6∗C ?6∗C}:

H> : all parameters !8 and ?8 have the same value across treatment groups (i.e., there is no

difference in survival (!8) or recapture (?8) considered simultaneously among groups).

H0 : at least some values for either !8 or ?8 (or both) differ among groups.

The big advantage of using MARK or one of the other applications available for CMR analysis, is that

you can separately model differences in either survival or recapture rate independently. TEST 1 does

not do this – it only tests for an ‘overall’ difference among groups. Since this severely limits its utility,

we will not discuss use of TEST 1 – in fact, we actively discourage it’s use, since it is possible to do far

more sophisticated analysis if you have capture histories from individually marked animals (although

TEST 1 may still be of use when complete capture histories are not available – see the ‘blue book’ for

use of RELEASE and TEST 1 under alternative capture protocols). While TEST 1 may be of limited use,

TEST 2 and TEST 3 together are quite useful for testing the GOF of the standard time-dependent CJS
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(Cormack-Jolly-Seber) model to the data (this model was first presented in detail in Chapter 4).

What do we mean by ‘lack of fit’? As noted previously, we mean that the arrangement of the data do

not meet the expectations determined by the assumptions underlying the model. These assumptions,

which we also noted earlier in this chapter, sometimes known as the CJS assumptions are:

1. Every marked animal present in the population at time (i) has the same probability

of recapture (?8)

2. Every marked animal in the population immediately after time (i) has the same

probability of surviving to time (i+1)

3. Marks are not lost or missed.

4. All samples are instantaneous, relative to the interval between occasion (i) and (i+1),

and each release is made immediately after the sample.

For now, we will assume that assumptions 3 and 4 are met. It is assumptions 1 and 2 which are

typically the most important in terms of GOF testing. In fact, TEST 2 and TEST 3 in RELEASE, as well

as the GOF tests in other software, directly test for violations of these two assumptions (in one form or

another).

Let’s expand somewhat on assumptions 1 and 2. Assumption 1 says that all marked animals in

the population have the same chances of being captured at any time (i). What would be the basis for

violating this assumption? Well, suppose that animals of a particular age or size are more (or less) likely

to be captured than animals of a different age or size? Or, suppose that animals which go through the

process of being captured at occasion (i) are more (or less) likely to be captured on a later occasion than

animals who were marked at some other occasion? Or, what if some marked individuals temporarily

leave the sample area (temporary emigration)? Or what if animals always exist in ‘pairs’? For estimation

of survival in open populations, marked animals have the same probability of recapture. For estimation

of population size (abundance), both marked and unmarked animals must have the same probability

of capture.

What about assumption 2? Assumption 2 says that, among the marked individuals in the population,

all animals have the same probability of surviving, regardless of when they were marked. In otherwords,

animals marked at occasion (i-1) have the same probability of surviving from (i) to (i+1) as do animals

marked on occasion (i). When might this assumption be violated? One possibility is that individuals

caught early in a study are more (or less) prone to mortality than individuals caught later in the study.

Or, perhaps you are marking young individuals. An individual captured and marked as an offspring

at (i-1) will be older, or larger, or possibly of a different breeding status, at occasion (i), while offspring

marked at occasion (i) are just that, offspring. As such, the offspring marked at (i-1) may show different

survival from (i) to (i+1) than offspring marked at (i), since the former individuals are older, or larger,

or somehow ‘different’ from individuals marked at (i).

For both TEST 2 and TEST 3 we have noted several reasons why either TEST 2 or TEST 3 might

be violated. The examples noted are by no means an all-inclusive list – there are many other ways

in which either or both tests could be violated. While violation of the underlying model assumptions

has a specific statistical consequence (which we will deal with shortly), it may also serve to point out

something interesting biologically. Forexample,suppose all animals are not equally likely to be captured

at any occasion. We might ask ‘why? Does this reveal something interesting about the biology?’.

We’ll approach GOF testing in 2 steps. First, we’ll describe the ‘mechanics’ of how to run RELEASE

to generate the TEST 2 and TEST 3 results. Then, we’ll discuss the mechanics of how these two tests

are constructed, and how to interpret them.
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5.4.1. Running RELEASE

Running RELEASE from within MARK is easy. Running it as a standalone application is also fairly

straightforward – more on this in a moment. For now, we will restrict our discussion to running

RELEASE from within MARK, although there may be a few instances where it may become necessary

to run RELEASE as a stand-alone application.

To run RELEASE from within MARK, simply pull down the ‘Tests’ menu, and select ‘Program

RELEASE GOF’. This option is available only if you selected ‘Recaptures’ as the data type. That’s it.

RELEASE will run, and the results will be output into a Notepad window.

At the top of this output file there will be some information concerning recent updates to the

RELEASE program, and some statement concerning limits to the program (maximum number of

groups,or occasions). Then,you will see a listing of the individual capture histories in your data set,plus

a summary tabulation of these histories known as the reduced m-array. The m-array contains summary

information concerning numbers of individuals released at each occasion, and when (and how many)

of them were captured at subsequent occasions. The reduced m-array will be discussed in more detail

later. These m-array tabulations are then followed by the TEST 2 and TEST 3 results for each group

(respectively), followed in turn by the summary statistics.

TEST 2

TEST 2 deals only with those animals known to be alive between (i) and (i+1). This means we need

individuals marked at or before occasion (i), and individuals captured at or later than (i+1). If they

were alive at (i), and captured at or later than (i+1), then they must have been alive in the interval from

occasion (i) to (i+1).

In other words, ‘is the probability of being seen at occasion (i+1) a function of whether or not you

were seen at occasion (i), given that you survived from (i) to (i+1)?’. Under assumption 1 of the CJS

assumptions,allmarkedanimals shouldbe equally ‘detectable’ atoccasion (i+1) independentofwhether

or not they were captured at occasion (i). TEST2.C has the following general form: of those marked

individuals surviving from (i) to (i+1), some were seen at (i+1), while some were seen after (i+1). Of

those not seen at (i+1), but seen later, does ‘when’ they were seen differ as a function of whether or not

they were captured at occasion (i)?

In other words:

when seen again?

seen at (i) (i+1) (i+2) (i+3) (i+4) ... (i+5)

no f f f f f f

yes f f f f f f

So, TEST2 asks ‘of those marked animals not seen at (i+1), but known to be alive at (i+1) (since they

were captured after i+1), does when they were next seen (i+2, i+3...) depend on whether or not they were

seen at (i)?’. Again, we see that TEST2.C deals with capture heterogeneity. For most data sets, pooling

results in a (2 × 2) matrix.

TEST2 (in general) is sensitive to short-term capture effects, or non-random temporary emigration.

It highlights failure of the homogeneity assumption (assumption 1), among animals and between

occasions. In practice, TEST 2 is perhaps most useful for testing the basic assumption of ‘equal

catchability’ of marked animals. In other words, we might loosely refer to TEST 2 as the ‘recapture

test’.
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TEST 3

In general, TEST 3 tests the assumption that all marked animals alive at (i) have the same probability

of surviving to (i+1) – the second CJS assumption.

TEST 3 asks: ‘of those individuals seen at occasion (i), how many were ever seen again, and when?’.

Some of the individuals seen at occasion (i) were seen for the first time at that occasion, while others

had been previously seen (marked). Does whether or not they were ever seen again depend on this

conditioning? The first part of TEST 3, known as TEST3.SR, is shown in the following contingency

table:

seen before (i) seen again not seen again

no f f

yes f f

In other words, does the probability that an individual known to be alive at occasion (i) is ever seen

again depend on whether it was marked at or before occasion (i)? If there is only a single release cohort,

then ‘seen before i?’ becomes ‘seen before i, excluding initial release?’.

TEST3.SR is what is presented for TEST 3 in the version of RELEASE bundled with MARK. There

is also a TEST3.Sm, which asks ‘...among those animals seen again, does when they were seen depend

on whether they were marked on or before occasion (i)?’. TEST3.Sm is depicted in the following

contingency table:

when seen again?

seen before (i) (i+1) (i+2) (i+3) (i+4) ... (i+5)

no f f f f f f

yes f f f f f f

If there is only a single release cohort, then ‘seen before i?’ become ‘seen before i, excluding initial

release?’. So, in a very loose sense, TEST 2 deals with ‘recapture problems’, while TEST 3 deals with

‘survival problems’ (although there is no formal reason to make this distinction – it is motivated by our

practical experience using RELEASE). If you think about it, these tables should make some intuitive

sense: if assumptions 1 and 2 are met, then there should be no difference among individuals if or when

they were next seen conditional on whether or not they were seen on or before occasion (i).

Let’s consider a simple example of GOF testing with RELEASE. We simulated a small data set –

6 sampling occasions, 350 newly marked individuals released alive at each occasion. First, let’s look

at something call the reduced m-array table RELEASE generates as the default (the other m-array

presentation you can generate running RELEASE as a stand-alone application is the full m-array – this

will be discussed later). Examination of the m-array (in either form) will give you some idea as to ‘where

the numbers come from’ in the TEST 2 and TEST 3 contingency tables.

The reduced m-array for the simulated data is shown at the top of the next page. The main elements

of interest are the R8 , <8 ,9, and A8 values. The R8 values are the number of individuals in total released

on each occasion. For example, R1 = 350 equals 350 individuals released on the first occasion – all

newly marked. At the second occasion (R2), we released a total of 428 individuals – 350 newly marked

individuals, plus 78 individuals from the first release which were captured alive at the second occasion.

The<8 ,9 values are the number of individuals from a given release event which are captured for the first
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time at a particular occasion. For example, <1,2 = 78. In other words, 78 of the original 350 individuals

marked and released at occasion 1 (i.e., R1) were recaptured for the first time at occasion 2. At the third

occasion (<1,3), 41 individuals marked and released at occasion 1 were recaptured for the first time, and

so on.

The A8 values are the total number of individuals captured from a given batch release see below). For

example, from the original R1 = 350 individuals, a total of 157 were recaptured at least once over the

next 5 capture occasions. Neither the <8 ,9, or A8 values distinguish between newly marked or re-released

individuals – they are simply subtotals of all the individuals released at a given occasion. As we’ll see

shortly, this limits the usefulness of the reduced m-array.

begin sidebar

Batch release??

What do we mean by a ‘batch release’? Historically, a cohort referred to a group of animals released at

the same occasion – whether newly marked or not. However, when using MARK, we refer to a cohort

as all animals marked at the some occasion. In this context, an animal does not change cohorts – it is

a ‘fixed’ characteristic of each marked individual. In the RELEASE context, cohort changes with each

capture occasion. To prevent confusion, we use the term ‘release batch’, or simply ‘batch’, to refer to

all individuals (marked and unmarked) released on a given occasion.

end sidebar

Following the reduced m-array are the results for TEST 3. Since there are 5 recapture occasions there

are as many as 7 total TEST 3 tables (4 for TEST3.SR and 3 for TEST3.Sm). Let’s consider just one of

these tables – the first TEST3.SR table, for individuals captured on occasion 2 (top of the next page).

Why is this the first table? Well, recall what TEST3.SR compares – seen before versus not seen before –

obviously, at occasion 1, no animals were seen before. Thus, we start at occasion 2.

Look closely at the table. Note that the table starts with a restatement of what is being tabulated

– here, ‘goodness of fit test of seen before versus not seen before against seen again versus not seen

again by capture occasions’. You will also see comments concerning which group is being tested, and

possibly something concerning the ‘control’ group. By default, if you’re working with only one group,

RELEASE assumes that it is a ‘control group’ in a ‘control vs. treatments’ experiments.

Note the labeling: TEST3.SR2. The ‘TEST.3SR’ part is obvious, the ‘2’ simply refers to the second

occasion (so, TEST3.SR3 for the third occasion, TEST3.SR4 for the fourth occasion, and so on). At

occasion 2, a total of 428 individuals were released. Of these, 78 had been seen before, and 350 were
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newly marked individuals. In the first row of the contingency table, we see that of the 78 individuals

seen before, a total of 52 (or 67%) of these individuals were ever seen again. In the second row of the

table, we see that of the 350 newly marked individuals, a total of 250 (or 71%) were ever seen again.

Where did the numbers 52 and 250 come from? Can we tell from the reduced m-array? Unfortunately,

the answer is ‘no’. Why? Because the reduced m-array does not ‘keep track’ of the fates of individuals

depending on when they were marked. For this, you need a different type of m-array, known as the

full m-array. To generate the full m-array, you need to run RELEASE as a standalone application, and

modify a specific control element to generate the full m-array.

5.4.2. Running RELEASE as a standalone application

To run RELEASE as a stand-alone application, you first need to make a simple modification to the INP

file containing the encounter history data. You simply need to add a single line to the top of the INP file.

The ‘additional’ line is the PROC CHMATRIX statement. Here is the minimal PROC CHMATRIX statement for

our example data set:

PROC CHMATRIX OCCASIONS=6 GROUPS=1;

The PROC CHMATRIX statement must include (at least) the GROUPS and OCCASIONS statements. However,

there are a number of other options which can also be applied to this procedure. One of these options is

DETAIL – as its name implies, the DETAIL option provides ‘detailed’ information about something. The

DETAIL option is the default in the version of RELEASE which comes with MARK.

The ‘something’ is in fact detailed information concerning TEST 2 and TEST 3. When the DETAIL

option is in effect, RELEASE provides the individual contingency tables (including observed and

expected frequencies) upon which they are based (discussed below), as well as the summary statistics

for all batches pooled. If you have a data set with a large number of occasions, this can generate a very

large amount of output.

The opposite to the DETAIL option is the SUMMARY option, which forces RELEASE to print only the

summary TEST 2 and TEST 3 results for each batch separately and all batches pooled.

You choose either the DETAIL or SUMMARY option as follows:

PROC CHMATRIX OCCASIONS=6 GROUPS=1 DETAIL;

To use the SUMMARY option (instead of DETAIL), you would type

PROC CHMATRIX OCCASIONS=6 GROUPS=1 SUMMARY;
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To generate a full m-array (below) you would simply write:

PROC CHMATRIX OCCASIONS=6 GROUPS=1 DETAIL FULLM;

How do you run RELEASE? Simply shell out to DOS, and type:

REL_32 I=<INPUT FILE> O=<OUTPUT FILE> <enter>

If nothing happens, it probably means that REL_32 isn’t in the PATH on your computer. Make sure it

is, and try again. If our RELEASE file is called TEST.REL, and we want our results to be written to a file

called TEST.LST, then we would type:

REL_32 I=TEST.REL O=TEST.LST <enter>

The output would be in file TEST.LST, which you could examine using your favorite text editor. Now,

for the present, we’re interested in considering the full m-array. Assume that we’ve successfully added

the appropriate PROC CHMATRIX statement to the INP file for our simulated data, and successfully run

RELEASE. In the output, we see something that looks quite different than the simple, reduced m-array.

This is the full m-array, and is shown below:

As you can readily see, the full m-array contains much more information than the reduced m-array.

In fact, it contains the entire data set! If you have the full m-array, you have all the information you need

to run a CMR analysis. If you look closely at the full m-array, you’ll see why.
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Let’s concentrate on the information needed to generate TEST3.SR2. From the preceding page, recall

that of the 78 individuals (i) initially marked at occasion 1, that (ii) were also captured and re-released

at occasion 2, 52 were seen again at some later occasion. What would the encounter history of these 78

individuals be? – obviously ‘11’ – marked at the first occasion, and recaptured at the second occasion.

The ‘11’ encounter history is represented as {11} in the full m-array. Find this encounter history in the

3rd line. To the right, you will see the number 78, indicating that there were 78 such individuals. To

the right of this value are the totals, by capture occasion, of individuals from this group of 78 ever seen

again. For example, 29 of this 78 were seen again for the first time at occasion 3, 15 were seen for the

first time at occasion 4, and so on. In total, of the 78 {11} individuals released, a total of 52 were seen

again. You should now be able to see where the values in the TEST3.SR2 table came from.

Now, consider the ‘statistical results’. Although the proportions seen again appear to differ between

the two groups (68% for previously marked vs 71% for the newly marked), they are not statistically

different ("2
1 = 0.696, P=0.412). What are the other 2 numbers in each of the cells? Well, if you look

down the left side of the table you’ll get a hint – note the 3 letters ‘O’, ‘E’ and ‘C’. ‘O’ = the observed

frequencies, ‘E’ = the expected frequencies (under the null hypothesis of the test), and ‘C’ represents the

contribution to the overall table "2 value (summing the ‘C’ values for all four cells yield 0.696. The ‘C’

values are simply ($−�)2/�). So, for individuals released at the second occasion, there is no significant

difference in ‘survival’ between newly marked and previously marked individuals.

Following the last table (TEST3.SR5 – individuals released at occasion 5), RELEASE prints a simple

cumulative result for TEST3.SR – which is simply the sum of the individual "2 values for each of the

individual TEST3.SRn results. In this case, "2
= 2.41, df = 3, % = 0.492. What if TEST.3SR had been

significant? As we will see shortly, examination of the individual tables is essential to determine the

possible cause of lack of fit. In this case, since we have no good ‘biological explanation’ for TEST3.SR3

(obviously, since this is a simulated data set!), we accept the general lack of significance of the other

tables, and conclude that there is no evidence over all occasions that ‘survival’ differs between newly

marked and previously marked individuals.

Now let’s look at TEST3.Sm2 (i.e., TEST3.Sm for occasion 2). Recall that this test focuses on ‘of

those individuals seen again, when were they seen again, and does when they were seen differ among

previously and newly marked individuals?’. As with TEST3.SR, there is a contingency table for each

of the batches, starting with the second occasion, and ending with occasion 4.

Why not occasion 5? Well, think about what TEST3.Sm is doing – it is comparing when individuals

are seen again (as opposed to are they seen again). At occasion 5, any individual if seen again must

have been seen again at the last occasion (6), since there are no other occasions! So, it doesn’t make

much sense to create TEST3.Sm for the penultimate occasion. Let’s consider TEST3.Sm2 – the second

occasion.

At occasion 2, a total of 428 individuals were released – 78 that had been seen before, and 350 newly
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marked individuals. Of these 428 individuals, 302 were seen again. From the TEST3.Sm2 table (above),

250 of this 302 were newly marked individuals, and 52 were previously marked. You should be able to

determine where these totals come from, using the full m-array (shown a page or so back).

However, we’re now faced with a different puzzle – why only two columns? If TEST3.Sm considers

‘when’ individuals were seen again, then unless all individuals seen again were seen on only the next

two occasions, then there should be more than two columns.

Look at the full m-array (on the preceding page). We see that of the 428 individuals marked and

released at occasion 2, 350 were newly marked and released (the {01} individuals), while 78 were

previously marked at occasion 1, and released (the {11} individuals). Of the 350 {01} individuals, 141

were seen again for the first time at occasion 3, 77 were seen again for the first time at occasion 4, and

so on. Among the 78 {01} individuals, 29 were seen again for the first time at occasion 3, 15 were seen

again for the first time at occasion 4, and so on.

Thus, if we were to construct our own TEST3.Sm2 table, it would look like:

TEST3.Sm2 when seen again?

seen at (2) (3) (4) (5) (6)

{01} 141 77 28 4

{11} 29 15 8 0

So why doesn’t the RELEASE table for TEST3.Sm2 look like this? It doesn’t, because RELEASE is

‘smart’ enough to look at the ‘true’ table (above) and realize that the data are too sparsely distributed for

the later occasions for a contingency test to be meaningful. RELEASE has simply pooled cells, collapsing

the (2 × 4) table to a (2 × 2) table.

Now consider TEST 2, starting with TEST2.C. Recall that in TEST2.C, we are ‘using’ individuals

that are known to have survived from (i) to (i+1). TEST2.Ct tests if the probability of being seen at

occasion (i+1) is a function of whether or not the individual was seen at occasion (i), conditional on

surviving from (i) to (i+1). TEST 2 differs from TEST 3 somewhat in that we are not considering when

an individual was marked, but rather on when it was recaptured. The result for TEST.2C2 is shown

below:

Once each of the component tests TEST 3 and TEST 2 are finished, RELEASE presents you with

a convenient tabulation of all of the individual TEST 3 and TEST 2 results. It also gives you some

indication as to whether or not there was sufficient data in a given test for you to be able to ‘trust’ the

result. Using our simulated data, we have no significant TEST 2 or TEST 3 result. Thus, the overall

GOF result (TEST 2 + TEST 3 = 6.34) is also not significant (% = 0.898). This is perhaps not surprising,

Chapter 5. Goodness of fit testing...



5.5. Enhancements to RELEASE – program U-CARE 5 - 16

since we set up the simulation so that the data would follow the CJS assumptions! Our purpose here

was simply to introduce TEST 2 and TEST 3.

One thing you might be asking yourself at this point is ‘since RELEASE gives me these nice summary

tables, why do I need so much detail?’. The answer – if your data do fit the CJS model, then you clearly

don’t. But if your data don’t fit the model (i.e., if any of the tests is rejected), then the only chance you

have of trying to figure out what is going on is to look at the individual contingency tables. We got some

sense of this when we looked at TEST3.SR in our simulated data set – one of the batches had results

quite different from the other batches, leading to a near-significant TEST3.SR result overall. Further,

even if the 4 tests are accepted (no significant differences) you should remember that these tests are for

simple heterogeneity – they do not test specifically for systematic differences. Again, the only clue you

might have is by looking at the individual tables.

5.5. Enhancements to RELEASE – program U-CARE

Recently, Rémi Choquet, Roger Pradel, and Olivier Gimenez (Choquet et al. 2009) have developed a

program (known as U-CARE, for Unified Capture-Recapture) which provides several enhancements to

program RELEASE. U-CARE provides goodness-of-fit tests for single-site models,as well as tests for the

multistate JollyMoVe (JMV) and Arnason-Schwarz (AS) models (Pradel et al. 2003, 2005– for discussion

of the use of U-CARE for GOF testing for multi-state models, see the last section(s) of Chapter 8). Here,

we concentrate on using U-CARE for GOF testing for single-state models only.

U-CARE contains several tests which are similar to those found in RELEASE, but in many cases

using slightly different strategies for pooling sparse contingency tables (and thus, the results may differ

slightly from those from RELEASE – we’ll see an example of this shortly). More importantly, however,

U-CARE incorporates specific ‘directional’ tests for transience (Pradel et al., 1997) and trap-dependence

(trap-happiness or trap shyness; Pradel 1993) derived from the contingency tables used in the GOF tests

in RELEASE. Forthcoming versions of U-CARE are anticipated to incorporate further specialized tests

and appropriate treatment of sparse data together with indications on the recommended model from

which model selection can start.

At present, U-CARE cannot be run from within MARK, and so must be run separately, as a stand-

alone program. When you start U-CARE, you will be presented with two windows : one, a ‘black DOS

window’ (which is where evidence of the numerical estimations can be seen – you may have already

noticed that MARK uses a similar ‘command window’ during its numerical estimations), and the main

‘graphical’ front-end to U-CARE – clearly, it’s pretty ‘minimalist’:
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Initially, only one menu is available: the ‘File’ menu. As you might expect, this is where you tell

U-CARE where to find the data you want to perform a GOF test on.

However, if you access the ‘File’ menu,

you will see a number of options: you can open encounter history files in one of two formats: a format

used in program SURGE (and derivatives) known as Biomeco, and the one we’re familiar with, the

MARK format (the distinctions between the formats are minor – in fact, U-CARE provides you the

utility function of being able to read in data in one format, verify it, and write it out in another format.

To demonstrate using U-CARE, let’s test the fit of a familiar data set – the European dippers. We’ll

focus for the moment on the males only (i.e., a single group). This file is called ed_males.inp. We simply

select this file using the ‘Open (MARK Format)’ file option in U-CARE.

Once you’ve selected the MARK input file, U-CARE responds with a small ‘pop-up’ window which

is asking you (in effect) if there are any external covariates in the file (see Chapter 2). In this case, with

the male dipper data, there are no covariates included in the data set, so U-CARE informs you that, as

far as it can tell, there are 0 covariates:

If this is correct (which it is in this case), simply click the ‘OK’ button to proceed. You’ll then be

presented with 2 new windows: one window shows the encounter histories themselves (if they look

‘strange’ – specifically, if you’re wondering why the columns are separated by spaces – not to worry. This

is Biomeco format, and is functionally equivalent to MARK’s input format in how U-CARE processes

the data).

The other window (shown at the top of the next page) is the main U-CARE window, but with many

more options now available, plus a window showing you some details about the file you just read in.

Note that U-CARE assumes that the number of occasions in the data file is the number of occasions

you want to test GOF over. In MARK, recall that you must ‘tell MARK’ how many occasions there are

(or, that you want to use).
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If you pull down each of the menus in turn, you’ll see that there are a lot of options in U-CARE. The

‘Transform Data’ menu provides a set of convenient ways in which to split or pool data (e.g., pooling

multiple strata into a single stratum), according to various criterion, reverse the encounter histories, and

so forth.

The other two menu options are clearly relevant for GOF testing. There is a GOF menu, and then one

specific to multi-state models. For the moment, since our example data have only one ‘state’ (multi-state

models is something we cover is some detail in Chapter 8), we’ll consider only the ‘Goodness-of-Fit’

menu. If you access this menu, you’ll see several options.

The first (‘M-ARRAY’) allows you to generate the reduced m-array for your data. Recall that the reduced

m-array is a summary table, and does not represent all of the details concerning the encounter histories,

which are contained in the full m-array. The m-array is useful for ‘visual diagnosis’ of some aspects of

your data.

Next are 4 component tests: two for ‘Test 3’,and two for ‘Test 2’.The use of ‘Test 3’ and ‘Test 2’ indicates

clearly thatU-CARE is builton the underlying principles (andcode base) ofprogram RELEASE. In some

cases, the tests are identical (for example, TEST3.SR). In other cases, they are somewhat different (e.g.,

there is no TEST2.CL in the version of RELEASE distributed with MARK). More on these individual

component tests in a moment. Finally, there is an option (at the bottom of the menu) to sum the tests

over groups. This option basically gives you the summary results of the individual component tests, in
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a single output.

To explore the individual component tests in U-CARE, let’s proceed to do the GOF testing on the

male dippers. We’ll start with TEST3.SR. Recall from the earlier discussion of program RELEASE

that TEST3.SR tests the hypothesis that there is no difference among previously and newly marked

individuals captured at time (i) in the probability of being recaptured at some later time > 8 (i.e., that

whether or not an animal is ever encountered again is not a function of whether or not it is newly

marked). If you select TEST3.SR from the menu, U-CARE will respond with a window showing the

contributions of each cohort to the overall "2 statistic for this test:

One of the first things we notice from the output for TEST3.SR (and all the other tests, which will get

to shortly) is that U-CARE provides a fair number more ‘statistical bits’ than you find in the output from

program RELEASE. Forexample,you’ll recall from ourpreceding discussion of program RELEASE that

by careful examination of the individual contingency tables of TEST3.SR, you might be able to ‘visually’

detect systematic departures from expectation in the contingency tables,which might be consistent with

transient effects (or age effects). However, U-CARE formalizes this level of analysis (while also making it

much simpler), by providing a test specific for ‘transience’ (or, perhaps more accurately, directionality).

In fact, U-CARE gives you 2 different approaches to this statistic (the second one based on a log-

odds-ratio), as well as both a two-tailed and one-tailed significance test. U-CARE also provides two test

statistics for overall heterogeneity (the quadratic and likelihood-based G test). The table-like material

at the top of the output is the contribution of each cohort to the various statistics (the additivity of the

various statistics is quite useful, since it can help you identify particular cohorts which might be having

undue influence on the overall fit).
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How do these results compare to those from RELEASE? Recall we mentioned in passing that U-

CARE uses a slightly different pooling algorithm than does RELEASE, and as such, there will be

occasions where U-CARE and RELEASE give slightly different answers. Here are the results from

TEST3.SR from program RELEASE.

We see that the overall heterogeneity"2 statistic from RELEASE (which is based on a Pearson statistic)

is 5.2759, with 5 df. Based on a two-tailed test, the calculated probability is 0.3831. From U-CARE, there

are two test statistics: 6.7776 and 6.8491, both with the same degree of freedom (5). Both of these values

are somewhat higher than the value from RELEASE. These differences come from differences in how

pooling in sparse cohort-specific contingency tables is handled between the two programs. You can get

a sense of this by comparing the contributions from each cohort to the overall "2 statistic between the

two programs. Note that the differences are quite striking in this example: many of the cohorts have

very sparse data.

What about the other component tests? In RELEASE, there is a companion test forTEST3.SR, referred

to as TEST3.Sm (recall that TEST3.Sm tests the hypothesis that there is no difference in the expected

time of first recapture between the ‘new’ and ‘old’ individuals captured at occasion i and seen again at

least once). This test is also available in U-CARE.

However, there are some notable differences between MARK and U-CARE when it comes to TEST2.

In MARK, there is only a single TEST2 provided (TEST2.C), whereas in U-CARE, TEST2 is divided

into two component tests: TEST2.CT, and TEST2.CL. TEST2.CT tests the hypothesis that there is no

difference in the probability of being recaptured at i+1 between those captured and not captured at

occasion i, conditional on presence at both occasions. TEST2 differs from TEST3 somewhat in that we

are not considering when an individualwas marked,but ratheron when itwas recaptured. The TEST2.C

in MARK is equivalent to TEST2.CT in U-CARE. But, what about TEST2.CL, which is presented in

U-CARE? TEST2.CL, based on the contingency table where individuals are classified on whether or

not they were captured before (or at) occasion i, and after (or at) occasion i+2 (and thus known to be

alive at both i, and i+1). The null hypothesis being tested in TEST2.CL is that there is no difference in

the expected time of next recapture between the individuals captured and not captured at occasion i

conditional on presence at both occasions i and i+2. To date, this test has no ‘simple’ interpretation, but

it is a component test of the overall TEST2 fit statistic.

5.5.1. RELEASE & U-CARE – estimating ĉ

OK, so now we have several TEST3 and TEST2 component statistics. What do we need these for? Well,

clearly one of our major motivations is assessing fit, and (more mechanically) deriving an estimate of

the 2̂ value we’ll use to adjust for lack of fit. Using either U-CARE, or RELEASE, one estimate for 2̂ is to
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take the overall "2 (sum of the TEST 2 and TEST 3 component tests), and divide by the overall degrees

of freedom. If we use RELEASE, we see that the overall TEST 3 statistic is 5.276 (for TEST3.SR), and

0.000 (for TEST3.SM), for an overall TEST 3 "2
= 5.276. For TEST 2, there is only one value reported

in RELEASE: TEST2.CT "2
= 4.284. Thus, the overall model "2

= (5.276 + 4.284) = 9.56, with 9 df.

The probability of a "2 value this large, with 9 df, is reported as 0.3873. Thus, the estimate for 2̂, based

on the results from RELEASE, is (9.56/9) = 1.06, which is close to 1.0. From U-CARE, we can get the

‘overall’ statistics quite easily, simply by selecting ‘Sum of tests over groups’. When we do so, we get

the following output:

The overall test statistic is reported as 11.0621,with 9 df, yielding an estimate of 2̂ = (11.062/9) = 1.23,

which is somewhat larger than the value calculated from the RELEASE output. But, note that U-CARE

also provides some furtherdiagnostics: specifically, tests of transience,and trap-dependence. In this case,

for the male dipper data, there is no compelling evidence for either transience, or trap-dependence.

What else can we use the component tests for? As described above, we’ve used the sum of TEST3

and TEST2 test statistics, divided by model df, to derive an estimate of 2̂. But, remember that the model

we’re testing here is the fully time-dependent CJS model (i.e., {!C ?C}). But, what do we do if the time-

dependent CJS model isn’t our general model – what if we want to ‘start’ with some other model? As it

turns out, the components of TEST 3 and TEST 2 are still useful in assessing fit, and providing estimates

of 2̂, for a variety of models. The following table indicates some of the ways in which components can

be used in this way. Note that we haven’t covered some of these models yet (but will in later chapters).

components used model detail

TEST3.SR+TEST3.SM+TEST2.CT+TEST2.CL !C ?C fully time-dependent CJS model

TEST3.SM+TEST2.CT+TEST2.CL !C/C ?C two age-classes for survival, time-

dependence in both age-classes (also

know as the ‘transience’ models in

some references)

TEST3.SR+TEST3.SM+TEST2.CL !C ?C∗< immediate trap-dependence in re-

capture rate (see Pradel 1993)

Thus, using RELEASE, and U-CARE, goodness-of-fit tests are available readily for 3 models – which,

as it turns out,are often the starting points formany single-site recapture analyses. Among them,{!C ?C},

which makes the assumptions that survival and capture probabilities are solely time-dependent, is the

most restrictive because it does not permit survival to differ between newly marked and previously

marked animals contrary to {!C/C ?C}, nor capture to differ between animals captured at the previous
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occasion and those not captured then, contrary to model {!C ?<∗C}. In fact, {!C ?C} is nested within each

of the two other models. Models {!C ?<∗C} and {!C/C ?C} are not directly related (i.e., are not nested).

As a consequence of this hierarchy, the goodness-of-fit test of {!C ?C} involves more component tests

(because more assumptions are to be checked) than the goodness-of-fit tests of {!C ?<∗C} or {!C/C ?C}. In

fact, the goodness-of-fit test of {!C ?C} can be decomposed into two steps, in either of two ways:

1. via {!C/C ?C}: the goodness-of-fit test of {!C/C ?C}; then, if and only if {!C/C ?C} appears

valid, the test of {!C ?C} against {!C/C ?C}

2. via {!C ?<∗C}: the goodness-of-fit testof {!C ?<∗C}; then, if andonly if {!C ?<∗C} appears

valid, the test of {!C ?C} against {!C ?<∗C}

Thus, RELEASE and (especially) U-CARE provide very good capabilities for GOF testing for several

important live-encounter ‘mark-recapture’ models. But, notice that the models being tested are all ‘time-

dependent’. While it is true that in many cases the most general model in a candidate model set (and

the model for which 2̂ is estimated) is a time-dependent model, this is not always the case. What if your

data are too sparse to ever support a time-dependent model? Or, what if your data don’t involve live

encounter data? Is there a more generic approach to GOF testing that can be used for any kind of data?

At the risk of oversimplifying, we note that GOF testing for ‘typical’ data from marked individuals

is a form of contingency analysis – do the frequencies of individuals exhibiting particular encounter

histories match those expected under a given null model, for a given number released on each occasion?

You have probably already had considerable experience with some forms of GOF testing, without

knowing it. For example, in some introductory class you might have had in population genetics, you

might recall that deviations from Hardy-Weinberg expectations were ‘established’ by GOF testing –

through comparison of observed frequencies of individual genotypes with those expected under the

null model.

In general, the goodness-of-fit of the global model can be evaluated in a couple of ways: traditionally,

by assuming that the deviance for the model is "2 distributed and computing a goodness-of-fit test

from this statistic, and using RELEASE (for live recapture data only) to compute the goodness-of-fit

tests provided by that program (as described previously). However, this approach is generally not valid

because the assumption of the deviance being "2 distributed is seldom met, especially for multinomial

data. Program RELEASE, which is only applicable to live recapture data, or dead recovery data under

some simplifying assumptions, suffers from the same problem to some degree – but usually lacks

statistical power to detect lack of fit because of the amount of pooling required to compute "2 distributed

test statistics. RELEASE also is only really appropriate for simple variations of the time-dependent CJS

model.

An alternative, and conceptually reasonable approach, is to use an approach based on ‘resampling’

the data. In addition to providing a basic GOF diagnostic, such approaches also enable you to ‘estimate’

the magnitude of the lack of fit. As we shall see, this lack of fit becomes important in assessing

‘significance’ of some model comparisons. In the following sections, we’ll introduce two resampling-

based approaches to GOF testing and estimation of 2̂ currently available in MARK: the bootstrap, and

the median-2̂.

5.6. MARK and bootstrapped GOF testing

As noted in the MARK help file, with the bootstrap procedure, the estimates of the model being

evaluated for goodness of fit are used to generate data, i.e., a parametric bootstrap. In other words,

the parameter estimates (survival, recapture, recovery rate...) for the model in question are used to

simulate data. These simulated data exactly meet the assumptions of the model, i.e., no over-dispersion
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is included, animals are totally independent, and no violations of model assumptions are included. Data

are simulated based on the number of animals released at each occasion. For each release, a simulated

encounter history is constructed.

As an example, consider a live recapture data set with 3 occasions (2 survival intervals) and an animal

first released at time 1. The animal starts off with an encounter history of 1, because it was released on

occasion 1. Does the animal survive the interval from the release occasion until the next recapture

occasion? The probability of survival is !1, provided from the estimates obtained with the original

data. A uniform random number on the interval [0, 1] is generated, and compared to the estimate of

!1. If the random number is less than or equal to !1, the animal is considered to have survived the

interval. If the random value is greater than !1, the animal has died. Thus, the encounter history would

be complete, and would be ‘100’. Suppose instead that the animal survives the first interval. Then, is it

recaptured on the second occasion? Again, a new random number is generated, and compared to the

capture probability ?2 from the parameter estimates of the model being tested. If the random value is

less than ?2, the animal is considered to be captured, and the encounter history would become ‘110’. If

not captured, the encounter history would remain ‘100’. Next, whether the animal survives the second

survival interval is determined, again by comparing a new random value with !2. If the animal dies,

the current encounter history is complete, and would be either ‘100’ or ‘110’. If the animal lives, then

a new random value is used to determine if the animal is recaptured on occasion 3 with probability

?3. If recaptured, the third occasion in the encounter history is given a ‘1’. If not recaptured, the third

occasion is left with a zero value.

Once the encounter history is complete, it is saved for input to the numerical estimation procedure.

Once encounter histories have been generated for all the animals released, the numerical estimation

procedure is run to compute the deviance and its degrees of freedom. In other words, suppose there

are a total of 100 individuals in your sample. Suppose you are testing the fit of model {!C ?C}. What

MARK does is, for each of these hundred animals, simulate a capture (encounter) history, using the

estimates from model {!C ?C}. MARK takes these 100 simulated capture histories and ‘analyzes them’

– fits model {!C ?C} to them, outputting a model deviance, and a measure of the lack of fit, 2̂ (or, ‘c-hat’),

to a file. Recall from our early discussion of the AIC (Chapter 4, earlier in this chapter) that 2̂ is the

quasi-likelihood parameter. If the model fits perfectly, 2̂ = 1. c is estimated (usually) by dividing the model

deviance by the model degrees of freedom. The quasi-likelihood parameter was used to adjust AIC

for possible overdispersion in the data (one possible source of lack of fit). Later in this chapter, we will

discuss the use of this parameter more fully. The entire process of ‘simulate,estimate,output’ is repeated

for the number of simulations requested. When the requested number of simulations is completed, the

user can access the bootstrap simulations results database to evaluate the goodness of fit of the model

that was simulated.

Let’s look at an example of doing this in MARK. We will assess the GOF of the fully time-dependent

CJS model {!C ?C} to the male European dipper data set. If you still have the database file from your

earlier analyses of this data set go ahead and open it up in MARK. If not, start MARK, open up a new

project using the male dipper data, and fit model {!C ?C} to the data.

Now, to perform a bootstrapped GOF test on model {!C ?C}, highlight it in the results browser by

clicking on the model once. Right-click with the mouse, and ‘retrieve’ the model. Once you have

selected the appropriate model, pull down the ‘Tests’ menu, and select ‘Bootstrap GOF’.

You will then be presented with a new window (top of the next page), where you are asked if you

want to output just the model deviance from the simulated data, or the deviance, deviance degrees of

freedom, and the quasi-likelihood parameter c. As noted in the window, outputting the deviance alone

is the fastest, but we suggest that you go for all three – it takes longer computationally, but ultimately

gives you all the information you need for GOF testing, as well as a robust estimate of c which,ultimately,

is necessary for adjusting the models fits in your analysis.
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You will then be prompted for a name for the file into which the bootstrapped estimates are to be

output. The default is BootstrapResults.dbf.

Finally, you will be asked to specify the number of simulations you want to make (the default is

100), and a random number seed (the default is to use the computer system clock to generate a random

number seed). While using the same seed is useful on occasion to diagnose particular problems, in

general, you should always use a new random number seed. Once you have entered an appropriate

number of simulations (more on this below), and a random number seed, click ‘OK’. MARK will then

spawn a little ‘progress window’, showing you what proportion of the requested number of simulations

has been completed at a given moment.

Remember, that for each iteration, MARK is (1) simulating capture histories for each individual in

the original sample, and (2) fitting model {!C ?C} to these simulated data. As such, it will take some

time to complete the task. What do we mean by ‘some’? Well, this depends on (1) how big the original

data set is, (2) the ‘complexity’ of the model being fit (i.e., the number of parameters), (3) the number

of bootstrapped samples requested, and (4) the computing horsepower you have at your disposal.

OK – now the big question: how many simulations do we need? To answer this question, you first

have to understand how we use these simulated data, and the estimated deviances and quasi-likelihood

parameters we derived from them. We’ll start with the deviances. In essence, what we try to do with

the bootstrapped values is to ‘see where the observed model deviance falls on the distribution of all

the deviances from the simulated data’. In other words, plot out the distribution of the deviances from

the data simulated under the model in question, and look to see where the observed deviance – the

deviance from the fit of the model to the original data – falls on this distribution.

Suppose for example, the deviance of the original model was 104.5,whereas the largest deviance from

1,000 simulations was only 101.2. Then, you would conclude that the possibility of observing a deviance

as large as 104.5 was less than 1/1,000 (i.e., %< 0.001). Or, suppose that you sorted the deviances from

the simulated data, from lowest to highest, and found that the 801th deviance was 104.1, and the 802nd

value was 105.0. In this case, you would conclude that your observed deviance was ‘reasonably likely’ to

be observed, with a % < 0.198 (198/1,000), because 198 of the simulated values exceeded the observed

value.

MARK makes it easy to do this. Once your simulations are complete, pull down the ‘Simulations’
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menu, and select ‘View Simulation Results’. You will then be asked to pick the file containing the

results of the simulations (the default was ‘BootstrapResults.dbf’). Select the file.

A window will pop up that bears a fair resemblance to an Excel spreadsheet (in fact, you can read it

into Excel if needed):

In the spreadsheet, you will see the number of the simulation, the name of the model being simulated,

the number of estimable parameters in the model (in this case, the number of parameters is the number

determined by the rank of the variance-covariance matrix – see the addendum in Chapter 4 for technical

details). Next, the model deviance, and depending upon which option you selected when you ran the

simulations, the deviance degrees of freedom and the 2̂ values. To sort the data in order of ascending

deviances, simply click the ‘A-Z’ icon on the toolbar, and then select the deviances (you can sort by any

or all the elements in the spreadsheet – we’re only after the deviance at this stage).

First, the deviances of the simulated data can be ranked (sorted into ascending order), and the relative

rank of the deviance from the original data determined. In this example, we note from the results

browser that the deviance for model {!C ?C} for the male dipper data is 36.401. Sorting the deviances

from the simulated data, we find that the 917th deviance is 36.344, while the 918th deviance is 36.523.

The rank of the sorted deviances can be determined using one of the tools on the spreadsheet toolbar.

Thus, the probability of a deviance as large or greater than the observed value of 36.401 is approxi-

mately 0.082. So,depending upon your ‘comfort level’ (afterall, selection of an -level is ratherarbitrary),

there is probably fair evidence that model {!C ?C} adequately fits the male dipper data. On the other

hand, some people might argue (reasonably) that % = 0.082 isn’t particularly ‘comforting’, so perhaps

in fact there is some evidence of lack of fit.

However, this leads us back to the following question – how many simulations do you need? In our

experience, a two-stage process generally works well. Run 100 simulations, and do a rough comparison

of where the observed deviance falls on the distribution of these 100 values. If the ‘P-value’ is > 0.2,

then doing more simulations is probably a waste of time – the results are unlikely to change much

(although obviously the precision of your estimate of the %-value will improve). However as the value

gets closer to nominal significance (say, if the observed %-value is < 0.2), then it probably worth doing

≫ 100 simulations (say, 500 or 1,000). Note that this is likely to take a long time (relatively speaking,

depending on the speed of your computer).
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What else can we do with these bootstrapped simulations? Well, perhaps the most useful thing we

can do is to estimate the over-dispersion parameter, c.

Why? Well, recall that if the model fits the data ‘perfectly’, then we expect the value of 2̂ to be 1.0;

2̂ is estimated as the ratio of the model "2 divided by the model df. When the value of 2̂ > 1, this is

consistent with the interpretation that there is some degree of overdispersion. With a % = 0.082, perhaps

we might believe that there is some marginal evidence for lack of fit of the general model to the data.

As noted in the MARK helpfile, two approaches are possible, based on the deviance directly, and

on 2̂. For the approach based on deviance, the deviance estimate from the original data is divided by

the mean of the simulated deviances to compute 2̂ for the data. The logic behind this is that the mean

of the simulated deviances represents the expected value of the deviance under the null model of no

violations of assumptions (i.e., perfect fit of the model to the data). Thus, 2̂ = observed deviance divided

by the expected deviance provides a measure of the amount of over-dispersion in the original data.

The second approach is to divide the observed value of 2̂ from the original data by the mean of the

simulated values of 2̂ from the bootstraps. Again, we use the mean of the simulated values to estimate

the expected value of 2̂ under the assumption of perfect fit of the model to the data. Mean values of

both 2̂ and deviance are easily obtained by simply clicking the ‘calculator’ icon on the toolbar of the

spreadsheet containing the simulated values.

begin sidebar

Careful!

Remember, the simulation results browser allows you to derive a mean 2̂ simply by clicking a button.

However, remember that this mean 2̂ value is not the 2̂ you need to use. Rather, if you want to use

the bootstrapped estimates of 2̂’s (the 2nd of the two approaches described above), then you take the

observed model 2̂ and divide this value by the mean 2̂ from the bootstraps.

end sidebar

As noted in the MARK helpfile, there is no good understanding at present of the relative merits of

these two approaches. For the example of the male dipper data, using the observed deviance divided

by the mean deviances of the simulated data yields a value of (36.401/25.673) = 1.418.

To use the second approach, we first derive the observed 2̂ value – the model deviance divided by the

deviance degrees of freedom. While the model deviance can be read directly from the results browser,

the deviance degrees of freedom is obtained by looking in the complete listing of the estimation results

– immediately below the print-out of the conditioned S-vector (which is described in the addendum to

Chapter 4) In this example, observed 2̂ is (36.401/7) = 5.20. Dividing this observed value by the mean 2̂

from the bootstrapped simulations yields (5.20/3.396) = 1.531, which is slightly higher than the value

obtained dividing the observed deviance by the mean deviance.

Which one to use? Until more formal work is done, it probably makes sense to be conservative, and

use the higher of the two values (better to assume worse fit than better fit – the further 2̂ is from 1, the

bigger the departure from ‘perfect fit’).

On a practical note, because the observed deviance divided by the mean of the bootstrap deviances

does not rely on estimating the number of parameters, it is typically much faster. ‘Bootstrap Options’

allows you to specify that you are only interested in the deviance, and not 2̂, from the bootstrap

simulations. Generally, the results are often about the same between the two approaches, but can be

different when the degrees of freedom of the deviance varies a lot across the bootstrap simulations

(caused by a small number of releases).
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5.6.1. RELEASE versus the bootstrap

When ‘true’ 2̂ is 1 (i.e., no extra-binomial variation), both RELEASE and the bootstrap do equally well

(equivalent bias, which was very low in both cases). However, when data were simulated with a ‘true’ 2̂

of 2 (i.e., considerable extra-binomial variation), the bootstrap was found to perform less well than did

RELEASE (negatively biased), with the magnitude of the bias increasing with increasing numbers of

occasions (White 2002).

This seems to imply that RELEASE is your best option. Arguably, it might be for standard capture-

recapture data (live encounters), but will clearly be of limited utility for data types which are not

consistent with RELEASE (live encounter/recapture data only). So, are we stuck? Well, perhaps not

entirely.

5.7. ‘median ĉ’ – a way forward?

A new approach (which has been implemented in MARK) has recently been described, and appears

quite promising. As with all good ideas, it is based on a simple premise: that the best estimate of 2̂

is the value for which the observed ‘deviance 2̂’ value (i.e., the model deviance divided by the model

degrees of freedom) falls exactly half-way in the distribution ofallpossible ‘deviance 2̂ values’,generated

(simulated) under the hypothesis that a given value of c is the true value. As such, 50% of the generated

‘deviance 2̂’ values would be greater than the observed value, and 50% would be less than the observed

value. The half-way point of such a distribution is the ‘median’, and thus, this new approach to GOF

testing is referred to in MARK as the ‘median-2̂’ approach.

We’ll introduce this approach by means of a familiar example – the male European dipper data set

we analyzed in the preceding chapter (ed_males.inp). Using program RELEASE, the estimate of 2̂ for

our general model {!C ?C} was (9.5598/9) = 1.0622. Based on a bootstrap GOF test, using 500 bootstrap

samples, the estimate of 2̂ is ∼ 1.53.

Now, what about this new approach – the ‘median-2̂’? To run the median GOF test, we simply select

this option from the ‘Tests’ menu. Doing so will spawn the following new window:

At the top,the observeddeviance is noted: 5.20 (actually, it’s the observeddeviance 2̂: the modeldeviance

divided by the deviance degrees of freedom: (36.401349/7) = 5.20). Next, you’re presented with a lower

and upper bound. The lower bound defaults to 1, since a deviance 2̂ of 1.0 indicates ‘perfect’ fit of the

model to the data. The upper bound (5.5) is slightly larger than the observed deviance 2̂.
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Next,you’re asked to specify the number of intermediate ‘design’ points between the lower and upper

bound, and the number of replicates at each ‘design point’.

What do these refer to? Well, first, MARK is going to (ultimately) fit a regression line to some

simulated data – for a series of different values of 2̂ (i.e., the number of intermediate points), simulate

some data – each time you do so, output the calculated deviance 2̂ for those simulated data. The number

of ‘replicates’ is the number of simulations you do for each value of c you simulate, between the lower

and upper bound. Just like with all regressions, the more points you have between the lower and upper

bound, and the greater the number of replicates at each point, the better the precision of your regression.

MARK defaults to 10 for each, since this represents a good compromise in most cases between precision

(which is always something you want to improve), and time (increasing the number of intermediate

points and/or the number of replicates at each design point, will take a very long time to run for most

problems – yet another reason to start agitating for a faster computer).

OK, so far, so good. But what is this ‘regression’ we’ve mentioned a couple of times? Basically,

it’s a logistic regression – a regression where the response variable is a binary state variable, suitably

transformed (usually using the logit transform – hence the name logistic regression). In this case, the

binary state is ‘above the observed deviance 2̂’ or ‘below the observed deviance 2̂’. So, for each value

of 2̂ in the simulation, we generate a sample of deviance 2̂’s. We count how many of these values are

‘above’ or ‘below’ the observed value, and regress this proportion on 2̂ (using the logistic regression).

Then, all we need to do is use the regression equation to figure out what value of 2̂ corresponds to the

situation where the proportions of the simulated deviance 2̂’s are equal (i.e., where the number ‘above’

the observed value is exactly the same as the number ‘below’ the observed value. This, of course, is the

median of the distribution). If the number ‘above’ and ‘below’ is the same, then this is our best estimate

of 2̂, since values above or below the observed value are equally likely.

begin sidebar

median-ĉ and logistic regressions in MARK

The logistic regression analysis is performed by MARK as a known-fate model; known-fate models are

discussed in a later chapter. For now, it is sufficient to consider that ‘fate’ in this case is the ‘known’

proportion of 2 values above – or below (doesn’t matter) – the observed deviance 2̂.

Output consists of the estimated value of c and a SE derived from the logistic regression analysis,

with these estimates provided in a notepad or editor window preceding the known fate output. In

addition, a graph of the observed proportions along with the predicted proportions based on the

logistic regression model is provided. The initial dialog box where the simulation parameters are

specified also has a check box to request an Excel spreadsheet to contain the simulated values. This

spreadsheet is useful for additional analyses, if desired.

end sidebar

Let’s try this for the male dipper data. The default upper bound is 5.5. We’ll change this upper bound

to 3.0, for both convenience (i.e., to save time) and for heuristic reasons (if 2̂ is > 3.0, we may have more

fundamental problems; Lebreton et al. 1992). We set the number of intermediate points (i.e., c values) to

3 (so, 5 total design points on the function), and the number of iterations (replicates) at each ‘true value’

of c to 100. If you’re trying this on your own, this might take some time.

A plot of the 2̂ values estimated by MARK for the simulations based on the male dipper data is

shown at the top of the next page. Each of the open circles in the plot represents the deviance 2̂ for

one of the bootstrapped replicates, at each of the 5 design points (i.e., values of 2) in the simulation (in

this case, 1.0, 1.5, . . . , 3.0). The solid horizontal line represents the observed deviance 2̂ for the general

model (5.2002). Remember, what we’re after is the value of 2 for which the number of open circles above

the observed value is equal to the number of open circles below the observed value.
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From the figure, we see clearly that this occurs somewhere in the range of 2 = 1.0 → 1.5; for all values

of 2 > 1.5, there are clearly far more values above the observed value, than below it.

In fact, if we calculate the frequency of ‘above’ and ‘below’ for each value of c, we get the following

contingency table (based on 100 replicates in each column – note, your numbers may differ):

1.0 1.5 2.0 2.5 3.0

above observed 11 66 94 99 100

below observed 89 34 6 1 0

Again, we see clearly that the ‘median’ will occur somewhere between 2 = 1.0 and 2 = 1.5. Applying

a logistic regression to these data (where the logit transformed proportion is the response variable, and

the value of c is the independent variable), we get an estimate of the intercept of �̂0 = 6.7557, and an

estimate of the slope of �̂1 = −4.8476. Since we’re interested in the point at which the proportion above

and below is equal at 50% (i.e., 0.5), then we simply take the logistic equation, set it equal to 0.5:

0.5 =

4−4.8476(2)+6.7557

1 + 4−4.8476(2)+6.7557

Solving for c (not to worry – MARK handles all this for you) yields our estimate of 2̂ = 1.3936 (with a

SE of 0.033, based on the number of intermediate points and replicates used in our simulation). That’s

it! So, based on the median approach, the estimate of 2̂ is 1.3936, which is intermediate between the

value reported by RELEASE, and the bootstrapped estimate.

So, which one to use? Well, the median-2̂ GOF approach is a ‘work in progress’, but preliminary

assessment indicates that it appears to work well. In comparisons for the CJS data type to the RELEASE

model, the median-2̂ is biased high, as much as 15% in one case of ! = 0.5 with 5 occasions. However,

the median-2̂ has a much smaller standard deviation for the sampling distribution than the 2̂ estimated

by RELEASE. That is, the mean squared error (MSE) for the median-2̂ is generally about 1
2 of the MSE

Chapter 5. Goodness of fit testing...
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for the RELEASE estimator. Thus, on average, the median-2̂ is closer to ‘truth’ than the RELEASE 2̂,

even though the median-2̂ is biased high.

One of the current limitations of the median-2̂ goodness-of-fit procedure is that individual covariates

are not allowed – but unlike the bootstrap, it can be used for most of the other models in MARK. Further,

it can be applied to any model you want – RELEASE (and U-CARE) requires you to use the fully time-

specific model as the general model, which may not always be ideal depending on your particular

circumstances.

Overall, the median-2̂ GOF approach seems promising. However, be advised that no GOF test is

perfect – the median GOF approach remains a ‘work in progress’, and its performance compared to

other GOF approaches has not been fully evaluated in all situations (e.g., multi-state models). For the

moment, we’d suggest, where possible, running as many of the GOF tests as are available – each has

different strengths and weaknesses. Hopefully, there will be reasonable agreement among them.

If not, then you need to decide on the choice of which 2̂ estimate to use (largest, smallest, or otherwise,

recognizing that the larger the value of 2̂ used, the more support simpler models will get relative to

more complicated models in your candidate model set, and that the relative scaling of AIC itself will

change), and the reason for the choice should be communicated.

begin sidebar

The bootstrap and/or median-ĉ won’t give me an estimate for ĉ! Now what?

In some cases, when you run either the bootstrap or median-2̂ goodness of fit tests, some/many/all

of the simulations will have ‘problems’ – failure to converge, nonsense values, incorrect parameter

counts, and so forth. In virtually all cases, this is not a problem with MARK, but, rather, with the

general model you are trying to fit your data to (and which MARK is attempting to use to simulate

data).

Remember, that the general approach to model selection involves multi-model inference over the set

of candidate models,under the assumption that at least one of the models adequately fits the data. And

of course, this is what you are using the GOF test to assess – the adequacy of fit of your ‘general model’

to the data. In many cases, your general model will be a time-dependent model in one or more of the

parameters. However, you need to be aware that for some sparse data sets, a fully time-dependent

model is unlikely to fit your data well – many/most of the parameters will be poorly estimated, if they

are estimated at all. And, if one or more parameters can’t be estimated – because of sparseness in the

data – then MARK will not be able to successfully simulate data under that model.

The solution is to accept – grudgingly, perhaps – that your data may simply be inadequate to fitting

a time-specific general model. There is nothing particularly wrong with that – you simply need to find

a more reduced parameter model which satisfies your needs (i.e., which adequately fits the data). Of

course, using anything other than a time-dependent model precludes use of RELEASE or U-CARE

for GOF testing, but that is not a particular problem if the goal is estimation of 2̂ (and not looking in

detail at the underlying sources of lack of fit).

end sidebar

Now it is very important that you realize that both the bootstrap and the median-2̂ approaches we’ve

just described assume that the source of lack of fit is simple extra-binomial noise. In fact, this is precisely

how the simulations work. For example, to simulate a data set with a 2̂ = 2.0, the frequency of each

observed encounter history is simply doubled.

What this means is that the estimated 2̂ is robust (more or less) if and only if the primary source of

lack of fit is extra-binomial. If the lack of fit is due to something else (say, structural problems in the

model), then the estimated 2̂ may not be particularly useful. Some of these issues are addressed in the

following section.
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5.8. The Fletcher ĉ – the ‘latest and greatest’

Estimation of overdispersion (i.e., 2̂) from the observed number of individuals associated with each

possible encounter history will be tricky, due to the potentially large number of capture histories with

very low expected frequencies. Neither estimates based on the deviance, nor those based on Pearson’s

statistic will perform well. The former will tend to be strongly negatively biased, while the latter will be

less biased but much more variable. In the context of fitting a generalized linear model, David Fletcher

(Fletcher 2012) and colleagues (Afroz et al. 2020) proposed a modification to the estimator that is based

on Pearson’s statistic, which is some cases may provide a robust (and much more computationally

efficient) alternative to the median-2̂.

This new estimator can also be used in the product-multinomial setting, and is given by

2̂ =
2̂-

1 + B̄
, where B̄ =

1

# − =

#
∑

8=1

H8 − �̂8
�̂8

≡

(

∑#
8=1 H8/�̂8

)

− #

# − =
.

Here, 2̂- is the estimator of overdispersion based on the Pearson "2 statistic (i.e., the Pearson "2

statistic divided by its df), H8 and �̂8 are the observed and expected number of individuals with encounter

history 8, respectively, and # and = are the total number of observable histories and number of release

cohorts, respectively. One of the problems with using Pearson’s statistic for sparse data is that the 8th

term involves dividing by �̂8 , which will often be very small. The new estimator makes an allowance

for this, as the 8th term in the denominator also involves dividing by �̂8. Simulations suggest that this

new estimator also performs better than those based on the deviance. However, there will still be many

situations where this modification has non-negligible negative bias.

In MARK, the Fletcher-2̂ is computed from the Pearson "2 statistic, (>1B− 4G?)2/4G?. For each cohort

of marked/released animals, the sum of the Pearson statistic is computed for all of the observed unique

encounter histories. In addition, a term for all of the unobserved (i.e., observed = 0) encounter histories

must be added, which is equal to the sum of their expected values (thus, the (sum of the observed)

minus the (sum of the expected) for the observed histories).

The Pearson 2̂ is then computed as the "2-squared statistic divided by its df, which for the Pearson

statistic is the total number of possible encounter histories minus the number of parameters estimated in

the model minus 1 df for each cohort. This estimate is then corrected based on Fletcher (2012; above) to

obtain the Fletcher-2̂, as the Pearson 2̂, 2̂- , divided by 1 plus the mean of the observed/expected values

for all possible encounter histories, B̄.

The Fletcher-2̂ is calculated automatically for each model in the candidate model set, although

use/interpretation is only appropriate for the most parameterized model in the model set. The Fletcher-

2̂, and the values used in its calculation, are printed in the full output for a given model, right above the

tabulation of the � estimates.

For example, for model {!C ?C} fit to the male dipper data

Pearson Chisquare {phi(t)p(t)} = 75.282128

Possible Encounter Histories {phi(t)p(t)} = 126

Pearson Chisquare df {phi(t)p(t)} = 109

Pearson chat {phi(t)p(t)} = 0.6906617

Sum(Observed/Expected) {phi(t)p(t)} = 86.307408

s-bar {phi(t)p(t)} = -0.3307716

Fletcher chat {phi(t)p(t)} = 1.0320269

Chapter 5. Goodness of fit testing...



5.9. What to do when the general model ‘doesn’t fit’? 5 - 32

Here, the Fletcher-2̂ is calculated as 1.03203. It is interesting to note that this value is quite close to

the value calculated for these data using RELEASE, (9.5598/9) = 1.0622.

While quite promising, several factors can cause the estimated Fletcher-2̂ to be incorrect. First, losses

on capture or dots in the encounter history will create encounter histories that are not considered in the

total number of possible encounter histories. That is, the total number of possible encounter histories

is based on no missing data. Second, parameter values that cause a reduction in the total number of

encounter histories will bias the 2̂ estimate. Examples of such reductions are an occasion in the CJS data

type with ? = 0, or transition probabilities fixed to 0 or 1 in the multi-state data types.

5.9. What to do when the general model ‘doesn’t fit’?

We began this chapter by noting that model selection (whether it be by AIC, or some other procedure) is

conditional on adequate fit of a general model to the data. As such, the ability to assess goodness of fit is

important. As mentioned earlier, there are at least 2 classes of reasons why a model might not adequately

fit the data. The first is the ‘biologically interesting’ one – specifically, that the structure of the general

model is simply inappropriate for the data. In subsequent chapters, you’ll see how we might have to

radically alter the basic ultrastructure of the model to accommodate ‘biological reality’. For example,

if you are marking both juveniles and adults, then there is perhaps a reasonable expectation that their

relative survival rates may differ, and thus, one of the assumptions of CJS (specifically assumption 2)

– that every marked animal in the population immediately after time (i) has the same probability of

surviving to time (i+1) has been violated. The second, perhaps less interesting reason is the possibility

that the data are over or under-dispersed for the CJS model – extra-binomial variation. In this section,

we will briefly discuss both cases.

5.9.1. Inappropriate model

Your most immediate clue to lack of fit will be a high 2̂ value. The ‘challenge’ will be to determine

whether or not this is because you have an inappropriate model, or extra-binomial ‘noise’. In some

cases, this is fairly straightforward. For example, to confirm that the basic live-encounter CJS model has

been rejected because the model is ‘biologically unrealistic’ for your data, you simply need to carefully

examine the detailed TEST 2 and TEST 3 contingency tables in your RELEASE output file (or, more

conveniently, look at it directly with U-CARE). What are you looking for? Well, in general, the thing

you’re looking for is a ‘systematic’ rejection (or bias) in the individual tables. You need to see if the

failure of TEST 2 or TEST 3 is ‘driven’ by a few ‘strange’ batches, or is due to a ‘systematic’ bias. What

do we mean by ‘systematic’ bias? Well, by ‘systematic’, we refer to a bias which occurs consistently at

each occasion – a bias in the sense that a particular cell (or cells) in one of the test tables is consistently

over or underpopulated.

An example will help make this clear. Suppose you run RELEASE, and find that TEST 3 is rejected,

but not TEST 2. You say to yourself, ‘OK, recapture seems to be OK, but something is wrong with the

survival assumption, under the CJS model’. You proceed to look carefully at each of the TEST3 tables

for each batch. You note that TEST3.SR is rejected, but that TEST3.SM is accepted.

Now, what does this mean? Recall that TEST3.SR simply asks, of those individuals seen either on or

before occasion (i), what proportion were ever seen again? If TEST3.SR is rejected, then this suggests

that there is a difference in ‘survival’ among individuals, depending on whether or not they were seen

for the first time either on or before occasion (i). However, TEST3.Sm only looks at individuals who

WERE seen again. Among these individuals, when they were seen again does not depend on whether

or not they were seen for the first time at occasion (i).
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Suppose you look at each individual TEST3.SR table, and find the following – a ‘+’ indicates more

individuals than expected (based on the null hypothesis of no differences between groups), and a ‘-’

indicates fewer individuals than expected (under the same hypothesis). Since U-CARE provides you

with the overall ‘directional’ test, you can make this determination very quickly. Let’s say we have

10 occasions, and we find that this pattern seems to be present in the majority of them (you might use

some statistical test, for example a sign test, to determine if the frequency of tables exhibiting a particular

pattern occurs more often than expected by random chance). Say, 8/10 contingency tables show this

pattern (which will clearly be statistically significant).

What does this suggest? Well, among individuals seen for the first time at occasion (i), significantly

more are never seen again than expected, relative to individuals who had been seen before occasion (i).

In other words, newly marked individuals showed a consistently lower probability of ever being seen

again than previously marked individuals.

What could lead to this pattern? One possibility we suggested at the beginning of this section was age

effects. Lower survival of newly marked juveniles (relative to adult survival) would lead to this pattern

in TEST3.SR. Is this the ‘only’ plausible explanation? Unfortunately, no. Life would be simpler if there

was only ever one possible explanation for anything, but, this is generally not the case. This example is

no exception. Rejection of TEST3.SR could also reflect (1) a marking effect (where the act of marking

causes an increase in immediate mortality), (2) presence of transients (migratory individuals leaving

the sampling area shortly after marking), or (3) heterogeneity in capture rates (some individuals have

low capture rates, some high).

The point here is that there may be more than one possible answer – it is at this point you’ll need to

use your ‘biological insight’ to help differentiate among the possible explanations. The other, perhaps

more important point is that the presence of a consistent difference in one of the major tests (TEST2.Ct,

TEST2.Cm, TEST3.SR, and TEST3.Sm) each suggest the possibility of one or more effects which violate

the basic CJS assumptions. You will have to rely on your insight to help you identify possible ‘biological’

explanations for violation of any of these 4 tests – each of them might refer to something completely

different.

What can you do if you do reject CJS? Well, the solution depends on what, exactly, ‘has gone wrong’.

In general, if the individual TEST 2 or TEST 3 results seem to show systematic deviations among

occasions, the most likely solution will be to reject the CJS model as the ‘correct’ starting model for your

analysis – it clearly doesn’t fit, because the inherent assumptions aren’t met by the data. In this case,

where TEST3.SR is rejected, but the other tests are accepted, then the solution is to add age-structure

to the model (this will be presented in Chapter 8).

However, simply recognizing that a ‘different’ starting model (say, a 2-age class model) may be more

appropriate is only the first step. You still need to confirm that the data fit your ‘new’ model. You must

go through analogous GOF tests for the ‘new’ starting model, just as we have done for the CJS model

(as discussed earlier in this chapter).

What if your data type is one that can’t be handled by RELEASE (which, in effect, is every data type

other than live-encounter mark-recapture data)? One option is to examine deviance residual plots. If you

click the ‘Graph Deviance Residuals’ button on the main MARK toolbar, residuals are plotted against

their encounter history number to assess the fit of the model. The default for the residual plot icon

is deviance residuals. However, either deviance residuals or Pearson residuals are available from the

‘Output | Specific Model Output’ menu of the results browser.

A deviance residual is defined as

sign
(

obs− exp
)

√

2
[

(exp− obs) + obs × ln
(

obs/exp
)
]

2̂
,
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where ‘sign’ is the sign (plus or minus) of the value of (obs− exp).

A Pearson residual is defined as
(

obs− exp
)

√

(exp × 2̂)
.

Take for example the swift analysis we introduced in Chapter 4. If we run a bootstrap analysis on our

general model {!2∗C ?2∗C}, we get an estimate of 2̂ = 1.00. So, pretty good fit!

This is reflected in the deviance residual plot shown below:

If the model was a ‘good-fitting model’ (as suggested by our estimated 2̂), we would expect that there

would be no ‘trend’ (non-randomness) in the pattern of the residuals - roughly half of the residuals

should be above the 0.000 line, and half should be below. Further, if there is no extra-binomial variation,

then most of these residuals should be fairly close to the 0.0000 line (between the two horizontal dashed

lines in the preceding figure).

In the plot (above), there is little apparent trend, although most of the extreme residuals are ‘on the

high side’ (large positive deviance – to see which observation is causing a particular residual value, you

can place your mouse cursor on the plotted point for the residual, and click the left button. A description

of this residual will be presented, including the group that the observation belongs to, the encounter

history, the observed value, the expected value, and the residual value). However, the residuals are

roughly randomly distributed above and below 0.

Here is an example of a deviance residual plot which seems to indicate lack of fit.
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In the second plot, notice both a clear asymmetry in the residuals (greater proportion of positive

to negative residuals) as well as some suggestion of a trend (although most residuals are positive, the

magnitude of the deviation above zero seems to decline from left to right). Both suggest strongly that

there is a structural problem with the fitted model. In fact, this particular plot was generated by fitting a

{!·} model structure to data where in fact! increased linearly over time (a topic we discuss in Chapter6).

So, clearly, the fit model was not structurally appropriate, given the underlying model used to generate

the data. We will re-visit the use of residual deviance plots to help evaluate lack of fit as we introduce

new data types.

5.9.2. Extra-binomial variation

If there are systematic deviations in your contingency tables, or if there is some other indicator of

structural causes of lack of fit (say, from a deviance residual plot), then changing the structure of the

general model is the appropriate step to take next. However, what do you do, if the deviations in the

contingency tables are not ‘consistent’ among batches – what if (say) 5/10 tables are biased in one

direction, and 5/10 are biased in the other direction?

In such cases,where there seems to be no clear ‘explanation’ (biological or otherwise) for the violation

of TEST 2 or TEST 3, you then have only a few options. As you’ve no doubt gathered if you’ve read this

far into this chapter, the most common ‘solution’ (although it is only a partial solution) is to ‘adjust’ your

statistics to account for the ‘extra noise’, or (for the statistically inclined) the extra-binomial variation.

Remember that the conceptual basis of all models is ‘data = structure + residual variation’. In general,

the structure of the residual variation is unknown, but for multinomial distributions, it is known. If the

model structure is ‘correct’, then the variance of the residual ‘noise’ is 1 (where variance is defined as the

expected value of the GOF "2 divided by its degrees of freedom). However, even if the residual variation

> 1, the structural part of the model can be ‘correct’. In simplest terms, if there is ‘excess variation’ it

will show up in the model GOF "2 (since this value is essentially a ‘residual SS’). Thus, what we need to

do is ‘correct’ everything for the magnitude of this extra variation. To do this, we derive what is known

as a variance inflation factor, 2̂. The larger the value of 2̂, the greater the amount of ‘extra’ variation.

We have already presented this basic idea earlier in the chapter, as well as the mechanics of how to get

MARK to adjust things.

Consider, for example, the dipper data set, where we can estimate 2̂ in several different ways: using

the bootstrap, median-2̂, or by using a "2/df approach in RELEASE and U-CARE. Recall that from our

bootstrap fit of {!C ?C} to the male European dipper data set yielded an estimate of 2̂ of either 1.418, or

1.531 (depending on whether or not you calculated 2̂ using the bootstrapped distribution of deviances,

or 2̂ values). The mean of these two values is 1.475. Now, in both RELEASE and U-CARE, the sum of

the overall results of TEST 2 and TEST 3 is (in effect) the overall model "2. This is provided for you

directly in the RELEASE and U-CARE output. For the male dipper data, RELEASE gives the sum of

TEST 2 + TEST 3 = 9.5598. The model df = 9, and thus from RELEASE, 2̂ is estimated as (TEST 2 +

TEST 3)/df = ("2/df) = 1.0622. From U-CARE, (TEST 2 + TEST 3)/df = ("2/df) = (11.0621/9) = 1.229.

Now, in fact, there does seem to be some variation in estimates of 2̂, depending on the method selected,

with the estimates from the bootstrap approach being the highest, and that from program RELEASE

being the lowest.

In fact, the reason (in this example) is because the male dipper data has ‘a problem’ – the data

are somewhat sparse – so much so that many of RELEASE tests (especially TEST 3) are reported as

‘invalid’ (insufficient data to make the particular contingency test(s) valid). This is also reflected in the

fact that one parameter (recapture rate ?3) is not particularly well-estimated (this can either be because

the parameter is estimated near the boundary, or because of ‘weirdness’ in the data). However, these

nuances notwithstanding, if you have good data (i.e., not so sparse that RELEASE has to do a lot of
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pooling over cells in the contingency tables), then the estimate of 2̂ using the bootstrap or the median-2̂

in MARK should be very close to the estimate using the ("2/df) approach in RELEASE or U-CARE.

OK – so now what do we do with our measure of the fit of the CJS model to the male dipper data? Our

estimate of the significance of departure from ‘adequate fit of the model to the data’ was % = 0.08. As

noted, our estimate of 2̂ varied depending upon how it was derived: for now, we’ll use 2̂=1.531 (the value

from the bootstrap). Now what? Well, think a moment about what we’re doing when we do the model

fitting – we want to compare the relative fit of different models in the model set. If there is ‘significant

lack of fit’, then intuitively this may influence our ability to select amongst the different models. Also

intuitively, we’d like to adjust our model fits to compensate for the lack of fit. How do we accomplish

this?

First, look at the ‘original results’:

These AIC2 weights were calculated using the default 2̂ value of 1.0. As such, we would have

concluded that the best model in the model set was ∼ 43 times better supported by the data than

was the next best model.

What happens if we adjust the values in the results browser using 2̂=1.51? MARK makes such an

‘adjustment’ very easy to do. Simply pull down the ‘Adjustment’ menu, and select ‘c-hat’. Enter the

new value for 2̂ (in this example, use 1.51). As soon as you’ve entered the new 2̂, the various AIC and

AIC weighting values in the results browser are converted to QAIC2 values (note that the column labels

change in the results browser to reflect this change).

For example, consider the original AIC and AIC weight values for the 4 simplest models we applied

to these data:

Now, we see that the degree of support for the best model has increased substantially – the best

model is now > 70 times better supported than the next best model. In this case, it didn’t change our

final conclusions, but it is not hard to imagine how changes of this magnitude could make a significant

difference in the analysis of the data.
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Does anything else happen to ‘our results’? The answer is ‘yes’, but it isn’t immediately obvious –

adjusting 2̂ also changes the estimated standard errors for each of the parameters in each of the models.

Try it and confirm this for yourself. However, there is a subtle catch here – the estimated standard errors

are changed only in the output of the estimates, not in the general output. Don’t ask! :-)

5.10. How big a ĉ is ‘too big’?

When should you apply a new 2̂? Is a value of 2̂ = 1.51 really different than the null, default value of

1.0? At what point is 2̂ too large to be useful? If the model fits perfectly, then 2̂ = 1. What about if 2̂ = 2,

or 2̂ = 10? Is there a point of diminishing utility? As a working ‘rule of thumb’, provided 2̂ ≤ 3, you

should feel relatively safe (see Lebreton et al. 1992 – pp. 84-85).

However, there are a couple of fairly important ‘philosophical’ considerations you’ll need to keep

in mind. First, for some analysts, the most important thing is adjusting for fit to make the parameter

estimates as robust and valid as possible. However, for others, the question of ‘why’ there is lack of fit

is important. Consider, for example, the standard ‘CJS assumptions’. In particular, the assumption that

all individuals are equally likely to be caught. In truth, there may very often be considerable variation

among individuals in the probability of capture – a clear violation of the CJS assumptions.

The question, then, is whether the lack of fit is due to these sorts of violations (strictly speaking, this

is referred to as the problem of individual heterogeneity in capture probability), or structural problems

with the general model. Clearly, by adjusting 2̂, you can accommodate lack of fit up to a certain degree,

but if the 2̂ is fairly large (> 2) then this might be a good indicator suggesting a careful examination

of the structure of the model in the first place is needed. So, yes, you can ‘adjust’ for lack of fit simply

by adjusting the 2̂ value used. However, be advised that doing so ‘blindly’ may obscure important

insights concerning your data. It is always worth thinking carefully about whether your general model

is appropriate. Moreover, as 2̂ increases ≫ 1, interpretation of some of the metrics we’ll use for model

selection (something we cover in later chapters) becomes more complicated.

Second, as noted earlier, the bootstrap and median-2̂ resampling approaches estimate 2̂ under the

assumption that the source of the lack of fit is strictly extra-binomial ‘noise’ – as you might see, for

example, if your sample consisted of male and female pairs, where the fate of one member of the pair

was not independent of the other. The more ‘behavioral structure’ you have in the biology (or process)

underlying your data, the more likely this is to be the case. A method to evaluate whether theoretical

variance estimates are valid when the individuals are considered statistically independent, or whether

variance inflation procedures are required to account for dependence among (say) siblings, is described

in Appendix G. However, if the source of lack of fit is structural, and not due to extra-binomial noise,

then adjusting for a 2̂ estimated using either of the resampling approaches may not do you much good.

In such cases, your best option is to (i) work hard at trying to identify the structural problems in your

model, and (ii) see how sensitive your model weights are to manual adjustments (in small increasing

increments) in 2̂. This basic process is also discussed below.

Finally, and perhaps most importantly, remember that we are estimating 2. And as with any estimate,

there is uncertainty about our estimate of 2̂. As such, if you derive an estimate of c that is (say) 2̂ = 1.4,

there may be a significant probability that in fact the true value of c is 1.0 – but, because of the uncertainty

in your estimate of c, you can’t be sure.

We can demonstrate this fairly easily, using some data simulated under a true model {!C ?C}. We

will do this using the RELEASE simulations capability in MARK (see Appendix A). We will simulate 8

occasions in the simulated data set, with 250 newly marked and released individuals on each occasion

(clearly, a much bigger data set than the male dipper data). For 1,000 simulations, the mean 2̂ (estimated

as the TEST 2 + TEST 3 "2 divided by the df) was 0.997, which is very close to the expected 2̂ of 1.00.
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However, a couple of points to make. While the mean is very close to the expected value, there is a fair

bit of variation around this value. For example, when we ran the simulation (as described), we get a

variance of 0.102, with a 95% CI of [0.543, 1.57].

This is reflected in the following histogram of 2̂ estimates:

Note that there is a fair chance that for a given simulated data set, that the observed estimate of 2̂ is

considerably less than, or greater than, 1.0 – even though the true value is 1.0 for these data! This is not

really a problem, but one you need to be aware of: it is possible that you are fitting the correct model to

the data (such that the true 2̂ is 1.0), but because each data set you collect is simply one realization of

an underlying stochastic probabilistic process, there is some chance that the 2̂ you observe will differ

– sometimes markedly so – from 1. We still use a quasi-likelihood adjustment to account for lack of fit,

since we cannot be certain we have the correct model. (Note: the histogram should be approximately "2

distributed for the given df, as it appears to be for this example).

5.10.1. General recommendations

OK, some general recommendations:

1. identify a general model that, when you fit it to your data, has few or no estimability

problems (i.e., all of the parameters seem adequately estimated). Note that this general

model may not be a fully time-dependent model, especially if your data set is rather

sparse. If there is plausible ‘biological’ justification for suspecting non-independence

among individuals in your data, then you should evaluate whether theoretical variance

estimates are valid when the individuals are considered statistically independent, or

whether variance inflation procedures are required to account for dependence among

(say) siblings. A formal procedure for performing such an evaluation is introduced in

Appendix G.
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2. estimate 2̂ for this general model, using whichever method is most robust for that

particular model. While the median-2̂ and Fletcher-2̂ approaches show considerable

promise to be generally robust approaches to estimate 2̂, for the moment it is perhaps

worth generating 2̂ using all of the available approaches, and comparing them. If you

have some estimates marginally above 1.0, and some marginally below 1.0, it is probably

reasonable to assume the 2̂ ∼= 1.0. Alternatively, you could choose to be conservative, and

select the largest 2̂, which provides some protection (in a sense) against selecting overly

parameterized models.

3. remember that the ‘estimate of 2’ is just that – an estimate. Even if the true value of c is

1.0, we use the estimate of 2̂ to account for model selection uncertainty (since we cannot

be certain we have the correct model). Moreover, as noted earlier, the bootstrap and

median-2̂ resampling approaches estimate 2̂ under the assumption that the source of

the lack of fit is strictly extra-binomial ‘noise’ – where the fate of one individual may not

be independent of the other. However, if the source of lack of fit is structural, and not due

to extra-binomial noise, then adjusting for a 2̂ estimated using either of the resampling

approaches may not do you much good. In such cases, your best option is to (i) work

hard at trying to identify the structural problems in your model, and (ii) see how sensitive

your model weights are to manual adjustments (in small increasing increments) in 2̂ (see

next point).

4. it is also worth looking qualitatively at the ‘sensitivity’ of your model rankings to changes

in 2̂, especially for models (data types) for which no robust GOF test has been established

(i.e., most open population models). Manually increase 2̂ in the results browsers from

1.0, 1.25, 1.5 and so on (up to, say, 2.0), and look to see how much the ‘results’ (i.e., relative

support among the models in your candidate model set) changes. In many cases, your

best model(s) will continue to be among those with high AIC weight, even as you increase

2̂. This gives you some grounds for confidence (not much, perhaps, but some). Always

remember, though, that in general, the bigger the 2̂, the more ‘conservative’ your model

selection will be – AIC will tend to favor reduced parameter models with increasing 2̂ (a

look at equation for calculating AIC will show why). This should make intuitive sense

as well – if you have ‘noise’ (i.e., lack of fit), perhaps the best you can do is fit a simple

model. In cases where the model rankings change dramatically with even small changes

in 2̂, this might suggest that your data are too sparse for robust estimation, and as such,

there will be real limits to the inferences you can make from your candidate model set.

This final point is related to what we might call the ‘wince’ statement: if you are sure your model

structure is correct, and despite you’re finer efforts, your 2̂ is ≫ 3, or if your model rankings change

radically with even small changes in 2̂, then you might just have to accept you don’t have adequate data

to do the analysis at all (or, perhaps in a more positive tone, that there are real limits to the inferences you

can draw from yourdata).Unfortunately,your ‘time,effort,and expense’ are not reasonable justifications

for pushing forward with an analysis if the data aren’t up to it. Remember the basic credo. . .‘garbage

in...garbage out’.

Last words – for now (remember, GOF testing is very much a work in progress). If your data are based

solely on live encounter data, then it appears that for the moment, for most data sets, using estimates of 2̂

derived from ("2/df) calculations (using either RELEASE or U-CARE), or the Fletcher-2̂, is more robust

(less biased) than bootstrapped or median-2̂ estimates. But,what if you don’t have live encounter data, or

perhaps some mixture of live encounterwith other types of encounterdata (e.g.,perhaps dead recovery)?

For other data types (or mixtures), in some cases GOF tests have been suggested (e.g., contingency GOF

testing for dead recovery data is implemented in program MULT), but the degree to which estimated of

2̂ from these approaches may be biased is unknown. However, in many cases, the bootstrap or median-2̂
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can be run, which does provide some estimate of 2̂, albeit potentially biased in some cases.

5.11. Summary

That’s the end of our very quick stroll through the problem of GOF. In this chapter, we have focussed

on using program MARK and programs RELEASE and U-CARE to handle this task. Remember – the

bootstrap, median-2̂ and Fletcher-2̂ approaches provide omnibus techniques for assessing GOF for any

model, as well as providing robust estimates of 2̂ (at least, in theory – GOF testing is still very much a

work in progress). RELEASE, which should be applied to live-recapture models only, is a good tool for

examining ‘where’ the departures occur. Residual plots can also be quite helpful.
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