
CHAPTER 4

Building & comparing models

In this chapter, we introduce several important concepts. * First, we introduce the basic concepts and
`mechanics' for building models in MARK . Second, we introduce some of the concepts behind the
important questions of `model selection' and `multi-model inference'. How to build models in MARK
is `mechanics' � why we build certain models, and what we do with them, is `science '. Both are critical
concepts to master in order to use MARK e�ectively, and are fundamentalto understanding everything
else in this book, so take your time.

We'll begin by re-visiting the male European dipper data we i ntroduced in the last chapter. We will
compare 2 di�erent subsets of models: models where either su rvival or recapture (or both) varies with
time, or models where either survival or recapture (or both) are constant with respect to time. The
models are presented in the following table, using the notat ion suggested in Lebreton et al. (1992).

model explanation

f ! C?Cg both survival and encounter probability time dependent

f ! � ?Cg survival constant over time, encounter probability time de pendent

f ! C?�g survival time dependent, encounter probability constant o ver time

f ! � ?�g both survival and encounter probabilities constant over ti me

In the following, we will go through the steps in �tting each o f these 4 models to the data. In fact,
these models are the same ones we �t in Chapter 3. So why do them again? In Chapter 3, our intent was
to give you a (very) gentle run-through of running MARK , using some of the standard options. In this
chapter, the aim is to introduce you to the mechanics of model building, from the ground up. We will
not rely on `built-in' or `pre-de�ned' models in this chapte r (in fact, you're not likely to ever use them
again). Since you already saw the `basics' of getting MARK up and running in Chapter 3, we'll omit
some of the more detailed explanations for each step in this chapter.

However, we must emphasize that before you actually use MARK (or any other program) to compare
di�erent models, you need to �rst con�rm that your `starting model' (generally, the most parameterized
or most general model) adequately �ts the data. In other word s, you must conduct a goodness-of-�t
(GOF) test for your `starting model'. GOF testing is discuss ed in detail in Chapter 5, and periodically
throughout the remainder of this book. For convenience, we' ll assume in this chapter that the `starting
model' does adequately �t the data.

* Very important...
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As in Chapter 3, start MARK by double-clicking the MARK icon. We're going to use the same data set
we analyzed in Chapter 3 (ed_males.inp ). At this point, we can do one of 2 things: (1) we can start a
completely new MARK session (i.e., create a completely new*.DBF �le), or (2) we can re-open the *.DBF
�le we created in Chapter 3, and append new model results to it . Since you already saw in Chapter 3
how to start a `new' project, we'll focus here on the second po ssibility � appending new model results
to the existing *.DBF �le.

This is very easy to do � from the opening MARK `splash screen', selectÒpen' from the ` File ' menu,
and �nd the ed_males.dbf �le you created in Chapter 3 (remember that MARK uses the pre�x of the
*.INP �le � the �le containing the encounter histories � as the pre� x for the *.DBF �le. Thus, analysis of
ed_males.inp leads to the creation of ed_males.dbf ). Once you've found the ed_males.dbf �le, simply
double-click the �le to access it. Once you've double-click ed the �le, the MARK `splash screen' will
disappear, and you'll be presented with the main MARK window, and the results browser. In the
results browser, you'll see the models you already �t to thes e data in the last chapter (there should be
4 models), and their respective AIC and deviance values.

In this chapter, we want to show you how to build these models f rom scratch. As such, there is no
point in starting with all the results already in the browser ! So, take a deep breath and delete all the
models currently in the browser! To do this, simply highligh t each of the models in turn, and click the
trash-can icon in the browser toolbar.

Next, bring up the Parameter Index Matrices(PIMs), which (as you may recall from Chapter 3), are
fundamental to determining the structure of the model you ar e going to �t to the data. So, the �rst
step is to open the PIMs for both the survival and recapture pa rameters. To do this, simply pull down
the `PIM' menu, and select `Open Parameter Index Matrix '. This will present you with a dialog box
containing two elements: `Apparent Survival Parameter (Phi) Group 1 ', and `Recapture Parameter
(p) Group 1 '. You want to select both of them. You can do this either by cli cking on both parameters,
or by simply clicking on the ` Select All ' button on the right-hand side of the dialog box.

Once you've selected both PIMs, simply click the ` OK' button in the bottom right-hand corner. This
will cause the PIMs for survival and recapture to be added to t he MARK window.

Here's what they look like, for the survival parameters,

Chapter 4. Building & comparing models



4.1. Building models � parameter indexing & model structure s 4 - 3

and the recapture parameters, respectively:

We're going to talk a lot more about PIMs, and why they look like they do, later on in thi s (and
subsequent) chapters. For now, the only thing you need to kno w is that these PIMs re�ect the currently
active model. Since you deleted all the models in the browser , MARK reverts to the default model �
which is always the fully time-dependent model. For mark-recapture data, t his means the fully time-
dependent CJS model.

OK, so now you want to �t a model. While there are some `built-i n' models in MARK , we'll
concentrate at this stage on using MARK to manually build the various models we want to �t to our
data. Once you've mastered this manual, more general approach, you can then proceed to using `short-
cuts' (such as built-in models). Using short-cuts before yo u know the `general way' is likely to lead to
one thing � you getting lost!

Looking back at the table on the �rst page of this chapter, we s ee that we want to �t 4 models to the
data, f ! C?Cg, f ! C?•g, f ! � ?Cg and f ! � ?�g. A quick reminder about model syntax � the presence of a `t'
subscript means that the model is structured such that estim ates for a given parameter are time-speci�c;
in other words, that the estimates may di�er over time. The ab sence of the `t' subscript (or, the presence
of a `dot') means the model will assume that the parameter is � xed through time (the use of the `dot'
subscript leads to such models usually being referred to as `dot models' � naturally).

Let's consider model f ! C?Cg �rst. In this model, we assume that both apparent survival ( ! ) and
recapture (p) can vary through time. How do we translate this into MARK ? Pretty easy, in fact. First,
recall that in this data set, we have 7 total occasions: the �r st occasion is the initial marking (or release)
occasion, followed by 6 subsequent recapture occasions. Now, typically, in each of these subsequent
recapture occasions 2 di�erent things can occur.

Obviously, we can recapture some of the individuals previou sly marked. However, part of the
sample captured on a given occasion is unmarked. What the inv estigator does with these individuals
di�ers from protocol to protocol. Commonly, all unmarked in dividuals are given a unique mark, and
released. As such, on a given recapture occasion, 2 types of individuals are handled and released: those
individuals which have been previously marked, and those wh ich are newly marked.

Whether or not the fate of these two `types' of individuals is the same is something we can test (we will
explore this in a later chapter). In some studies, particula rly in some �sheries and insect investigations,
individuals are only marked at the initial release (sometim es known as a `batch mark'). There are no
newly marked individuals added to the sample on any subseque nt occasions. The distinctions between
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these two types of mark-release schemes are important to understanding the structure of the parameter
matrices MARK uses.

Consider our �rst model, the CJS model f ! C?Cg with full time-dependence in both survival and
recapture probabilities. Let's assume there are no age e�ects (say, forexample,all individuals are marked
as adults � we deal with `age' in a later chapter). In Chapter 3 , we represented the parameter structure
of this model as shown below:

1
! 1
�! 2

! 2
�! 3

! 3
�! 4

! 4
�! 5

! 5
�! 6

! 6
�! 7

?2 ?3 ?4 ?5 ?6 ?7

In fact, this representation is incomplete, since it does not record or index the fates of individuals
newly marked and released at each occasion. These are referred to as `cohorts' � groups of animals
marked and released on a particular occasion.

We can do this easily by adding successive rows to our model st ructure, each row representing the
individuals newly marked on each occasion. Since the occasions obviously occur sequentially, then each
row will be indented from the one above it by one occasion. Thi s is shown below:

cohort 1 1
! 1
�! 2

! 2
�! 3

! 3
�! 4

! 4
�! 5

! 5
�! 6

! 6
�! 7

?2 ?3 ?4 ?5 ?6 ?7

cohort 2 2
! 2
�! 3

! 3
�! 4

! 4
�! 5

! 5
�! 6

! 6
�! 7

?3 ?4 ?5 ?6 ?7

cohort 3 3
! 3
�! 4

! 4
�! 5

! 5
�! 6

! 6
�! 7

?4 ?5 ?6 ?7

cohort 4 4
! 4
�! 5

! 5
�! 6

! 6
�! 7

?5 ?6 ?7

cohort 5 5
! 5
�! 6

! 6
�! 7

?6 ?7

cohort 6 6
! 6
�! 7

?7

Notice that the occasions are numbered from left to right, st arting with occasion 1. Survival proba-
bility is the probability of surviving between successive o ccasions (i.e., between columns). Each release
cohort is listed in the left-hand column.

For example, some individuals are captured and marked on occ asion 1, released, and potentially can
survive to occasion 2. Some of these surviving individuals m ay survive to occasion 3, and so on. At
occasion 2, some of the captured sample are unmarked. These unmarked individuals are newly marked
and released at occasion 2. These animals comprise the second release cohort. At occasion 3, we take a
sample from the population. Some of the sample might consist of individuals marked in the �rst cohort
(which survived to occasion 3), some would consist of indivi duals marked in the second cohort (which
survived to occasion 3), while the remainder would be unmark ed. These unmarked individuals are
newly marked, and released at occasion 3. These newly markedand released individuals comprise the
third release cohort. And so on.

If we rewrite cohort structure, showing only the sampling oc casion numbers, we get the structure
shown at the top of the next page.
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cohort 1 1 �! 2 �! 3 �! 4 �! 5 �! 6 �! 7

cohort 2 2 �! 3 �! 4 �! 5 �! 6 �! 7

cohort 3 3 �! 4 �! 5 �! 6 �! 7

cohort 4 4 �! 5 �! 6 �! 7

cohort 5 5 �! 6 �! 7

cohort 6 6 �! 7

The �rst question that needs to be addressed is: does surviva l vary as a function of which cohort an
individual belongs to, does it vary with time, or both? This w ill determine the indexing of the survival
and recapture parameters. For example, assume that cohort does not a�ect survival, but that survival
varies over time. In this case, survival can vary among inter vals (i.e., among columns), but over a given
interval (i.e., within a column), survival is the same over a ll cohorts (i.e., over all rows). Again, consider
the following cohort matrix � but showing only the survival p arameters:

cohort 1 1
! 1
�! 2

! 2
�! 3

! 3
�! 4

! 4
�! 5

! 5
�! 6

! 6
�! 7

cohort 2 2
! 2
�! 3

! 3
�! 4

! 4
�! 5

! 5
�! 6

! 6
�! 7

cohort 3 3
! 3
�! 4

! 4
�! 5

! 5
�! 6

! 6
�! 7

cohort 4 4
! 4
�! 5

! 5
�! 6

! 6
�! 7

cohort 5 5
! 5
�! 6

! 6
�! 7

cohort 6 6
! 6
�! 7

The shaded columns indicate that survival is constant over c ohorts, but the changing subscripts in ! 8
indicate that survival may change over time. This is essenti ally Table 7A in Lebreton et al. (1992). What
MARK does to generate the parameter or model structure matrix is t o reproduce the structure and
dimensions of this �gure, after �rst replacing the ! 8 values with a simple numerical indexing scheme,
such that ! 1 is replaced by the number 1, ! 2 is replaced by the number 2, and so forth. Thus, the
preceding �gure (above) is represented by a triangular matr ix of the numbers 1 to 6 (for the 6 survival
probabilities):

1 2 3 4 5 6
2 3 4 5 6

3 4 5 6
4 5 6

5 6
6

This `triangular matrix' (the PIM) represents the way that MARK `stores' the model structure
corresponding to time variation in survival, but no cohort e �ect (Fig. 7A in Lebreton et al. 1992). Notice
that the dimension of this matrix is (6 rows by 6 columns), rat her than (7 columns by 7 rows). This is
because there are 7 capture occasions, but only 6 survival intervals (and, correspondingly, 6 recapture
occasions). This representation is the basis of the PIMs which you see on your screen (it will also be
printed in the output �le). Perhaps most importantly, thoug h, this format is the way MARK keeps
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track of model structure and parameter indexing. It is essen tial that you understand the relationships
presented in the preceding �gures. A few more examples will h elp make them clearer.

Let's consider the recapture probability. If recapture pro bability is also time-speci�c, what do you
think the model structure would look like? If you've read and understood the preceding, you should
be able to make a reasonable guess. Again, remember that we have 7 sampling occasions � the
initial marking event (occasion 1), and 6 recapture occasions. With time-dependence, and assuming
no di�erences among cohorts, the model structure for recapt ures would be:

cohort 1 1 �! 2 �! 3 �! 4 �! 5 �! 6 �! 7
?2 ?3 ?4 ?5 ?6 ?7

cohort 2 2 �! 3 �! 4 �! 5 �! 6 �! 7
?3 ?4 ?5 ?6 ?7

cohort 3 3 �! 4 �! 5 �! 6 �! 7
?4 ?5 ?6 ?7

cohort 4 4 �! 5 �! 6 �! 7
?5 ?6 ?7

cohort 5 5 �! 6 �! 7
?6 ?7

cohort 6 6 �! 7
?7

Now, what are the corresponding index values for the recaptu re probabilities? As with survival,
there are 6 parameters,?2 to ?7 (corresponding to recapture on the second through seventh o ccasion,
respectively). With survival probabilities, we simply loo ked at the subscripts of the parameters, and
built the PIM. However, things are not quite so simple here (a lthough as you'll see, they're not very
hard). All you need to know is that the recapture parameter in dex values start with the �rst value after
the survival values. Hmmm...let's try that another way. For survival, we saw there were 6 parameters,
so our survival PIM looked like

1 2 3 4 5 6
2 3 4 5 6

3 4 5 6
4 5 6

5 6
6

The last index value is the number `6' (corresponding to ! 6, the apparent survival probability between
occasion 6 and occasion 7). To build the recapture PIM,we start with the �rst value after the largest value
in the survival PIM. Since 6̀' is the largest value in the survival PIM, then the �rst index value used in
the recapture PIM will be the number ` 7'. Now, we build the rest of the PIM. What does it look like?

If you think about it for a moment, you'll realize that the rec apture PIM looks like:

7 8 9 10 11 12
8 9 10 11 12

9 10 11 12
10 11 12

11 12
12
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Do these look familiar? They might � look at the PIMs MARK has generated on the screen. In fact,
we're now ready to `run the CJS model' fully time-dependent m odel. We covered this step in Chapter 3,
but let's go through it again (repetition is a good teacher). In fact, there are a couple of ways you can
proceed. You can either (i) pull down the ` Run' menu and `Run the current model ' (the model de�ned
by the PIMs is always the current model), or (ii) click the ` Run' icon on the toolbar of either of the PIMs.
This will bring up the ` Setup' window for the numerical estimation, which you saw for the � rst time in
Chapter 3. All you need to do is �ll in a name for the model (we'l l use Phi(t)p(t) for this model), and
click the `OK to run button ' (lower right-hand corner). Again, as you saw in Chapter 3, MARK will
ask you about the `identity matrix', and then spawn a numeric al estimation window. Once it's �nished,
simply add these results to the results browser.

Now, let's consider model f ! C?�g � time-dependent survival, but constant recapture probabi lity.
What would the PIMs for this model look like? The survival PIM would be identical to what we already
have,so no need to do anything there. What about the recaptur e PIM? Well, in this case,we have constant
recapture probability. What does the parameter structure l ook like? Look at the following �gure:

cohort 1 1 �! 2 �! 3 �! 4 �! 5 �! 6 �! 7
? ? ? ? ? ?

cohort 2 2 �! 3 �! 4 �! 5 �! 6 �! 7
? ? ? ? ?

cohort 3 3 �! 4 �! 5 �! 6 �! 7
? ? ? ?

cohort 4 4 �! 5 �! 6 �! 7
? ? ?

cohort 5 5 �! 6 �! 7
? ?

cohort 6 6 �! 7
?

Note that there are no subscripts for the recapture parameters � this re�ects the fact that for this
model, we're setting the recapture probability to be consta nt, both among occasions, and over cohorts.

What would the PIM look like for recapture probability? Reca ll that the largest index value for the
survival PIM is the number ` 6', so the �rst index value in the recapture PIM is the number ` 7'. And, since
the recapture probability is constant for this model, then t he entire PIM will consist of the number ` 7':

7 7 7 7 7 7
7 7 7 7 7

7 7 7 7
7 7 7

7 7
7

Now, how do we modify the PIMs in MARK to re�ect this structure? As you'll discover, MARK
gives you many di�erent ways to accomplish the same thing. Mo difying PIMs is no exception. The
most obvious (and pretty well fool-proof) way to modify the P IM is to edit the PIM directly, changing
each cell in the PIM, one at a time, to the desired value. For small PIMs, or for some esoteric model
structures we'll discuss in later chapters, this is not a bad thing to try. Here, we'll use one of the built-in
time-savers in MARK to do most of the work for us.

Remember, all we want to do here is modify the recapture PIM. T o do this, make that PIM `active'
by clicking in the �rst `cell' (upper left corner of the PIM). You can in fact make a window active by
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clicking on it anywhere (it doesn't matter where � just remem ber not to click the `X' in the upper right-
hand corner, since this will close the window!), but as we'll see, there are advantages in clicking in a
speci�c cell in the PIM. When you've successfully selected a cell, you should see a vertical cursor in that
cell.

Once you've done this, you can do one of a couple of things. You can pull down the ` Initial ' menu
on the main MARK parent toolbar. When you do this, you'll see a number of optio ns � each of them
controlling the value (if you want, the initial value) of som e aspect of the active window (in this case, the
recapture PIM). Since we want to have a constant recapture probability, you might guess the ` Constant '
option on the ` Initial ' menu would be the right one. You'd be correct. Alternativel y, you can right-
click with the mouse anywhere in the recapture PIM window � th is will generate the same menu as
you would get if you pull down the ` Initial ' menu. Use whichever approach you prefer:

Once you've done this, you will see that all the values in the r ecapture PIM are changed to 7.

Believe it our not, you're now ready to run this model (model f ! C?�g). Simply go ahead and click
the `Run' icon in the toolbar of either PIM. For a model name, we'll use `Phi(t)p(.) '. Once MARK is
�nished, go ahead and append the results from this run to the r esults browser.

What you might see is that model ` Phi(t)p(.) ' (representing model f ! C?�g) is listed �rst, and model
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`Phi(t)p(t) ' second, even though model `Phi(t)p(t) ' was actually run �rst. As you may recall from
our discussions in Chapter 3, the model ordering is determin ed by a particular criterion (say, the AIC),
and not necessarily the order in which the models were run.

Before we delve too deeply into the results of our analyses so far, let's �nish our list of candidate
models. We have model f ! � ?Cgand model f ! � ?�gremaining. Let's start with model f ! � ?Cg � constant
survival, and time-dependent recaptureprobability. If yo u think about it for a few seconds, you'll realize
that this model is essentially the `reverse' of what we just d id � constant survival and time-dependent
recapture, instead of the other way around. So, you might gue ss that all you need to do is reverse the
indexing in the survival and recapture PIMs. Correct again! Start with the survival PIM. Click in the
�rst cell (upper left-hand corner), and then pull down the ` Initial ' menu and select `Constant ', as you
did previously. The survival PIM will change to a matrix of al l `1's.

What about the recapture PIM? Again, click in the �rst cell. S ince we're reusing the PIMs from our
last analysis, the value of the �rst cell in the recapture PIM will be the number ` 7'. If we pull down the
Ìnitial ' menu and select `Time', we'd see the matrix change from all ` 7's to values from 7 to 12. Now,
think about this for a minute. If we stop at this point, we'd be using the parameter index `1' for survival
(constant survival), and indices 7 through 12 for recapture probability. What happened to indices 2
through 6?

In fact, nothing has really happened to them � but you don't kn ow that yet. While it might make
more sense to explicitly index the recapture PIM from 2 through 7, in fact, MARK will do this for you �
but only during the numerical estimation itself. In fact, MARK more or less assumes that you've used
`1' and `7 through 12' as the index values by mistake, and actually uses `1' and `2 through 7' when it
does its calculations.

Let's prove this to ourselves. Leave the PIMs as they are now � all `1's for survival, and ` 7 through
12' for recapture, and press the `Run' icon on the PIM toolbar. You'll be dumped into the ` Numerical
Estimation ' setup window. For a title, we'll use ` Phi(.)p(t) '. Then, simply click on the ` OK to Run'
button. Append the results to the browser. Now, before looki ng at the browser itself, have another look
at both the survival and recapture PIMs. What you'll see is th at MARK has `corrected' the PIM indexing
for the recapture PIM, such that it is now ` 2 through 7', rather than `7 through 12'.

Clever, eh? Yes, and no. It is nice thatMARK does this for you, but you should not rely on software
to do too much `thinking' for you. It would have been better (a lbeit, somewhat slower) to simply index
the recapture PIM correctly in the �rst place.

How would you do this? Aaah • • •this is where selecting the �rst cell in the PIM itself become s
important. Initially, the recapture PIM had all ` 7' values. You want to change it to time-dependent,
but want the �rst value to be ` 2' (since the survival parameter index is ` 1'). To do this, simply change the
value in the �rst cell of the recapture PIM from ` 7' to `2', and then select T̀ime' from the ` Initial ' menu.
Let's put this into practice with the �nal model in our candid ate model set � the constant survival
and recapture model, f ! � ?�g. For this model, the survival and recapture PIMs will be ` 1's and `2's,
respectively.

begin sidebar

Why not ` 2's?

Why not use 2's for indexing survival, and 1's for recapture? In fact, MARK doesn't care at all � in
MARK , the ordering or sequencing of PIM indexing is as arbitrary a s which window you place where
on the screen � it's entirely up to you. You would get the same ` results' using either ` 1' and `2' for
survival and recapture, or ` 2' and `1', respectively.

end sidebar
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In other words, for survival

1 1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1

1 1
1

and for recapture

2 2 2 2 2 2
2 2 2 2 2

2 2 2 2
2 2 2

2 2
2

One simple way to remember what the triangular matrix is tell ing you is to remember that time
moves left to right, and cohort from top to bottom. If the numb ers (indices) change in value from left
to right, then the parameter changes with time. If they chang e from top to bottom, they change over
cohort. Of course, the indices can change in either one or both directions simultaneously.

Once the PIMs are set, run the model (we'll use `Phi(.)p(.) ' for the model name), and append the
results to the browser. You now have 4 di�erent model results in the browser, corresponding to each
of the 4 models we're interested in. Of course, there are many other models we could have tried, but at
this stage, we simply want to get comfortable building model s in MARK . As we'll discuss shortly, the
selection of the candidate set of models is crucial to our task. For now though, let's just consider these
4 as representative of models we have an interest in. Let's start by looking at the results browser itself:

We see that the 4 models are listed, in order of ascending AIC, ranging from 322.55 for model f ! � ?�g
to 336.43 for model f ! C?Cg.

Before we evaluate the results from our 4 models, it is often a good starting point to take the
estimates from the most fully parameterized model, and plot them (MARK has some basic `built-
in' plotting capabilities � simply click the `line graph' ic on in the browser toolbar, and go from there.
Fairly self-explanatory). Often, a sense of the underlying model structure is revealed by examination
of the estimates from the most parameterized model. The reason is fairly straightforward � the more
parameters in the model, the better the �t (smaller the devia nce � more on model deviance later on). As
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we will discuss shortly, this does not necessarily mean that it is the best model, merely the one that �ts
the best (this is a crucial distinction). However, the most p arameterized model generally gives the most
useful `visual' representation of the pattern of variation in survival and recapture. In the case of our 4
models, the most parameterized is model f ! C?Cg � the CJS model. The parameter estimates (with 95%
CI) for ! and ? are plotted below � �rst, the estimated apparent survival pr obabilities (  ! 8),

and then, the estimated recapture probabilities (  ?8)

Note that in these �gures we do not include all 6 estimates tha t MARK derives for both survival
and recapture. Why? As it turns out, the �nal estimate for bot h survival and recapture is 0.7638. Is
this just a coincidence? No! In fact, what MARK has done is estimate the square-root of the combined
probability ! 6?7 (which Lebreton et al. (1992) refer to as� 7). For the time-dependent CJS model, the
components of this product are not individually identi�abl e � without further information, we cannot
separately estimate survival from recapture � we can only es timate the square-root of the product.
We shall discuss this again in more detail later on. Since thi s ! 6?7 product term is not comparable to
either survival or recapture probabilities separately, it is excluded from our plots. Of course, if you've
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looked at the output listing already, you may have `seen' tha t parameters 6 and 12 are not separately
identi�able. However, as we've mentioned before, we do not f avor unquestioning reliance on the ability
of the software (be it MARK or any other application) to determine the number of estimab le parameters
� you should �rst develop an understanding of how it is done fr om �rst principals. This is covered in
the Addendum at the end of this chapter. [We have placed it the re to minimize disruption to the �ow of
the material on building models. However, you are strongly u rged to read it carefully, at some point].

4.2. A quicker way to build models � the PIM chart

In the preceding example, we started our model building by op ening the PIMs for both survival and
recapture (the two primary parameters in the live encounter analysis of the male dipper data). We
modi�ed the PIMs to set the underlying parameter structure f or our models. However, at this point, we
want to show you another,more e�cient way to do the same thing ,by introducing one of the `whiz-bang'
(from the Latin) features of MARK � the Parameter Index Chart(hereafter referred to as the `PIM chart').
Introducing the PIM chart, and demonstrating its utility is probably most e�ectively done by letting
you have a look. We'll do so by considering two di�erent numer ical examples � one involving a single
group of marked individuals, and the second involving multi ple groups of marked individuals. Not
only is the situation involving multiple groups quite commo n, but some of the notable advantages of
using the PIM chart to speed model construction are even more obvious for analyses involving multiple
groups of marked individuals.

4.2.1. PIM charts and single groups � European dipper re-visited

Open up the male dipper data analysis � there should be 4 model s in the results browser. We're going
to replicate these 4 models again, this time using the PIM chart, rather than manually modifying the
individual PIMs. We'll start with model f ! C?Cg. Simply �nd that model in the results browser, right-
click it and select `Retrieve ' from the sub-menu. This will make the underlying PIM struct ure for this
model active (you can always check this by opening up each of t he individual PIMs and having a look).

Recall that for model f ! C?Cg, there are 6 intervals for survival, and 6 occasions for recapture � so, in
theory, 12 total parameters that could be estimated: 1 ! 6 for survival, and 7 ! 12 for recapture
(although we remember that for the fully time-dependent mod el, the �nal survival and recapture
parameters are confounded � such that only 11 total paramete rs will be estimated). Recall that at this
point, we're simply setting the underlying parameter struc ture for our models.
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Now, let's have a look at this thing called the PIM chart. You c an either (i) select P̀arameter Index
Chart ' from the PIM menu

or (ii) click the appropriate icon in the main toolbar (for th e PIM chart, this is the icon that looks like a
`camera', more or less).

Go ahead and open up the PIM chart for model f ! C?Cg:

Zowie! OK • • •now, what is it? The PIM chart is a simple, yet very useful visu al tool for looking at the
parameter indexing MARK uses for the various groups and parameters in the current mod el (in our
case, modelf ! C?Cg). What you can see from the chart is that there are 2 main `groupings' of parameters
for this model: survival ( ! ) respectively, and recapture (?), respectively. Along the bottom axis is the
parameter index itself, and along the vertical axis are the p arameters. So, in this example, parameters
1 to 6 refer to the survival probabilities, and 7 to 12 corresp ond to the recapture parameters.

Now, at this point we haven't changed anything to the paramet er structure � the PIM chart simply
re�ects the structure of the current model. You can con�rm th at in fact nothing has changed by running
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this model, and adding the result to the browser. Make the tit le for the model `Phi(t)p(t) - PIM chart '
� adding the extra label will help you identify which models i n the browser were created using the PIM
chart.

As you can see, the results for model `Phi(t)p(t) - PIM chart ' are identical to those for model
`Phi(t)p(t) '.

OK, so far, the PIM chart hasn't really done much for us, other than provide a convenient visual
representation of the underlying parameter structure for o ur model. In fact, the greatest utility of the
PIM chart is the ease with which you can use it to build other mo dels. We'll demonstrate that now. Let's
consider building model f ! C?�g. How can we build this model using the PIM chart? Recall that f or this
model, the underlying parameter structure for survival sho uld look like

1 2 3 4 5 6
2 3 4 5 6

3 4 5 6
4 5 6

5 6
6

and for recapture

7 7 7 7 7 7
7 7 7 7 7

7 7 7 7
7 7 7

7 7
7

However, the recapture PIM for our current model f ! C?Cg has the structure

7 8 9 10 11 12
8 9 10 11 12

9 10 11 12
10 11 12

11 12
12

So, we want to change the recapture PIM from time-dependent ( index values 7 ! 12) to time-
invariant (constant; index values 7 only for all occasions) .
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How do we do this using the PIM chart? Easy! Simply open up the P IM chart, and right click on the
`blue-box' corresponding to the recapture parameter. This will spawn a sub-menu which list various
options � the option we want to select is ` Constant ' (shown below):

What this will do is change the parameter structure for the se lected `blue box' (which in this
case represents the recapture parameter) and change it fromthe current structure (in this case, time-
dependent) to constant. Go ahead and select C̀onstant ':

Now, the right-most blue box has only one parameter index � ` 7'. The size of the box has changed
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to re�ect that we've gone from full time-dependence (6 param eters wide) to a constant `dot' model
(1 parameter wide).

We can con�rm this by opening up the recapture PIM:

As expected, it consists entirely of the number `7'.

Now, wasn't that fast? To build model f ! C?�gfrom model f ! C?Cg, all we did was (i) open up the PIM
chart for model f ! C?Cg, (ii) right-click the `blue box' corresponding to the recap ture parameter, and (iii)
select constant.

Go ahead and run this model � label it ` phi(t)p(.) - PIM chart ', and add the results to the browser.
The results should be identical to those from model ` phi(t)p(.) ', which we �t by manually modifying
the parameter-speci�c PIMs.

Now, what about model f ! � ?Cg? At this point we could either go back into the browser, retri eve
model f ! C?Cg, bring up the PIM chart, and repeat the steps we just took, exc ept right-clicking on the
survival `blue box', rather than the recapture `blue box'. A lternatively, we could simply bring up the PIM
chart for the model we just �t f ! C?�g and modify that. We'll use the second approach. Go ahead and
bring back up the PIM chart. Now, we're going to right-click o n the recapture `blue-box', and change it
from constant to time-dependent:
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This will generate a PIM chart that looks like

Recognize it? You should � it's the PIM chart corresponding t o the model we started with f ! C?Cg �
which has 6 survival parameters, and 6 recapture parameters.

Now, right-click on the survival `blue-box', and select ` Constant '. Remember, we're trying to build
model f ! � ?Cg.

So, a couple of things to notice here. First, as intended, the`blue box' for the survival parameter has
`shrunk', re�ecting the fact that we've the structure for ! from `time-dependent' (parameters 1 ! 6) to
`constant' (parameter 1).
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But, we also notice there is a substantial `gap' between the two `blue-boxes'. Parameter index values
2 ! 6 don't correspond to anything. We want to eliminate the gap ( i.e., remove the meaningless index
values). You could do this in one of two ways. First, the PIM ch art lets you manually `drag' the `blue-
boxes' around. So, you could left-click the recapture `blue -box' and, while holding down the left mouse
button, drag the recapture blue box to the left, so that the le ft-most edge of the box corresponds to
parameter index 2. Try it, it's pretty slick.

Alternatively, you can right-click anywhere on the PIM char t, and select either of the `Renumber'
options you are given (the distinction between the two will b ecome obvious in our next worked
example):

Doing so will cause the PIM chart to change (shown at the top of the next page) � the gap between
the two `blue boxes' will be eliminated, and the structure wi ll now re�ect model f ! � ?Cg.

Go ahead and run the model, label it ` phi(.)p(t) - PIM chart ', and add the results to the browser.
Again, they should be identical to the results from �tting mo del `phi(.)p(t) ' built by modifying the
individual PIMs. Again, using the PIM chart is often much fas ter.

As a �nal test, try �tting model f ! � ?�g. You'll know you've done it correctly if the results match th ose
for `phi(.)p(.) ' already in the browser.
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4.2.2. PIM charts and multiple groups

This second worked example involves some data from two di�er ent nesting colonies of the swift ( Apus
apus), a small insectivorous bird. In addition to providing an op portunity to demonstrate the use of the
PIM chart, this data set also introduces the general conceptof comparing groups (an extremely common
type of analysis you're likely to run into routinely). In fac t, as we will see, it involves only slightly more
work than the model comparisons we saw in the European dipper example we considered in the �rst
part of this chapter.

The data consist of live encounter data collected over an 8 year study of 2 di�erent swift colonies in
southern France. One of the two colonies was believed to be of `poorer' quality than the other colony
for a variety of reasons, and the purpose of the study was to de termine if these perceived di�erences
between the two colonies (hereafter, P � `poor', and G � `good') were re�ected in di�erences in either
survival or recapture probability. The data for both the P and G colonies are both in aa.inp � the
encounter frequencies are tabulated for the `poor' and `good' colonies, respectively. In this example, we
will analyze the data in terms of the following 2 factors: col ony (G or P), and time. Thus, this example
is very similar to the European dipper example, except that w e have added one more factor, colony. As
such, the number of possible models is increased from ¹2º2 = 4 models to ¹4º2 = 16 models � survival
and recapture could vary with colony, time or both. The candi date set of models is shown below:

f ! 2� C?2� Cg f! 2 ?2� Cg f! C?2� Cg f! � ?2� Cg
f ! 2� C?2g f! 2 ?2g f! C?2g f! � ?2g
f ! 2� C?Cg f! 2 ?Cg f! C?Cg f! � ?Cg
f ! 2� C?�g f! 2 ?�g f! C?�g f! � ?�g

With an increasing number of factors, the number of possible models that may need to be tested
increases geometrically. Here we have an 8 year study, considering only 2 primary factors (colony and
time), and there are at least 16 possible models to test (in fact, we will see in subsequent chapters there
are potentially many more).

Two points to make before we go any further. First,we should m ake sure you understand the syntax of
the model representations in the preceding table (which fol low the approach recommended in Lebreton
et al. 1992). Remember, that the subscripts for the two parameters (! and ?) re�ect the structure of the
model. The most general model in the table is model f ! 2� C?2� Cg. The c̀*t ' subscript means we have a
`full' model (for both survival and recapture), including b oth the main e�ects ( colony and time ) and
the interaction of the two (i.e., ` c*t ' = c + t + c.t + error ). By `interaction', we are referring to the
statistical meaning of the word � that colony and time interact, such that the relationship between
survival or recapture and time can di�er depending upon the c olony (or conversely, the relationship
between survival or recapture and colony can di�er depending upon the time interval). This model is
the most general, since any of the other models listed can be derived by removing one or more factors
(a simple comparison of the `complexity' of the subscriptin g for both survival and recapture among the
various models will con�rm this).

Second, by now you've no doubt noticed that we highlighted th e word `possible' repeatedly. We
did so for a reason � to foreshadow discussion of `model selec tion' and `model uncertainty', presented
later in this chapter. For the moment, we'll assume that we ar e particularly interested in whether or not
there are di�erences in survival between the 2 colonies. We' ll assume that there are no di�erences in
recapture probability between the colonies. These assumptions are re�ected in our `candidate model
set', which is a subset of the table presented above:

f ! 2� C?Cg f! C?Cg f! 2 ?Cg
f ! 2� C?�g f! C?�g f! 2 ?�g
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Note that this candidate model set re�ects some `prior think ing' about the data set, the analysis, the
biology � di�erent investigators might come up with di�eren t candidate model sets. However, for the
moment, we'll use this particular candidate model set, and p roceed to analyze the data. We will start
by �tting the data to the most generalapproximating model in the model set f ! 2� C?Cg. It is the most
general, because it has the most parameters of all the modelswe will consider. Start program MARK ,
and start a `New' project (i.e., from the `File ' menu, select Ǹew'). Pull in the data from aa.inp (2 groups, 8
occasions � the �rst frequency column represents the `poor' colony, while the second frequency column
represents the `good' colony).

Next, either pull down the ` PIM' menu, and select `Parameter Index Chart ', or select the PIM chart
icon on the toolbar. The resulting (default) PIM chart corre sponds to model f ! 2� C?2� Cg is shown at the
top of the next page. Again, what you can see from the chart is t hat there are 4 main `groupings' of
parameters for this model: survival for good and poor coloni es respectively, and recapture for the good
and poor colonies, respectively. Along the bottom index is t he parameter index itself, and along the
vertical axis are the parameters and group labels. So, in this example, parameters 1 to 7 refer to the
survival probabilities for the poor colony, 8 to 14 correspo nd to the survival parameters for the good
colony, and so on. As mentioned in the European dipper exampl e we just completed, the PIM chart
allows you to quickly determine the structure of your model, in terms of the parameters indices.

However, before we proceed, think back for a moment to our can didate model set. In the model set,
the most general model we want to �t is model f ! 2� C?Cg. However, the default model MARK starts
with is always the fully structured model, in this case, mode l f ! 2� C?2� Cg. So, as a �rst step, we need
to recon�gure the default model from f ! 2� C?2� Cg to f ! 2� C?Cg. This involves changing the parameter
structure for the recapture parameters, by eliminating the colony e�ect.
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This should be reasonably straightforward. We have 8 occasions, and 2 groups. Thus, for a given
group, we have 7 survival intervals, and 7 recapture occasio ns. For model f ! 2� C?2� Cg, the parameters
would be numbered:

survival recapture

poor good poor good

1 ! 7 8 ! 14 15! 21 22! 28

In other words, the PIMs would look like the following for sur vival:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
2 3 4 5 6 7 9 10 11 12 13 14

3 4 5 6 7 10 11 12 13 14
4 5 6 7 11 12 13 14

5 6 7 12 13 14
survival 6 7 survival 13 14
` poor ' 7 ` good' 14

and for recapture

15 16 17 18 19 20 21 22 23 24 25 26 27 28
16 17 18 19 20 21 23 24 25 26 27 28

17 18 19 20 21 24 25 26 27 28
18 19 20 21 25 26 27 28

19 20 21 26 27 28
recapture 20 21 recapture 27 28

` poor ' 21 `good' 28

Now, what we want to do is modify this structure to re�ect mode l f ! 2� C?Cg� in other words, we want
to change the recapture PIMs so that they are the same betweenthe two groups (the two colonies):

survival recapture

poor good poor good

1 ! 7 8 ! 14 15! 21 15! 21

The recapture PIMs would now look like:

15 16 17 18 19 20 21 15 16 17 18 19 20 21
16 17 18 19 20 21 16 17 18 19 20 21

17 18 19 20 21 17 18 19 20 21
18 19 20 21 18 19 20 21

19 20 21 19 20 21
recapture 20 21 recapture 20 21

` poor ' 21 `good' 21
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While we could do this `manually', by modifying the indexing for each individual PIM, MARK lets
you accomplish this in a faster, more elegant way � by modifyi ng the PIM chart directly. How? By simply
selecting (left-click with the mouse) the `good' colony `bl ue box' in the PIM chart, and while holding
down the left mouse button, dragging it to the left, so that it lines up with the recapture `blue box' for
the `poor' colony, then releasing the mouse button (shown be low). Compare this PIM chart with the
original one.

Next, look at the PIMs � you'll see that the recapture PIMs are now identical for both groups, indexed
from 15 ! 21, just as they should be. Now isn't that easy? We're now read y to run our general, starting
model f ! 2� C?Cg. Go ahead and run it,calling it model ` Phi(c*t)p(t) '. Add the results to the browser. The
model deviance is 107.563, with 20 estimated parameters (6 survival parameters for the `poor' colony,
6 survival parameters for the 'good' colony, 6 recapture pro babilities (the same for both colonies), and
2 � -terms (one for each colony). Make sure you understand the parameter counting!

Now, we simply run the other models in the candidate model set : f ! 2� C?�g, f ! C?Cg, f ! 2 ?Cg, f ! C?�g,
and f ! 2 ?�g. To reinforce your understanding of manipulating the PIM ch art, and to demonstrate at
least one other nifty trick with the PIM chart, we'll start wi th model f ! C?Cg. For this model, the PIM
structure would be:

For survival

1 2 3 4 5 6 7 1 2 3 4 5 6 7
2 3 4 5 6 7 2 3 4 5 6 7

3 4 5 6 7 3 4 5 6 7
4 5 6 7 4 5 6 7

5 6 7 5 6 7
survival 6 7 survival 6 7
` poor ' 7 ` good' 7
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and for recapture

8 9 10 11 12 13 14 8 9 10 11 12 13 14
9 10 11 12 13 14 9 10 11 12 13 14

10 11 12 13 14 10 11 12 13 14
11 12 13 14 11 12 13 14

12 13 14 12 13 14
recapture 13 14 recapture 13 14

` poor ' 14 `good' 14

Now, if you understood our �rst attempt with manipulating th e PIM chart, you might guess (correctly)
that what you need to do is `make the blue boxes for the surviva l parameters line up'. However, if you
look at the chart, you see you could do this by grabbing the `bl ue box' for survival for the poor colony
and dragging it to the right (under the box for the good colony ), or, in reverse, grabbing the box for the
good colony, and dragging it to the left. We'll use the latter approach, because we want to point out
another feature of the PIM chart that is worth noting. Here is the PIM chart:

Notice that now there is a gap between the `stacked blue boxes' for the survival and recapture
parameters � survival is indexed from 1 ! 7, while recapture is indexed from 15 ! 21. The index
values for 8 ! 13 don't correspond to any parameter. We want to eliminate th e gap (i.e., remove the
meaningless index values). You could do this manually, simp ly by dragging both recapture blue boxes
to the left. Or, you could do this by right-clicking anywhere in the PIM chart. You'll be presented with
a menu, which has `Renumber with overlap ' as one of the options. `Renumber with overlap ' means
(basically), renumber to eliminate any gaps, but allow for t he blue boxes for some parameters to overlap
each other'. If you select the r̀enumber with overlap ' option, the PIM chart will change to look like the
chart shown at the top of the next page.

Pretty slick, eh? This corresponds to model f ! C?Cg. Con�rm this for yourself by checking the 4
individual PIMs (in fact, this is always a good idea, until yo u're 100% comfortable with MARK ). Once
you're sure you have the right model, go ahead and run it � call it `phi(t)p(t) ', and add the results
to the browser. This model has a much smaller AIC value than ou r starting model, although it has a
larger deviance (which alone suggests that the time-dependent model does not �t the data as well as
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the more general model which included colony e�ects). We'll defer discussion/interpretation of these
`model �tting' considerations to the next section.

There are still several other models in our candidate model s et. Go ahead and run them � here are
the results for all of the models in the candidate model set:

If your values for deviance and so on match those shown here, t hen that's a good clue that you've
managed to build the models successfully (we'll be explaini ng what the various columns in the results
browser are shortly).

begin sidebar

uneven time-intervals + missing sampling occasions

In the preceding, we have implicitly assumed that the interv al between sampling occasions is identical
throughout the course of the study (e.g., sampling every 12 m onths, or every month, or every week).
But, in practice, it is not uncommon for the time interval bet ween occasions to vary � either by design,or
because of `logistical constraints'. In the extreme, you might even miss a sampling occasion altogether.
This has clear implications for how you analyze your data.

For example, suppose you sample a population each October, and again each May (i.e., two samples
within a year, with di�erent time intervals between samples ; October ! May, an interval of 7 months,
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and May ! October, an interval of 5 months). Suppose the true monthly s urvival rate is constant over
all months, and is equal to 0.9. As such, the expected survival over the interval from October ! May

would be 0 •97 = 0•4783, while the expected survival rate over the interval fro m May ! October would

be 0•95 = 0•5905. If you �t a model without accounting for these di�erenc es in time intervals, it is clear
that there would `appear' to be di�erences in survival betwe en successive samples, when in fact the
monthly survival does not change over time.

Alternatively, what if you're missing a sampling occasion a ltogether? For example, suppose you
have a 5 occasion study, but for some reason, were unable to sample on the third occasion:

1 2 3 4 5

occasion 1 occasion 2 <missing> occasion 4 occasion 5

This situation has two implications. First, the encounter p robability on the third occasion is logically
0. Second, in the absence of encounter data from the third occasion, the transition estimate for
individual alive and in the sample at occasion 2 would be from occasion 2 ! 4, where 4 is the next
sampling occasion in the data, and not 2 ! 3.

1 2 3 4 5

occasion 1 occasion 2 <missing> occasion 4 occasion 5

So, in e�ect, missing a sampling occasion altogether is stri ctly equivalent to an unequal interval, at
least with respect to estimating interval transition param eters, like survival.

However, it is quite di�erent in terms of modeling the encoun ter probabilities. For simple unequal
intervals, where all occasions are sampled, there is an encounter parameter estimated for each en-
counter occasion. For missing sampling occasions, you needto account for both the unequal interval
that is generated as an artifact of the missing occasion, and the fact that the encounter probability is
logically 0 for the missing occasion.

a. uneven time-intervals

Here, we consider the situation where there are no missing sampling occasions, but where the
interval between occasions varies. Imagine the following s ituation, where you sample a population
each October, and again each May (i.e., two samples within a year,with di�erent time intervals between
samples; October! May (7 months), and May ! October (5 months), for 7 occasions (assume the �rst
sampling occasion is in October). Thus, the sampling interv als over the course of the study are

1 2 3 4 5 6 7
Oct May Oct May Oct May Oct

7< 5< 7< 5< 7< 5<

Suppose the `monthly' survival probability is 0.95 (this wa s the value used to simulate the data
� the recapture probability in the simulation was held const ant at ? = 0•80 at each occasion). Thus,

the expected `seasonal' survival probability for the May ! October season is 0•955 = 0•7738, and

0•957 = 0•6983 for the October ! May season; in other words, the same monthly survival between
seasons,but di�erent expected seasonalsurvival probabilities. But,more importantly,since the m onthly
survival probability is the same, then if the seasons were th e same length (say, both 6 months long),
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then we would expect that seasonal survival for both seasons would be the same,and that the best,most
parsimonious model would likely be one that constrained sur vival to be the same between seasons.

What happens if you �t a model to these data where survival is c onstrained to be the same
between seasons,withoutcorrectly specifying the di�eren t time intervals between sampling occasions?
Start MARK , and read in the �le variable_interval.inp . The simulated data represent a live mark-
encounter study, which is the default data type in MARK . We specify 7 sampling occasions. If you
click the button to the right of where you specify the number o f encounter occasions, you'll see that
MARK defaults to a common, constant interval of `1` time unit betw een each successive sampling
occasion:

We know that for this example, these default intervals are in correct, but to demonstrate what
happens if you don't correctly specify the time interval we' ll accept the default interval values of
`1'. We'll �t 2 models to these data: model f ! � ?�g, and model f ! ¹B40B>=º ?�g, where the second model
assumes there is a di�erent survival probability between se asons (but that within season, the estimated
survival probability is constant among years). How do we bui ld model f ! ¹B40B>=º ?�g?

Fairly simply � we can do this by using a common index value for each season in the survival PIM:

Here, the `1' index values correspond to the October ! May season (recall that in this example, the
�rst sampling occasion is assumed to be in October), and the ` 2' index values correspond to the May !
October season.

We see clearly (below) that model f ! ¹B40B>=º ?�g is not equivalent to model f ! � ?�g:
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We see from the parameter estimates for model f ! ¹B40B>=º ?�g (shown below) that the values for

each season are very close to what we expected: 0.6958 is veryclose to 0•957 = 0•6983, and 0.7739 is

also very close to 0•955 = 0•7738.

OK, all is well, right? Well, not quite. Suppose you wanted to test the hypothesis that monthly
survival is the same between seasons. How would you do this? W ell, you could derive an estimate of
monthly survival from each of these seasonal estimates by taking the appropriate root of the estimated
value. For example, for October ! May, which is a 7 month interval, the estimated monthly survi val
probability is 7p 0•6958 = 0•9495, and for May ! October, which is a 5 month interval, the estimated
survival probability is 5p 0•7739 = 0•9500. While it is clear that both of these estimates are virtually
identical in this instance, in practice you would need to der ive SE's for these values, and use a formal
statistical test to compare them (deriving the SE's for the nth roots � or any other function � of various
parameter estimates involves use of the Delta method� see Appendix B).

How can we avoid these `hand calculations'? Can we get MARK to give us the monthly estimates
directly? In fact, we can, by correctly specifying the time i ntervals. Obviously we do so by entering
the appropriate intervals once we've speci�ed the appropri ate number of sampling occasions. The
key, however, is in deciding what is the appropriateinterval. Suppose we're really interested in the
monthly survival value, and whether or not these values di�e r between seasons. How can we test this
hypothesis in MARK , if the number of months in the two seasons di�ers?

In fact, it is quite straightforward * , but �rst you need to know something about how MARK handles
time intervals. Consider the following example � suppose th at 3 consecutive years of live trapping are
conducted (with the �rst year capturing only new or unmarked animals), then a year is missed, then 3
more consecutive years are conducted. Then, the time intervals for these 5 encounter occasions would
be speci�ed as

1 1 2 1 1

where the `2' indicates that the length of the time interval separating t hese 2 capture occasions is 2
years instead of 1 year like the other 4 intervals. The purpos e of specifying the time intervals is to
make the survival probabilities for each of the intervals co mparable. Thus, the survival probability
for all 5 of the above intervals will be an annual or 1 year prob ability, so that all can be constrained to
be the same, even though the length of the time intervals to wh ich they apply are not the same. The
time interval is used as an exponentof the estimated survival probability to correct for the len gth of
the time interval.

To explain in more detail, unequal time intervals between en counter occasions are handled by
taking the length of the time interval as the exponent of the s urvival estimate for the interval, i.e.,

(
! 8
8 . For the typical case of equal time intervals, all unity (1), this function has no e�ect (since raising

anything to the power of 1 has no e�ect). However, suppose the second time interval is 2 increments in

* At least, it is straightforward for simple live encounter mo dels. Handling uneven intervals gets more complicated when we
consider models where individuals `move' between discrete states � these models are covered in later chapters.
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length,with the rest 1 increment. This function has the desi red consequences: the survival estimates for
each interval are comparable, but the increased span of time for the second interval is accommodated.
Thus, models where the same survival probability applies to multiple intervals can be evaluated,
even though survival intervals are of di�erent length. More over, you can use the exponent to derive
estimates of survival for whatever interval you deem approp riate.

OK, back to our example � we're interested in monthly surviva l probabilities. To derive monthly
survival probabilities, all you need to do is re-do the analy sis, and enter the appropriate number of
months:

Go ahead and re-run the analysis using the same two models. This time, however, we see that model
f ! � ?�g is much better supported by the data than a model allowing for season di�erences:

Moreover, the estimated survival probability from this mod el (0.9497) is very close to the estimated
true monthly survival probability used to simulate the data .

As a �nal test, suppose that instead of monthly estimates,yo u were interested in estimates calculated
over 6 month intervals. You could derive 6-month (i.e., half -year) survival estimates (and correspond-
ing standard errors) by hand, but can you use MARK to do this for you directly? Sure � all you need
to do is re-scale both seasonal intervals in terms of the desired season length. How? Simply by using
the fact that a 7 month interval is in fact ¹7•6º = 1•1¤6 times as long as a 6 month interval, and that a
5 month interval is ¹5•6º = 0•8¤3 times as long as a 6 month interval. So, all you need to do is enter
these re-scaled intervals into MARK . Note however that the interval input window in MARK does not
expand `visibly' to handle non-integer intervals (or even i nteger intervals that are very large). This is
not a problem, however. Simply go ahead and enter the values ( we'll use 1.167 and 0.833, respectively,
so:1.167 0.833 1.167 0.833 1.167 0.833 ).

Since the true monthly survival probability is 0.95, then if the season lengths were actually the
same (6 months), then we would expect the estimated seasonalsurvival probabilities for both re-scaled

seasons to be the same,¹0•95º6 = 0•7351, and that model f ! � ?�gshould be much better supported than
competing model f ! ¹B40B>=º ?�g. In fact this is exactly what we see � the estimated 6-month su rvival
probability from model f ! � ?�g is 0.7338, which is very close to the expected value of 0.7351.

b. missing sampling occasions

Now we consider the case where a sampling occasion is missed completely. As noted above, missing
a sampling occasion altogether is equivalent to an unequal i nterval, at least with respect to estimating
interval transition parameters, like survival. However, i t is quite di�erent in terms of modeling the
encounter probabilities. For simple unequal intervals, wh ere all occasions are sampled (at unequal
intervals), there is a parameter estimated for each encounter occasion. In the case of `missed sampling
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occasions', you need to account for both the unequal interva l that is generated as an artifact of the
missing occasion, and the fact that the encounter probabili ty is logically 0 for the missing occasion.

There are several di�erent approaches to handling a missing sampling occasion � the `right'
approach is the one that you �nd most convenient, and which be st suits your purposes:

1. in the input �le you can simply not include an encounter colum n in the encounter history
for the occasion(s) where sampling did not occur. In this cas e, you then need to either
(i) explicitly adjust the sampling interval to account for t he missing occasion, or (ii) use a
log link function, which can accommodate `product estimate s' over multiple (combined)
intervals

2. you can include a column of 0's in the encounter histories for the missing occasion. In
other words, the encounter would be code ` 0' for every individual for that occasion. In
this case, you need to explicitly set ? = 0 for the missing occasion.

3. you can use `dot' (i.e., .̀ ') instead of 0 in the encounter history (see Chapter 2). MARK
recognizes the `dot' as a missing occasion, and automatically �xes ? = 0 for that missing
occasion, without you having to do so explicitly.

To demonstrate these di�erentapproaches,we'll use a simul ateddata live encounterset � 6 occasions,
where we assume that there was no sampling on occasion 4. We assumed that 500 new individuals
were marked and released on each occasion, except for the missing occasion 4.* The true values for !
and ? used to generate the encounter data are:! 1 = 0•85–! 2 = 0•75–! 3 = 0•9–! 4 = 0•7–! 5 = 0•85,
and ?2– ?3– ?5 and ?6 all equal 0.5, while ?4 = 0 (occasion 4 being the missing occasion).

The basic structure and true parameter values are shown in th e following diagram:

1 2 3 4 5 6

?2 = 0•5 ?3 = 0•5 ?4 = 0•0 ?5 = 0•5 ?6 = 0•5

! 1 = 0•85 ! 2 = 0•75 ! 3 = 0•9 ! 4 = 0•7 ! 5 = 0•85

What is clear from this diagram is that in the absence of encou nter data from occasion 4, then we are
left with estimating a transition probability ! from occasion 3 ! 5, which clearly would be a function
of the product of ¹! 3 � ! 4º. MARK will then report estimates for ! 3 and ! 4 that are functions of this
product (say, the square-root).

From the simulated data, we constructed 3 di�erent .INP �les: (i) missing_occasion_interval.inp
(where the missing occasion 4 does not show up in the encounter history, and we explicitly set the
interval for the transition from occasion 3 ! 5 to `2'), (ii) missing_occasion_constrain.inp (where
the missing occasion 4 is a column of 0's in the encounter history, and where we will need to explici tly
�x ?4 = 0 in the estimation), and (iii) missing_occasion_dot.inp (where the missing occasion 4 is
entered as a `dot', which will cause MARK to implicitly assume ?4 = 0).

We'll start by considering the case where the missing occasion is not entered in the encounter
history. Here, we have a couple of approaches we might try. We 'll �rst consider an approach where we
explicitly modify (specify) the default interval between s ampling occasions. StartMARK , and specify
a live encounter (CJS) data type. Select themissing_occasion_interval.inp input �le, and specify 5
occasions (remember, in this .INP �le, we do not have a column for the missing encounter occasio n 4).
Next, manually change the default interval between samplin g occasions to 1̀ 1 2 1'.

We'll �t 2 models to these data: f ! C?Cg,and f ! C?�g. We see from the results browser (shown near the
top of the next page), that model f ! C?�ggets the most support in the data ( F = 0•775). This is perhaps
not surprising, since this model matches the overall struct ure of the generating model (above). Given

* It is possible to conceive of sampling situations where new i ndividuals are marked and released on a particular occasion , but
no reencounters with previously marked individuals occur. Such a situation might arise if the investigator is actively avoiding
recapture of previously marked individuals, in order to con centrate �eld e�ort on capture and marking of new individual s.
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the magnitude of the model selection uncertainty, we might c onsider model averagingthe estimates of
! and ?. However, since we don't introduce the concept and mechanic s of model averaging until later
in this chapter, we'll focus instead on estimates from the to p model, f ! C?�g.

Here are the estimates of the real parameters from this model:

We see that the estimates for  ! 1 = 0•879–  ! 2 = 0•760, and  ! 4 = 0•822 (here, corresponding to
the interval from occasion 5 ! 6) are quite close to the true parameters values (0.85, 0.75,and 0.85,
respectively). Recall that true ! 3 = 0•9 and ! 4 = 0•7, meaning, the product probability of surviving
the interval from 3 ! 5 is ¹0•9 � 0•7º = 0•63. As such, the square root of this value is

p
0•63 = 0•794.

The estimate  ! 3 = 0•785 is quite close to this value.

Alternatively, we could try a di�erent `link function' � spe ci�cally, the log link * . The topic of `link
functions' as a fundamental part of �tting models to encount er data, is covered in much detail in
Chapter 6. For the moment, we simply need to remember some basic `middle school' algebra involving

`logs of products'. If 0 = 1;, then ;>6¹0º = ; log¹1º. Let ; be the length of the interval between 2 sampling
occasions, and let! 0 be the survival over the base interval. If ; = 1 (which is the default interval), then

for some interval 8, ! 8 = ! 1
0, and log¹! 8º = ¹1º log¹! 0º. In this case, ! 8 � ! 0. Now, with missing

occasion, ; 7 1. For our present example, with a missing occasion between occasions 3 and 5, the

interval is ; = 2. So,! 3! 5 = ! 2
0, and thus log¹! 3! 5º = 2 log¹! 0º. So, if we could estimate  ! 3! 5 on

the log scale (say, using the `log link' in MARK ), then my estimate for log ¹  ! 0º is simply  ! 3! 5•2. We
would then back-transform to get our estimate of ! 0 on the real probability scale:  ! 0 = exp¹log¹  ! 0ºº.

All we need do in MARK is to (i) specify the `log link' when we run the model (as oppos ed to
the sin or logit links, which are more commonly used), and (ii ) enter the length of the interval as a
`covariate' in the `design matrix'. Step (i) is easy � you sim ply click the `log link' radio button. Step (ii)
is easy if you know how to build linear models and design matri ces in MARK (which is the subject
of Chapter 6). At this point, we'll simply show you (below) th e design matrix for model f ! C?�g:

* In fact, this was the approach that was used in later versions of program SURGE � Cooch et al. (1997).
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Along the diagonal in columns 1 ! 4 of the design matrix are the `covariate' values for interva l
length between sampling occasions (i.e., the parameter ; in the bits of algebra discussed above). For
most of the intervals, ; = 1, but between occasions 3 and 5, (with missing occasion 4), we enter ; = 2
into the matrix.

After �tting this design matrix to the data, we get the follow ing parameter estimates:

We see that the estimates for! 1–! 2, and ! 5 are identical to those reported earlier when we explicitly
changed the interval from the default ` 1 1 1 1' to `1 1 2 1'.

What about  ! 3! 5 = 0•616 � where does this value come from? Recall that true ! 3 = 0•9 and ! 4 = 0•7,
meaning, the true product probability of surviving the inte rval from 3 ! 5 is ¹0•9� 0•7º = 0•63. When
we explicitly changed the interval between sampling occasi ons to `1 1 2 1', and using the default logit
or sin links, MARK returned  ! 3! 5 = 0•785, which is quite close to

p
0•63 = 0•794. So, our estimate of

 ! 4 =  ! 5 = 0•785 (i.e.,MARK reports the estimate as the square-root of the product of ! 3! 4). Using
the log link, however, the value reported is, in fact, the est imate of this product � the reported value

0.616 is in fact the¹0•785º2. So, explicitly setting the interval � the estimate is the lth root of the product
over the interval, while using the log link generates an esti mate of that product.

Deciding which of these two approaches � neither of which inv olve reformatting the encounter
history data in any way � is easier is ultimately a matter of pe rsonal preference. [It should be noted
� and as discussed in Chapter 6 � that using the approach based on the log link does not change the
overall �t of the model to the data, relative to the approach w here we used, say, the sin or logit link
but made explicit changes to the interval length at the outse t.]

Next, we consider the situation where the missing occasion i s `coded' in the encounter history as
a column of 0's. These encounter history data are found in missing_occasion_constrain.inp . Here,
we must remember to explicitly �x ?4 = 0 in the numerical estimation. Start MARK , select the .INP
�le, and set the number of occasions to 6 (not 5 � remember, we h ave an encounter column for missing
occasion 4, which was not the case in the previous analysis). Leave the intervals between sampling
occasions at the default value of `1'. Again, we'll �t 2 models to these data: f ! C?Cg, and f ! C?�g. Note
that for the second model, f ! C?�g, we have to modify the PIM for the encounter probability ? to allow
us to �x one of the encounter parameter ?4 = 0. One way of setting up the PIM is as follows:

Here, parameter 7 corresponds to ?4 � we will �x parameter 7 to 0 during the numerical estimation.
[Whereas for model f ! C?Cg, we'll set parameter 8, which corresponds to ?4 to 0.]
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Here are the results from �tting these two models to the data:

We see that here, model f ! C?�g receives virtually all of the support in the data. Here are th e
parameter estimates from this model:

Estimates for  ! 1– ! 2,  ! 5 and ? (parameter 6) are virtually identical to those from the prev ious
analysis,andare quite close to the true parameter values used to simulate the data.Estimates for  ! 3 and
 ! 4 are di�erent fromeach other after the second decimal place, but their product is virtually identical to

the square of the estimate from the preceding analysis: ¹0•7804� 0•7889= 0•6157� ¹ 0•7846º2 = 0•6156).
However, the SE reported for both parameters are clearly meaningless. Why? They're meaningless

because for this example, we haven't imposed any sort of constraint on the survival estimates for the
`two pieces' of the interval from occasion 3 ! 5 (i.e.,! 3–! 4). As such,MARK has no way of estimating
the covariance between the two reported values, which are `evaluated' subject only to the constraint
that their product is � 0•6157). If, however, we modi�ed the survival PIM, setting the estimates for the
intervals from occasion 3 ! 4 ! 5 equal to each other (for example, as shown below)

and re-index the PIM for the encounter probability
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then, after �xing parameter 6 to 0, the estimates (shown belo w) for  ! 3 = 0•7846 and cSE = 0•0151
are identical to those reported in the �rst approach (above) whe re we dropped the `missing occasion
column' from the encounter history, and manually set the int erval for that occasion to `2'.

Finally, we consider this same analysis, but instead of a column of 0's, the missing occasion is
entered into the encounter history as a `dot'. These data arecontained in missing_occasion_dot.inp .
The potential advantage of using the `dot' approach in codin g missing sampling occasions is that it
eliminates the need to explicitly set the encounter probabi lity to 0 for the missing occasion. Again,
start MARK , select the .INP �le, and set the number of occasions to 6. Leave the intervals between
sampling occasions at the default value of `1'. Again, we'll �t the same 2 models to these data: f ! C?Cg,
and f ! C?�g.

However, unlike the previous analysis, where for model f ! C?�g we needed to modify the PIM for
the encounter probability ? to `allow MARK to �x this missing occasion to 0', that is not the case here
� MARK handles everything for us. We simply use a `dot' (constant) P IM for p:

Here are the results of �tting the two models to the data:

As with the earlier examples, we see that model f ! C?�ghas most of the support in the data, so we'll
look at estimates from this model only:
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Again, estimates for  ! 1– ! 2,  ! 5 and ? (parameter 6) are nearly identical to those from the previou s
analysis, and are quite close to the true parameter values used to simulate the data. Estimates for  ! 3
and  ! 4 are again slightly di�erent from each other. However, their product is identical to the products
of the estimates from the preceding analysis: ¹0•8084� 0•7616 = 0•6157 = 0•7804� 0•7889 = 0•6157).
The SE reported for both parameters are clearly meaningless(for the same reason discussed above).
And, we could tweak the PIM structure

If, however, we modi�ed the survival PIM as we did earlier, se tting the estimates for the intervals
from occasion 3 ! 4 ! 5 equal to each other:

we end up with estimates which are identical to those we saw ab ove:

end sidebar

OK � so we've considered some of the basics of building some mo dels in MARK . But, what model, or
models, should we make inference from? How do we establish wh ether or not some factor `signi�cantly'
in�uences survival,or some otherparameterof interest? Wh atparameterestimates are mostappropriate
to report? Of course, these are in factthecritical questions underlying the exercise of �tting model s to
data in the �rst place. We begin addressing them in the next se ction.

4.3. Model selection � the basics

In simplest terms, we might express our objective as trying t o determine the best model from the set of
approximating models we've �t to the data. How would we ident ify such a `best model'? An intuitive
answer would be to select the model that `�ts the data the best ' (based on some statistical criterion - say
smallest RSS, or equivalent).

However, there is a problem with this approach � the more para meters you put into the model, the
better the �t (analogous to ever-increasing ' 2 in a multiple regression as you add more and more terms
to the model). As such, if you use a simple measure of `�t' as th e criterion for selecting a `best' model,
you'll invariably pick the one with the most parameters. *

* In the extreme, if you have 1 parameter for each data point, ' 2 ! 1•0.
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So, for our analysis of the European dipper data we would sele ct model f ! C?Cg as our `best' model,
simply because it has the lowest deviance (36.4013), which of course it must since it has more parameters
(11) than the other 3 models in the model set:

Great, right? Don't we want to maximize the �t of our models to the data? Well � it's not quite that
simple. While adding more parameters increases the �t of the model to the data, you pay a price in so
doing � that price is parameter uncertainty(or variance).

Consider Fig. (4.1), shown below. This �gure represents the trade-o� between s quared bias and
variance versus the number of estimable parameters in the model. With an increasing number of
parameters, the squared bias of the estimates of the individual parameters goes down.* In other words,
the overall �t of the model to the data is better.

Figure 4.1: Fundamental relationship between the number of parametersin a model (: ), and the square of the bias
(related to overall model �t to the data), and parameter uncertainty (precision of parameter estimates).

But, this increase in �t comes at the cost of greater parameter uncertainty (i.e., larger and larger
measures of parameter uncertainty � say, bigger and bigger S E for parameter estimates). In the extreme,
if you have one parameter for each data point, the �t of the mod el to the data will be perfect (in other
words, ' 2 = 1). However, the SE for the estimates of each parameter will be on the interval »�1 –̧ 1¼ ,
which is clearly not particularly informative. How can we �n d a good, defensible compromise between
the two? One approach is to make use of something called the AI C.

* Formally, as a model becomes complex (more parameters), bias decreases, but variance of the estimates of parameter coe�cients
increases. Suppose that a response variableHcan be modeled asH= 6¹xº ¸ &. The corresponding expected prediction error can
be written as � ¹¹H�  6¹xºº2º. If  6¹xº is the prediction based on the within-sample data then

�
�
¹H�  6¹xººº2 = � 2 ¸ ¹ � ¹  6¹xºº � 6¹xººº2 ¸ var¹  6¹xºº

= irreducible error ¸ bias2 ¸ variance

The �rst term, irreducible error, represents the uncertainty associated with the true relat ionship that cannot be reduced by any
model. In e�ect, the irreducible error is a constant in the ex pression. Thus, for a given prediction error, there is an explicit trade-o�
between minimizing the variance and minimizing the bias (i. e., if one goes down, the other goes up).
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4.3.1. The AIC, in brief...

The AIC (which in fact is an acronym for `another information criterion', but is almost universally `read'
as Àkaike's Information Criterion', after Hirotugu Akaik e who �rst described it in 1973) comes to us
from the world of information theory.

While the `deep theory' underlying the AIC is somewhat dense (translation: not entirely trivial � see
the relevant chapters in Burnham & Anderson, 2002. For a somewhat more accessible introduction, see
Hooten & Cooch 2019), in purely mechanical terms, the usual applications are straightforward. The
AIC is calculated for a particular model as

AIC = � 2 ln L
�

 )
�
� data

�
¸ 2 –

where L is the model likelihood() represents the vector of the various parameter estimates given the
data), and  is the number of parameters in the model.

In general, the �t of the model to the data is `represented' by the model likelihood (maximum
likelihood estimation was introduced in Chapter 1). Thus, a s the �t of the model goes up, the likelihood
of the model (given the data) goes up (and thus � 2 ln L goes down). However, as indicated in the �gure
on the preceding page, the greater the number of parameters, the greater the parameter uncertainty
or variance. Thus, as the �t of the model increases, � 2 ln L goes down � and for a given number of
parameters, the AIC declines. Conversely, for a given �t, if it is achieved with fewer parameters (lower
K), then the calculated AIC is lower. The 2  term, then, is the penaltyfor the number of parameters. As
K goes up, likelihood goes down, but this is balanced by the pen alty of adding the term 2  .*

So, one strictly utilitarian interpretation of the AIC is th at the model with the lowest AIC is the `best'
model among those �t to the data because it is most parsimonio us given the data � best �t with fewest
parameters. However, more formally, and perhaps more impor tantly at least conceptually, the model
with the lowest AIC within the candidate set of approximatin g models can be shown to be the model
which is closest to `full truth' � which is not known (and is no t contained in the candidate model set).

Say, what? Start by imagining a model 5 which represents full truth. Such a model might exist in
theory, but we will never be able to fully specify it. Conside r an approximating model 6. We use the
term approximatingfor 6 since 6 (and in fact any model) is an approximation of truth. Our goal in model
selection is (ultimately) to determine which of our models m inimizes the di�erence (distance) between
6 and 5. In the 1950's, Kullback and Leibler determined that if � ¹ 5 – 6º represents the `information' lost
when model 6 is used to approximate full truth 5, then � ¹ 5 – 6º, the distance between a model 6 and full
truth 5, is given as

� ¹ 5 – 6º =
¹

5¹Gº ln

�
5¹Gº

6¹Gj ) º

�
3G•

Here f and g are probability distributions. The verbal description of � ¹ 5 – 6º is that it represents the
distance from model 6 to model 5. Alternatively, it is the information lost when using 6 to approximate
5.„ As above, ) represents the vector of the various parameters used in the speci�cation of 6.

It might be helpful to consider the form of Kullback-Leibler (K-L) information for discrete probability
models (since they are somewhat easier to grasp). Let the true state of the system be

5 = f ?1– ?2– • • • – ?: g•

* The concept of penalizing complex models to account for opti mism and improve predictive ability is much more general tha n
how it is used in AIC � consult the literature on `regularizat ion' as a means of preventing over�tting (Hooten & Cooch 2019 ).

„ The negative of K-L information is Boltzmann's entropy, � = � � ¹ 5 – 6º, a fundamental concept in statistical thermodynamics.
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Here there are : possible outcomes of the underlying random variable � the tr ue probability of the
8th outcome is given by ?8. Let the model approximatingthe state be

6 = f � 1–� 2– • • • –� : g–

where � 8 represents the approximating probability distribution fo r the 8th outcome. (Note that in the
discrete case, 05 ?8 5 1–0 5 � 8 5 1, and

Í
?8 =

Í
� 8 = 1).

Thus, the K-L information between models 5 and 6 is de�ned for discrete distributions to be

� ¹ 5 – 6º =
:Õ

8=1

?8ln

�
?8

� 8

�
•

After log-transforming, we write

� ¹ 5 – 6º =
:Õ

8=1

?8ln ?8 �
:Õ

8=1

?8ln � 8•

(As an aside, you may recognize the �rst of the two terms in thi s di�erence as H, the Shannon-Weiner
diversity index, another information-based measure.)

Now, back to the more general form � the integral form for � ¹ 5 – 6º can be written equivalently as a
di�erence of integrals

� ¹ 5 – 6º =
¹

5¹Gº ln 5¹Gº3G�
¹

5¹Gº ln 6¹Gj ) º3G

= � 5»ln 5¹Gº¼ � � 5»ln 6¹Gj ) º¼–

where in the second line we make use of the fact that the form of each integral is that of an expectation.

� ¹ 5 – 6º is known as the Kullback-Leibler(K-L) information, or distance. With a bit of thought, it is c lear
that a `good' model is one where the distance between the model 6 and `truth' 5 is as small as possible.
In other words, a model which minimizes the K-L distance. But , if we don't (and can't ever) know truth,
then how can we `estimate' the K-L distance for a given model? In fact, we can't, but it turns out that
doesn't matter. We can make use of relativeK-L information instead.

What do we mean by `relative' K-L information? Look at the RHS of the preceding equation:

� ¹ 5 – 6º = � 5»ln 5¹Gº¼ � � 5»ln 6¹Gj ) º¼•

The �rst expectation � 5»ln¹ 5¹Gºº¼is `truth', which clearly must be a constant across models. Thus,

� ¹ 5 – 6º = Constant � � 5»ln 6¹Gj ) º¼

� ¹ 5 – 6º � Constant = � � 5»ln 6¹Gj ) º¼•

The term »� ¹ 5 – 6º � Constant¼is called relative Kullback-Leibler information (or dista nce), and is
the relative distance between truth ( f ) and the approximating model ( g). Relative K-L information is
measured on an interval scale, a scale without an absolute zero. (In fact, the absolute zero is truth and
is no longer part of the expression.)
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Why is the relative K-L information of interest? Suppose tha t in addition to our approximating model
6 we have a second approximating model � for the true state of nature 5. The information lost in using
� to approximate 5 is given by the following

� ¹ 5 – �º =
¹

5¹Gº ln 5¹Gº3G�
¹

5¹Gº ln � ¹Gj ) º3G

= � 5»ln 5¹Gº¼ � � 5»ln � ¹Gj ) º¼•

Observe that � 5»ln 5¹Gº¼is a common term in the expression for both model 6 and model � . Thus,
if we want to compare model 6 to model � it makes sense to consider the di�erence � ¹ 5 – 6º � � ¹ 5 – �º. If
we do so then we �nd

� ¹ 5 – 6º � � ¹ 5 – �º = � � � � � ��
� 5»ln 5¹Gº¼ � � 5»ln 6¹Gj ) º¼

�
� � � � � � ��

� 5»ln 5¹Gº¼ � � 5»ln � ¹Gj ) º¼
�

= � 5»ln � ¹Gj ) ¼ � � 5»ln 6¹Gj ) º¼•

OK, but where does that leave us? Look closely � notice that in the preceding bit of algebra, the
� 5»ln 5¹Gº¼terms for each approximating model have canceled out.

So what? Again, recall that � 5»ln 5¹Gº¼represents truth! So, if our goal is to compare two models, tr uth
drops out the comparison � which is a good thing since we canno t ever know what truth is. Its absolute
magnitude has no meaning. It is only useful for measuring how far apart two approximating models
are. This last expression represents the di�erence in relativeKullback-Leibler information between two
models. So if our only goal is model comparison then our objec tive can be more limited. Rather than
estimate K-L information we can estimate instead relativeK-L information � the information lost when
model 68 is used to approximate full reality ( 5). Another view of this is the distancebetween model 68
and full reality.

In either case, it seems compelling that one would want to sel ect the model in the set of R models
(61– 62– • • • – 6' ) that minimizes K-L information loss. That is, we want the mo del from within the model
set that loses the least information about full reality, hen ce, the model that is closest to full reality in the
current model set (Fig. 4.2):
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Figure 4.2: Kullback-Leibler information is shown (at left) as the distances (38) between full reality (f) and the
various models (68). The� values (right) provide the estimated distance of the various models to the best model
(in this case, model62). These values are on the scale of information irrespectiveof the scale of measurement or
type of data. From Burnham, Anderson & Huyvaert (2011).
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While all might seem well, recall that in our approximating m odel we typically won't know the exact
value of ) . Instead we will have to use an estimate,  ) . To account for this additional uncertainty, Akaike
suggested that what we should do is to calculate the averagevalue of relative K-L information over all
possible values of ) .

In terms of expectation we would call this quantity expectedrelative K-L information and write it as

�
�
� 5»ln 6¹Gj ) º¼

�
•

Akaike showed that an asymptotically unbiased estimator of the relative expected K-L distance from
`truth' could be calculated as

ln L
�

 )
�
� data

�
�  –

where L ¹  ) j dataº is the log likelihood function for an approximating model ev aluated at the maximum
likelihood estimate of the parameter set ) , and where  is the number of parameters estimated in
maximizing the likelihood of the model.

Akaike then de�ned `an information criterion' (AIC), by mul tiplying by � 2 (for `historical reasons',
it seems) to get the familiar

AIC = � 2 ln L
�

 )
�
� data

�
¸ 2 •

Thus, as suggested earlier, one should select the model thatyields the smallest value of AIC among
the models in the candidate model set, not simply because it p rovides some `balance' between precision
and �t, but because this model is estimated to be the `closest' to the unknown reality that generated the
sample data, from among the candidate approximating models being considered.

In other words, you should use the AIC to select the �tted appr oximating model that is estimated to
be closest to the unknown truth (i.e., which minimizes the K- L distance). This, of course, amounts to
selecting the model with the lowest AIC,among those models i n the candidate model set. We emphasize
here that the theory guarantees that the model with the lowes t AIC has the smallest K-L distance
amongst the models in the model set, conditional on the model set being speci�ed a priori. It says
nothing whatsoever about whether or not you have a `good cand idate model set' in the �rst place.

Returning to the European dipper analysis, we note that even though model f ! C?Cg has the lowest
deviance (best �t; 36.40), it also has the greatest number of parameters (11) and the highest AIC value.
In contrast, the model deviance for model f ! � ?�g is the greatest (�ts the least well), but because it uses
only 2 estimated parameters, it in fact has the lowest AIC of t he 4 models.

4.3.2. Some important re�nements to the AIC

While Akaike derived an asymptotically unbiased estimator of K-L information, the AIC may perform
poorly if there are too many parameters in relation to the siz e of the sample. A small-sample (second
order) bias adjustment led to a criterion that is called AIC 2 (Sugiura 1978; Hurvich & Tsai 1989), that
accounts for di�erences in e�ective sample size:

AIC 2 = � 2 ln L ¹  ) º ¸ 2 ¸

 
2 ¹ ¸ 1º
= �  � 1

!

–
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where n is the e�ective sample size * . Because AIC and AIC2 converge when the e�ective sample size is
large, one can always use AIC2. As such, the AIC values reported by MARK are by default based on
this modi�ed (corrected) version of the AIC.

We'll talk about additional modi�cations to the AIC, partic ularly to account for lack of �t ( c), in the
next chapter, but for the moment, conceptually at least, the AIC is simply the sum of 2 times the negative
log of the model likelihood and 2 times the number of paramete rs, adjusted for sample size.

begin sidebar

Maximum likelihood, least-squares, and AIC

You may at this point be wondering what the connection is betw een ÀIC' and metrics for `model �t'
that you learned in some introductory statistics class (e.g ., `residual sums of squares, RSS').

We'll introduce the connection by means of a fairly familiar example � the MLE for the mean,
variance and standard deviation of the normal distribution .Thepdf (probability distribution function)
for the normal distribution is

5¹Gº =
1

� G

p
2�

4
� 1

2

�
G� ¢G
� G

� 2

–

from which the likelihood is given as

L
�
G1– G2– • • • – G# j ¢G–� G

�
=

#Ö

8=1
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�
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p
2� º#

4
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�
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•

Then

ln¹L º = �
#
2

ln¹2� º � # ln � G �
1
2

#Õ

8=1

�
G8 � ¢G

� G

� 2

•

Taking the partial derivatives of L with respect to each one of the parameters and setting them
equal to zero yields,

@L
@¢G

=
1

� 2
G

#Õ

8=1

¹G8 � ¢Gº = 0–

and,

@L

@� 2
G

= �
#
� G

¸
1

� 3
G

#Õ

8=1

¹G8 � ¢Gº2•

Solving these two equations simultaneously for ¢Gand � Gyields

¢G=
1
#

#Õ

8=1

G8 � 2
G =

1
#

#Õ

8=1

¹G8 � ¢Gº2•

* For many data types, the e�ective sample size is the number of Bernoulli trials. So, for the live encounter CJS model, the number
of animals released and re-released is taken as the e�ectivesample size, because these releases form Bernoulli trials.Similarly
for dead recoveries (Chapter 8) and known fate data types (Ch apter 16). Di�culties arise for models that have di�erent ty pes
of parameters � what constitutes the `e�ective sample size' for these data types is an open question.

For example, consider patch occupancy models � # (the overall proportion of patches occupied) has a di�erent sample size
than the encounter probability, ?: # is based on the number of patches, whereas? is based on the number of visits to patches.
MARK has the capability to specify the e�ective sample size under the adjustments menu choice of the results browser � this
can be useful if there is uncertainty about the e�ective samp le size for a given data type, provided you know what you're do ing.)
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Now, consider again the ln L expression:

ln¹L º = �
#
2

ln¹2� º � # ln � G �
1
2

#Õ

8=1

�
G8 � ¢G

� G

� 2

•

You might (should) remember from your statistics class that the residual sums of squares (RSS) is
given as

'(( =
�
G8 � ¢G

�2 •

Thus, we can rewrite the ln L as

ln¹L º = �
#
2

ln¹2� º � # ln � G �
1
2

#Õ

8=1

�
G8 � ¢G

� G

� 2

= �
#
2

ln¹2� º � # ln � G �
1
2

 
'((

� 2
G

!

•

We see clearly that minimizing the RSSis equivalent to minimizing the likelihood.

Finally, di�erentiating this expression with respect to � 2 yields

 
� 2 =

'((
#

–

which when substituted into the likelihood expression yiel ds

ln¹L º = �

�
#
2

�
ln¹2� º � # ln � G �

1
2

 
'((

� 2
G

!

= � �
#
2
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�
'((
#

�
�

#
2

–

where C is the constant �¹ # •2º ln¹2� º. Thus, we can write the AIC in terms of RSS as

AIC = � 2 ln L ¸ 2 

= # ln
� '((

#

�
¸ 2 •

end sidebar

4.3.3. BIC � an alternative to the AIC

While the AIC has been shown to be a good omnibus approach to mo del selection, there are some
theoretical considerations which may justify considerati on of an alternative model selection criterion.
One such measure is the BIC (Bayes Information Criterion), w hich can be used instead of the AIC in
MARK � simply select ` File | Preferences | Display BIC instead of AIC '.

BIC or QBIC are alternative model selection metrics to AIC 2 or QAIC 2. The number of parameters
in the model is  . The BIC depends on the number of parameters as

BIC = � 2 ln L
�  )

�
¸  ln

�
=4

�
–
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as does the QBIC (quasi-BIC)

QBIC =
� 2 ln L

�  )
�

 2
¸  ln

�
=4

�
–

where =4 is the e�ective sample size, and  2 is an adjustment for lack of �t of the general model to the
data (this is introduced in the next chapter). If you select t he BIC, model weights and model likelihood
are also computed using BIC instead of AIC 2, so that model averaging is also conducted from the BIC.

When should you use BIC versus AIC? This is a very deep question, and we can only brie�y describe
some of the issues here. In general, recent research (much ofit collated in Burnham & Anderson 2004)
suggests there are distinct contexts (say, model sets consisting of simple versus complex models) for
which BIC outperforms AIC (generally, when the approximati ng models in the model set are simple �
relatively few `main e�ect' factors), or where AIC outperfo rms BIC (when models are multi-factorial,
and generally more complex). AIC is often claimed (equally o ften without much empirical support) to
`over-�t' � select models which are overly parameterized (r elativeto the true generating model),whereas
the BIC has been suggested to `under-�t' � select models whic h are less parameterized than the true
generating model.*

Why? While the technical reasons for any di�erence in `relat ive performance' are complex, there is a
simple intuitive argument based on the fundamental di�eren ce in how the AIC and BIC are estimated.

Consider the di�erences in the following two equations:

AIC = � 2 ln L
�  )

�
¸ 2 

BIC = � 2 ln L
�  )

�
¸  ln

�
=4

�
•

In simplest terms, the di�erence between the AIC and the BIC i s in terms of the multiplier for K in the
`penalty term' for the number of parameters: 2 for the AIC, ve rsus ln¹=4º for the BIC. Clearly, 2 < ln¹=4º.
But, more importantly, the multiplier for the AIC (2) is a con stant scalar, whereas for the BIC it scales as
a function of the e�ective sample size. Recall that the large r the penalty, the simpler the selected model
(all other things being equal). As a result, AIC tends to perf orm well for `complex' true models and less
well for `simple' true models, while BIC does just the opposi te.

In practice the nature of the true model, `simple' or `comple x', is never known. Thus a data driven
choice of model complexity penalty would be desirable. This is an active area of research. It is important
to remember that the AIC is an estimate of the expected Kullba ck-Leibler discrepancy (discussed earlier),
while BIC is (in fact) an asymptotic Bayes factor (see Link & B arker 2006). Since each method was derived
with di�erent motivations, it is not surprising that they ha ve quite di�erent theoretical properties.

While a full discussion of these issues is beyond the scope of what we want to present here, it is
important to note that focus should not be on `which model sel ection criterion is best?', but remembering
that `model selection should be considered as the process ofmaking inference from a set of models, not
just a search for a single best model'. As such, whenever possible, use model averaging. Not only does
this account for model selection uncertainty regarding est imated parameters and weight of evidence
for each approximating model, but also, di�erences between inference under AIC 2 versus BIC diminish
under model averaging.

Note: why doesn't MARK allow you to show both the AIC and BIC values/weights in the sa me
browser? Simple � to help discourage you from using a side-by -side comparison of the two to guide
your model selection � doing so would amount to little more th an post hocdata dredging.

* Àll generalizations are false, including this one...' � Al exandre Dumas, or Mark Twain, depending on your source.
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4.4. Using the AIC for model selection � simple mechanics...

The basic mechanics of using AIC2 for model selection in MARK are straightforward. The AIC 2 is
computed for each of the models in the candidate set, and the models are automatically sorted in
descending order based on the AIC2 (i.e., the most parsimonious model � the one with the smalles t
AIC 2 value � is placed at the top of the results).

OK � so you run MARK , and calculate the AIC2 for each model. What do you do if, say, the model
with the lowest AIC 2 di�ers from the next-lowest by only a small amount? How much ` support' is
there for selecting one model over the other? Note � we intent ionally use the word support, rather than
statistical signi�cance. We'll deal with the issue of `signi�cance', and related top ics, shortly.

As a �rst step, the models should be calibrated to provide an i ndex of `relative plausibility' (i.e., the
likelihood of the model given the model set), using what are k nown as normalized Akaike weights. These
weights (F 8) are calculated for each approximating model ( i) in the candidate model set as

F 8 =
exp

�
� � AIC

2

�

Í n
exp

�
� � AIC

2

�o •

What are we doing here, and why? What is the basis for this expr ession?

To help understand the basic idea behind normalized AIC weig hts, and how they are calculated,
consider the concept of the likelihood of the parameters) given a model 68, and some data G

L
�

 )
�
� G– 68

�
•

We can extend this basic idea to the concept of the likelihood of the modelgiven the data

L ¹68 j Gº / 4� 1
2 � 8–

where � 8 is the di�erence in the AIC value between the model i and the model with the lowest AIC. * So,
the likelihood of a model, given the data, is proportional to the di�erence in AIC between that model,
and the model in the model set with the lowest AIC. Normalizin g them creates a set of positive values
that sum to one (which lends to the interpretation of relativ e or proportional support in the data for a
given model, among the models in the candidate model set).

OK, �ne, but you might be asking `why is the likelihood of a mod el, given the data, proportional
to the di�erence in AIC between that model and the candidate m odel with the lowest AIC?'. The
following might help. We note that for model 8, � AIC=AIC 8� AIC 0, where AIC 0 is the minimum AIC
in the candidate model set (i.e., the most parsimonious mode l).

Given that AIC= � 2 ln L ¸ 2 , then

� AIC = AIC 8 � AIC 0

= ¹� 2 ln L 8 ¸ 2 8º � ¹� 2 ln L 0 ¸ 2 0º

�
� AIC

2
= ln L 8 �  8 � ln L 0 ¸  0•

* Note that the � 1•2 term simply cancels out the fact that Akaike multiplied thr ough by � 2 to de�ne his AIC. And, by
exponentiating the � AIC values, we're e�ectively eliminating the log scale in th e AIC expression.
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Thus,

exp

�
� � AIC 8

2

�
=

�
L 8

L 0

�
exp¹ 0 �  8º •

So, the term exp¹� � 8•2º in the expression used to calculate AIC weights is in fact a likelihood ratio,
corrected for the di�erence in the number of parameters esti mated from the models.

How are these weights used? A given F 8 is considered as the weight of evidence in favor of model 8
as being the actual K-L best model in the set. These are termedmodel probabilities(in fact, they are also
formally Bayesian posterior model probabilities; Burnham & Anderson 2004). So,F 8 is the probability
that model 8is the actual K-L best model in the set. The bigger the F 8 value, the bigger the weight.

For example, consider the following set of models, with thei r � AIC 2 values and Akaike weights.

Model � AIC Akaike weight ( F 8)

1 1•6 0•278
2 0•0 0•619
3 7•0 0•084
4 13•5 0•001
5 4•0 0•084

total 1•000

Here, model 2 is clearly the best (largest AIC weight), but ho w much better is it than the next best
model (model 1)? The Akaike weights let us state that the best model (model 2) is over twice as well
supported as the next best model (model 1), since (0.619/0.278) = 2.23. The remaining models (3, 4 and
5) have essentially no support in the data, relative to model s 1 and 2.

MARK calculates Akaike weights automatically. For our European dipper analysis, here (again, top
of the next page) are the AIC values, the � AIC values, and their relative (normalized) weights.

In this case, the results are clear � model f ! � ?�g is much better supported than any other model �
the AIC for the next best model di�ers by 7.50, and has approxi mately 43-times less support than the
best model.

Consider again are the results from the analysis of the swift data (shown at the top of the next page).
Again, the results are quite clear � model f ! 2 ?Cg is much better supported by the data than any other
model in the candidate model set. The AIC 2 for the next best model (model f ! 2 ?�g) di�ers by 3.72,
and has approximately 6-times less support than the best mod el. Note that in this example, unlike for
the European dipper data, the model with the fewest paramete rs is not the most parsimonious model.
Again, ranking based on the AIC balances �t and precision, gi ven the data.

Chapter 4. Building & comparing models



4.4. Using the AIC for model selection � simple mechanics... 4 - 45

If you look closely, you'll notice there is a column in the res ults browser labeled `model likelihood '.
Here, likelihoodhas a technical meaning, that can be quanti�ed and should not be confused with
probability. * For example, if person A holds �ve ra�e tickets and person B ha s one, person A is �ve
times more likely to win than person B. We do not know the absolute probabilityof either person winning
without knowing the total number of ra�e tickets.The report ed `model likelihood' is the AIC (or BIC)
weightfor the model of interest divided by the AIC (or BIC) weight of the best model in the browser.

For example, the model likelihood reported for model f ! 2 ?�g for our swift analysis (shown above)
is calculated as the ratio the AIC weight for model f ! 2 ?�g and the AIC weight for the model with the
smallest AIC, f ! 2 ?Cg: ¹0•13345•0•85650º = 0•1558. In other words, the odds of model f ! 2 ?�g being the
K-L best model, rather than model f ! C?Cg, is given as ¹0•1558 : 1•000º � or, the likelihood that model
f ! C?Cg is the K-L best model is ¹1•0•1558º = 6•42 times greater than model f ! 2 ?�g.

This likelihood value is the strength of evidenceof this model relative to the model with the lowest
AIC in the set of models considered, and is the reciprocal of t he formal evidence ratio(discussed in the
following -sidebar- ).

begin sidebar

AIC weights, evidence ratios, and `rules of thumb'

The likelihood of an approximating model, 68, given the data, is computed as:

L
�
68

�
� data

�
/ exp

�
�

1
2

� 8

�
–

where � 8 is the di�erence in AIC between model 68and the model with the lowest AIC.

As introduced earlier, to better interpret the relativelikelihood of a model, given the data and the
candidate set of models, we normalize the model likelihoods to be a set of Àkaike weights', F 8, which
sum to 1:

F 8 =
exp

�
� � AIC

2

�

Í n
exp

�
� � AIC

2

�o •

It is important to remember that the F 8 depend on the entire model set � if a model is added or
dropped, the F 8 must be recomputed for all the models in the modi�ed model set . A given F 8 is
considered as the weight of evidence in favor of model 68being the actual K-L best model, given that
one of the models in the model set must be the K-L best model of t hat set of models.

* You can add a column to the browser showing the maximized like lihood for the model (i.e., � 2 ln L ) by selecting that option
in `File | Preferences '.
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For the estimated K-L best model, 6<8=, � AIC = 0. Thus, for that model,

L
�
6<8=

�
� data

�
/ exp

�
�

1
2

� 8

�
� 1•

Thus, the odds for the ith model actually being the K-L best model are thus given by th e ratio

1

4� 1•2� 8
� 41•2� 8 �

F 1
F 8

–

where F 1 is the normalized AIC weight of the model with the smallest AI C value among the models in
the candidate model set. Such ratios are termedevidence ratios, and represent the evidence about �tted
models as to which is `better' in the information theoretic s ense. Evidence ratios provide a measure
of the relative likelihoodof one hypothesis (model) versus another.

Evidence ratios are invariant to other models in the model se t, whereas model weights depend on
all the other models in the candidate model set. Inference should be about models and parameters,
given data; however, we note that %-values are probability statements about data, given null models.
Model probabilities and evidence ratios provide a means to m ake inference directly about models and
their parameters, given data.

For example, if we delete the 3 lowest-ranked models from our analysis of the swift data,

we see that the AIC weights change,but not the model likeliho ods,calculated relative to the model with
the lowest AIC. Remember � AIC weights are calculated relati ve to all other models in the candidate
model set, while model likelihoods are calculated for a give n model relative to the model with the
lowest AIC. And, the reciprocal of the model likelihood is th e evidence ratio.

Model likelhoods and evidence ratios are continuous measur es. It is important to understand that
there is a nonlinearity in evidence ratios as a function of th e � AIC 8values. If we consider the ratio

F 1
F 9

�
1

4� 1•2� 9
� 41•2� 9–

as a comparison of the evidence for the best model (lowest AIC) compared with any other model 9,
then we can generate following table:

� 9 2 4 8 10 15

evidence ratio 2.7 7.4 54.6 148.4 1808.0

model likelihood 0.3704 0.1352 0.0183 0.0067 0.0006

It is just this nonlinearity in the relationship between � AIC and the evidence ratio which lead to
the `rules of thumb' introduced by Burnham & Anderson. They s uggested that when the di�erence
in AIC between two models ( � AIC) is 5 2, then we are reasonably safe is saying that both models
have approximately equal weight in the data. If 2 5 � AIC 5 7, then there is considerable support for
a real di�erence between the models, and if � AIC 7 7, then there is strong evidence to support the
conclusion of di�erences between the models. From the prece ding table, we see clearly that when
� AIC � 4, the model likelihood is �  = 0•05. Meaning, there is a strong probability that any model
with a � AIC � 4 is, in fact, the K-L best model. Conversely, if � AIC � 7, then there is a decreasing
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probability that the model is in fact the K-L best model, and w e would conclude that there is strong
evidence of real di�erences between the models.

Consider again the results from the swift example. Given the available data, a model where
survival is �xed (i.e., constant) among years, but which di� ers between colonies, and where encounter
probability varies over time, but not between colonies { ! 2 ?C} is ¹0•8565•0•1335º = 6•42 times more
likely than a model where survival is again �xed (i.e., const ant) among years,but which di�ers between
colonies, and where encounter probability does not vary bet ween colonies or over time { ! 2 ?�}.

From a practical standpoint, when reporting model selectio n results (in a paper, or report), it is
useful to report both AIC weights and either model likelihoo ds or evidence ratios (reporting both
would be redundant, since the evidence is simply the recipro cal of the model likelihood; for example,
in the swift analysis, the relative likelihood of model { ! 2 ?�} to model { ! 2 ?C} is 0.1558, from which we
calculate the evidence ratio as¹1•0•1558º = 6•42).

end sidebar

However, while AIC weights, and model likelihoods, and `rul es of thumb' are convenient, they don't
quantify the degree of uncertainty in our model selection, o ver all models in the model set.

What do we mean by `uncertainty', in the context of model sele ction? In any analysis, there is
uncertainty in terms ofwhichmodel is the `bestmodel'. In ou rswift analysis, forexample,we determined
which model is the most parsimonious, but how far from `truth ' is this model? The most parsimonious
model is merely the model which has the greatest degree of support in the data. It is not `truth' � it
merely does somewhat better at explaining variation in the d ata than do other proposed models (we
add in passing that `All models are wrong, some are useful' � G. Box). There is `uncertainty' in terms of
which model is the `best model'.

How can we measure, or at least account for, this uncertainty ? One approach to this problem is to
base the inference on the entire set of models � an approach termed multimodel inference, or model
averaging. We cover this in the next section.

4.5. Model uncertainty: an introduction to model averaging

In the analysis of the swift data set we considered earlier in this chapter, we compared the survival
probability of birds as a function of the quality of their nes ting colony ('good' versus `poor'). We came
to the conclusion that there was some support in the data for a colony e�ect (the 2 most parsimonious
models both had a colony e�ect in survival, and the sum of thei r respective normalized AIC weights was
0.985, indicating � 98•5% of the support in the data are for these 2 models). If we look at the estimates
from the most parsimonious model in our model set (model ! 2 ?C), we see that the estimate of survival
for the good colony was 0.77 (SE 0.041), while the estimate for the poor colony was 0.58 (SE 0.082). Our
previous analysis seems to support the contention that this was a meaningful di�erence between the
two colonies.

However, suppose you are charged with drafting a conservati on plan for this population, and
want to condition your recommendations on the possibility o f di�erences in survival between the 2
colonies. Perhaps you want to use the estimates of survival i n some form of model, projecting the likely
consequences of one or more proposed actions. While how you might do this is obviously beyond the
scope of this book (since it has little to do with MARK directly), it does raise at least one issue which is
worth noting at this point. What should we use as the estimate s of survival?

The obvious answerwouldbe to use the estimates from the most parsimonious modelalone. However,
taking this approach clearly ignores one salient fact � the e stimates of sampling variance from a given
model do not include model selection uncertainty � they are c onditional only on the model used for the
estimation. In other words, using the estimates from a singl e model in the candidate model set, even
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if it is the most parsimonious model in the set, ignores model uncertainty. For example, for the swift
analysis, model f ! 2 ?Cg has a AIC2 weight of 0.8565, while model f ! 2 ?�g has a AIC2 weight of 0.1335.
While model f ! 2 ?Cg is clearly better supported, there is still uncertainty � th ere is at least some chance
(approximately 13% chance) that in fact model f ! 2 ?�g is the correct model, relative to the other models
in the candidate model set.

Since there is uncertainty in which model is the correct mode l, we might consider accommodating
this uncertainty in the estimates we report (or use subsequently in some model). This is where `model
averaging' comes in. The simplest way to think of what model a veraging is all about is to recall the
concept of `weighted average' from your basic statistical t raining. What we want to do is take the
estimates from our various models, and weight them by the rel ative support for that model in the
data.

More precisely, we calculate an average value for a parameter � by averaging over all models in the
candidate model set with common elements in the parameter st ructure, weighted by normalized AIC
model weights ( sensuBuckland et al., 1997, Burnham & Anderson 2004):

avg
�  �

�
= ¢ �

=
'Õ

8=1

F 8
 � 8–

where F 8 is the Akaike weight for model i. Hopefully, this makes intuitive sense � we weight the
estimates of the various parameters by the model weights, wh ich relate to how much support there
is in the data for that model. We want to give higher weight to e stimates from models with greater
support in the data.

Let's see how we actually do this in MARK . Suppose forexample we're interested in reporting the live
encounter probabilities for each year in the swift study. Wh at would our `best' estimates be for annual
encounter probability? We see from the results browser that the most parsimonious model, f ! 2 ?Cg, has
time-dependence in p (i.e., ?C), while the next best supported model has constant p.

If we were simply to report the estimates from the most parsim onious model, we would be ignoring
model section uncertainty. Instead, we want to average our e stimates over the models in the candidate
model set. To do this, pull down the ` Output ' menu, and select `Model averaging ', and then `Real
parameters '.

This will spawn the window shown shown at the top of the next pa ge. Look at it carefully. Notice
along the top there are 4 `tabs', like the tabs on �le folders. One tab for each of the 4 main parameters
(survival for the poorcolony,survival for the goodcolony, recapture for the poorcolony,and recapture for
the good colony). Also notice also that there is a triangular matrix of `check boxes' which is structurally
equivalent to the structure of the PIMs. Structurally equiv alent, but...what do the numbers represent?
Clearly, they're not equivalent to the indexing we used in ou r analysis of the swift data set � are they?
No, as written, they're not, but...they're directly relate d. In fact, the numbering you see in the model
averaging window corresponds to the index values that you wo uld use in a PIM if the model had
complete (cohort � time ) dependence.
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Say...what?? Well, cohort models and other extensions of the simple time-dependent model is some-
thing we'll get to in chapter 7. But, for now, simply think of t he indexing you see in the model averaging
window as corresponding to the possibility that there is a di �erent estimate for each time period (time-
dependence), and that within each time-period, the estimat e might vary as a function of what year the
organism was marked and released (cohort-dependence). Since there are 28 combinations of time and
cohort in our swift data set, that is why the model averaging w indow has 28 cells, numbered 1 to 28.
The numbering is left to right within each cohort in successi on.

Again, do not get too concerned at this point if the distincti on between `time period' and `cohort' is
a bit confusing � by the time you reach the end of chapter 7, you 'll fully understand the distinction.

First, we need to `tell' MARK we want to average the recapture estimates across models. We'll start
by selecting the r̀ecapture parameter (p) P ' tab, corresponding to the recapture probabilities for the
poor (P) colony. Do this by clicking on that tab in the model averagin g window:

Now, you'll see the triangular matrix is numbered 57 through 84. We're interested in annual estimates
of p. As such, we need to `tell' MARK to derive average values for each year.Note: make sure that the
radio-button for ` Revised model-averaging variance formulas ' is checked.
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How? Think back to what the PIM for a time-dependent model loo ks like. Recall from earlier in this
chapter that the PIMs for time-dependent recapture, but no d i�erence between colonies, looked like:

15 16 17 18 19 20 21 15 16 17 18 19 20 21
16 17 18 19 20 21 16 17 18 19 20 21

17 18 19 20 21 17 18 19 20 21
18 19 20 21 18 19 20 21

19 20 21 19 20 21
recapture 20 21 recapture 20 21

` poor ' 21 `good' 21

Within each column (corresponding to a particular year) the index values in the PIM are the same. In
other words, the survival probability in a given year does not depend on the year in which an individual
was �rst marked and released (i.e., does not depend on its coh ort). Thus, within the triangular matrix
in the model averaging window, it doesn't matter which eleme nt of a given column you `check', since
all elements within a column are equivalent for our models!

Thus, checking each of the elements in the �rst row (as shown b elow) will yield exactly the same
results as clicking any one element in each of the columns. Having said that, it is probably a good idea
to be somewhat systematic about things (in this case, perhaps by checking each of the elements in the
�rst row of the matrix) � it will help you keep track of things l ater on.

Once you've speci�ed the cells for the recapture parameter f or the `poor' colony, do the same for the
`good' colony, by clicking on the tab for that parameter, and again checking one element of each column.
Once you've done so, you're ready to click the ` OK' button to start the averaging. Before you do, note
that in the lower left hand corner, an option to ` only select models for the current data type ' is
checked by default. Ignore this for now (it will become impor tant down the road).

So, go ahead and click the ÒK' button. MARK will open up the editor, and present you with the
`averaged' results (the �rst 2 years from the output are show n below):
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Note that the output is arranged by the index value you select ed from the model averaging window.
The �rst year corresponds to index value 57. Thus, you will need to `keep track' of which index value
corresponds to which year. For each parameter, each of the models in the candidate model set is listed,
along with the model weight, the estimate from that model, an d the standard error of the estimate.

At the bottom of the ` Estimate ' and `Standard Error ' columns are the `averaged' values. For
parameter 57 (corresponding to the recapture probability f or the poor colony on the �rst occasion),
the model averaged value is 0.88047. The weighted SE is 0.08045. This is followed by something called
the `Unconditional SE ', which is somewhat larger (numerically) than the weighted SE. Below the
unconditional SE is a 95% CI for the model weighted average,and astatement concerning the percentage
of the variation attributable to model variation (43.71% fo r the present example). We'll deal with the
distinction between the two SE's, and the variation due to mo del variation, in a moment. Note that the
modelaveragedvalue of0.88047 is somewhat lower than the estimate from the single mostparsimonious
model (0.9089). That is because it has been `weighted down' by the other models in the candidate model
set. Note also that only models with an AIC weight 7 0 are shown (since only models with an AIC weight
7 0 contribute to the weighted average).

There is one additional point we need to make here � have a look at the model averaged estimate for
the �nal encounter probability ( ?8):

We see that the estimated SE is 2.547 (with an associated 95% CI of 0 ! 1). Such a CI does not inspire
much con�dence (pun intended). Clearly, there is a problem h ere. If you look closely at the model
averaging output for ?8 (above), you'll see that the `culprit' is the extremely high conditional standard
errors for models f ! C?Cg and f ! 6� C?Cg.

With a bit of thought � and perhaps a peek at the reconstituted estimates for both models � you
might be able to guess the underlying reason. The problem is t hat both of these models are fully time-
dependent for both parameters, and as such, the terminal ! and ? parameters are confounded (i.e.,
not separately identi�able). One of the characteristics of such `confounded' parameters is extremely
large (i.e., implausible) SE's, which clearly have the potential to strongly in�uence the estimate of
the unconditional standard error (especially if the model( s) with confounded parameters have some
signi�cant support in the data).
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In such cases there is no absolute rule on how to best handle model averaging, but we suggest the
following strategy: (i) if models with confounded paramete rs � or models with parameters which are
poorly estimated given the data � having little ! no support in the data, then it is generally acceptable to
drop those models from the candidate model set, and re-run th e averaging. However, (ii) if the `problem
models' have appreciable support in the data, you'll need to be more careful. You might choose simply
to average only those `well-estimated' parameters (for ins tance, in our example, ?2 ! ?7, leaving out
?8), but you need to �rst con�rm that those models aren't well-s upported simply because of the poorly
estimated parameters. Again, there is no perfect solution.

What about survival? The model averaged estimates for survi val are shown below:

year poor colony good colony

1 0.577354 0.768136
2 0.575062 0.765835
3 0.575294 0.766077
4 0.575638 0.766456
5 0.575610 0.766379
6 0.576261 0.766969
7 0.572892 0.763680

Recall that our 2 most parsimonious models (comprising � 99% of the support in the data) had a
colony e�ect, but no time-dependence. We see from the model a verage values that there is little annual
variation in the estimates � not surprising given that the mo dels with any time-dependence had very
little support in the data. However, there is a clear di�eren ce in the model averaged estimates between
colonies.

We will revisit model averaging again � it's a very important concept, since it relates directly to the
important issue of `model selection uncertainty'.

begin sidebar

Non-interactive model averaging

Some problems are too large for the interactive interface (w hich we just introduced) for specifying the
parameters to be model averaged. An option is available in th e F̀ile | Set Preferences ' window to
change the default interface to a less interactive mode.

To see how it works, select the ǹon-interactive ' option in the preferences window, and restart
MARK . Pull up the same analysis we used to demonstrate the interactive model averaging window
(the Apus apusanalysis). Again, select Òutput | Model averaging | Real '. This will bring up the
`Non-interactive model averaging window ', shown at the top of the next page.

As with the interactive model-averaging described earlier , make sure that the radio-button for
`Revised model-averaging variance formulas ' is checked.

Along the top of this window, you'll see that there is a pull-d own menu, which lets you select which
of the parameters you want to average (for this example, ther eare 4 parameters you could select among:
! 6–! ?– ?6 and ??). To the right of this pull-down menu is a box where you select the index number
of the parameter you want to average. Note that it defaults to 1 ! 9999. However, as soon as you click
inside this box, it will update to indicate the range of index values used in the data set you're analyzing
(in this example, 1 ! 28).

Now, suppose you want to model average parameters 1 ! 7, which correspond to ! 1 ! ! 7 for the
good colony. You simply toggle through the numbers 1 ! 7, selecting the Àdd to list ' button for
each number in turn. As with the interactive model averaging window, you can output various aspects
of the averaging (e.g., into an Excel spreadsheet), simply by selecting the appropriate radio button on
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the right-hand side. Note that two of the options (for printi ng and exporting the variance-covariance
matrix) are greyed out until you select at least two paramete rs for averaging.

end sidebar

4.5.1. Model averaging: deriving SE and CI values

In the preceding section, we noted that two di�erent SE's for a model averaged parameter estimate were
given by MARK : a weighted average SE (in e�ect, the average of the individu al model SE's weighted by
their respective AIC weights), and the `unconditional SE'. These in turn were followed by a 95% CI, and
a statement concerning the proportion of the variation due t o model selection uncertainty. Why two
di�erent SE's? Which one is the `right one' to report? Where d oes the 95% CI come from? And what
does `model selection uncertainty' refer to in the context o f model averaging?

In general, the precision of an estimator should ideally hav e 2 variance components: (1) the condi-
tional sampling variance, cvar

�  � 8 j M 8
�
, given model 8, and (2) variation associated with model selection

uncertainty. Buckland et al. (1997) provide an e�ective method to estimate an estimate o f precision
that is not conditional on a particular model (the estimator was subseq uently revised in Burnham &
Anderson 2004). Assume that some scalar parameter� is in common to all models being considered in
the candidate model set. [If our focus is on a structural para meter that appears only in a subset of our
full set of models, then we must restrict ourselves to that su bset in order to make the sort of inferences
considered here about the parameter of interest.]

So, estimates of the SE for a given model areconditionalon that model. How do we get an unconditional
estimate of the SE for the parameter averaged over models?

From Burnham & Anderson (2004), we will take the estimated unconditionalvariance of  � as

cvar
� ¢ �

�
=

'Õ

8=1

F 8

h
cvar

�  � 8

�
� M 8

�
¸

�  � 8 � ¢ �
�2

i
–
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where

¢ � =
'Õ

8=1

F 8
 � 8–

and the F 8 are the Akaike weights ( � 8) scaled to sum to 1. The subscript 8refers to the 8C� model. The

value ¢ � is a weighted average of the estimated parameter  � over ' models (8= 1–2– • • • – ').

This estimator of the unconditionalvariance is clearly the sum of 2 components: (1) the conditional
sampling variance

�
cvar¹  � 8 j M 8º

�
and (2) a term for the variation in the estimates across the ' models

�  � � ¢ �
� 2. The estimated unconditionalSE is given as

cSE
� ¢ �

�
=

q
cvar

� ¢ �
�
•

It is this unconditional variance (and associated CI) that y ou would report, since it accounts for both
conditional model-speci�c variation, as well as variation resulting from model selection uncertainty
(i.e., among models in the candidate model set). MARK gives you an estimate of the proportion of the
variance in the model averaged parameter estimate owing to m odel selection uncertainty.

Let's work through an example, using the model averaged esti mates for ?2 for the poor colony:

Start by taking a weighted average of the conditional (model -speci�c) SE's, weighting by the model-
speci�c Akaike weights F 8:

�
¹0•08556� 0•8565º ¸ ¹ 0•04947� 0•1335º ¸ • • •

�
•1•0 = 0•08045–

which is what is reported by MARK (as shown, above). Again, this is a simple weighted average, and
should not be reported as the SE for the model averaged parameter estimate.

Now, let's calculate the unconditionalSE, which MARK reports as 0.10723. We start by estimating the
unconditional variance of the parameter as

cvar
� ¢ �

�
=

'Õ

8=1

F 8

h
cvar

�  � 8

�
� M 8

�
¸

�  � 8 � ¢ �
� 2

i
– where ¢ � =

'Õ

8=1

F 8
 � 8•

To perform this calculation, we'll need the model-speci�c e stimates of the variance (on the normal
probability scale) for the parameter. These can be derived from the model averaging output by squaring
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the reportedconditionalSE foreachmodel. Given the calcul atedmodelaveragedvalue for the parameter,
¢ ?2–6= 0•88047, then

cvar
� ¢ ?2–6

�
=

'Õ

8=1

F 8

h
cvar

�
 ?2–6

�
� M 8

�
¸

�
 ?2–68

� ¢ ?2–6
� 2

i

= 0•85650
h
0•007321̧ ¹ 0•90888� 0•88047º2

i

¸ 0•13345
h
0•002447̧ ¹ 0•70714� 0•88047º2

i

¸ � � �

¸ 0•00002
h
0•011903̧ ¹ 0•88220� 0•88047º2

i

= 0•011498•

So, our estimate of the unconditionalvariance of the encounter probability ?2 for the poor colony is
0.011498. The standard error is estimated simply as the square-root of the variance:

p
0•011498= 0•10723,

which is what is reported by MARK (to within rounding error). The 95% CI reported by MARK is
»0•5000–0•9819¼. How the reported 95% CI is calculated is discussed brie�y in the following -sidebar- .

Con�dence intervals can also be constructed using a pro�le l ikelihood approach, but this is beyond
the scope of our discussion at this point. In addition, we wil l leave the consideration of the reported
proportion of the variation due to model selection uncertai nty to a later chapter.

begin sidebar

SE and 95% CI

The usual (familiar) approach to calculating 95% con�dence limits for some parameter � is  � �
¹1•96� cSEº. Is this how MARK calculates the 95% CI on therealprobability scale? Take the example
we just considered, above � the estimated SE for ¢ ! = 0•88047 was

p
0•011498= 0•10723. So, you might

attempt to calculate the 95% CI on the real probability scale simply as 0•88047� ¹ 1•96� 0•10723º =
»0•67030–1•09064¼. However, not only is this not what is reported by MARK (»0•5000–0•98191¼), but it
isn't even `reasonable', since the calculated UCL (1.09064) is 7 1, which is clearly not possible for a
»0–1¼bounded parameter on the real probability scale.

Why the di�erence between what MARK reports and what we have calculated by hand using
 � � ¹ 1•96 � cSEº? The di�erence is becauseMARK �rst calculates the model-averaged 95% CI on the
logit scale, before back-transforming to the real probability sc ale. Doing so ensures that the back-
transformed CI will be »0–1¼bounded. The logit scale, and back-transforming from the lo git scale
to the normal probability scale, are discussed in detail in C hapter 6. But, to brie�y demonstrate `what
MARK is doing', consider the following example.

Suppose that the candidate model set for the swift analysis i s reduced to just two models: f ! C?Cg
and f ! 6 ?�g(we do this only to make the demonstration simpler). Using th e logit link for both models,
the results for �tting these two candidate models to the data are shown below:

If we next run through the model-averaging routine for (say)  ! 3 for the `good' colony, MARK
reports the following:
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So, the model averaged estimate for ¢ ! 3–? is 0.5741295, with an unconditional SE of 0.077461.
The reported 95% CI for the weighted average estimated, back-transformed from the logit scale, is
»0•420134–0•714973¼.

Now, let's see if we can derive the reported 95% CI for the mode l-averaged estimate `by hand'.
We'll demonstrate 2 di�erent approaches: one based on the Delta method, and one based on a straight
application of the concepts of `model averaging' introduce d in the preceding.

We'll start with the approach based on the Delta method, sinc e this approach is in fact the one used
by MARK . In short, what we want to do is `take the model-averaged esti mate and SE, transform them
onto the logit scale, calculate the 95% limits with � 1•96� logit ¹SEº, then back-transform the 95% limits
from the logit scale ! the real probability scale.

While this sounds easy, it is important to recall (from Chapt er 1) that the variance for a parameter
can be estimated from the likelihood based on the rate of change in the likelihood at the MLE for
that parameter (i.e., the second derivative of the likeliho od evaluated at the MLE). As such, you can't
simply back-transform from the SE on the logit scale to the pr obability scale, since the di�erent scalings
in�uence the shape of the likelihood surface, and thus the es timate of the SE.

To get around this problem, we make use of the Delta method. Th e Delta method is particularly
handy for approximating the variance of transformed variab les (and clearly, that is what we are dealing
with here). The details underlying the Delta method are beyo nd our scope at this point (the Delta
method is treated more fully in Appendix B); here we simply de monstrate the application for the
purpose of estimating the variance of the back-transformed parameter.

For example, suppose one has an MLE  � and an estimate of var¹  � º, but makes the transformation,

 � = 4  � 2

•

Then, using the Delta method, we can write

cvar¹  � º �

�
@ �
@ �

� 2

� cvar¹  � º•

So, all we need to do is di�erentiate the transformation func tion for � with respect to � , which yields

2� •4� 2

. We would simply substitute this derivative into our expres sion for the variance, yielding

cvar¹  � º �
�
2  � •4 � 2 � 2

� cvar¹  � º•

Given values for  � , and cvar¹  � º, you could easily derive the estimate for cvar¹  � º.

What about the logit transform? Actually, it's no more di�cu lt, although the derivative is a bit
`uglier'. Since the logit transformation is given as

 ! =
4

 �

1 ¸ 4
 �
–

then

cvar¹  ! º �

 
@ !

@ �

! 2

� cvar¹  � º
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Now, to the task at hand. First, we need the model-averaged estimate of ¢ ! 3–?, which from the MARK
output (at the bottom of the preceding page), is reported as 0 .5741287, with an unconditional SE of
0.0774609. So, we �rst transform the model-averaged estimate onto the logit scale: ln¹� •¹ 1 � � º =
ln¹0•5741287º•¹1 � 0•5741287º = 0•2987164.

The next step is to take the estimate of the unconditional SE, square it to get the variance (in
other words, the estimated variance is 0•07746092 = 0•00600019), and then use the Delta method to
approximate the variance on the logit scale. So, we're actually going in the opposite direction to the
preceding demonstration of the Delta method (where the tran sformation was from the logit ! real
scale; here we want to go from real ! logit).

Since the logit transform is � = ln¹� •¹ 1 � � º, then application of the Delta method yields

cvar¹  � º �

 
@ �

@¢ !

! 2

� cvar¹ ¢ ! º

=

¹1 � ! º2
�

!

¹1� ! º2 ¸ 1
1� !

� 2

! 2
� cvar¹  ! º

=
1

¹! � 1º2 ! 2
� cvar¹  ! º•

So, substituting in our estimates for ¢ ! 3–?and cvar = 0•0060019, the Delta method approximation to
the variance on the logit scale is

cvar¹  � º �
1

¹! � 1º2 ! 2
� cvar¹  ! º

= 0•10036674–

and thus, the SE on the logit scale is
p

0•10036674= 0•316807101.

All we need to do now is derive the 95% con�dence limits on the l ogit scale: 0•2987164� ¹ 1•96 �
0•31687101º = »� 0•32222552–0•919658318¼.

Final step � simply back-transform these 95% from the logit s cale ! real probability scale. So,

4� 0•32222552

1 ¸ 4� 0•32222552
= 0•42013347– and

40•919658318

1 ¸ 40•919658318
= 0•71497248•

Thus, the back-transformed 95% CI is»0•42013347–0•71497248¼, which is what is reported by MARK
(couple of pages back), to within rounding error. As noted ea rlier, this is the approach that MARK
uses, regardless of the actual link function used when �ttin g the models to the data � which is why
the 95% CI reported by MARK is always labeled as 9̀5% CI for Wgt. Ave. Est. (logit trans.) '.

Now, the second approach to deriving the 95% CI which we'll de monstrate uses a direct application
of `model averaging' as introduced in this section. To do thi s, we need to �rst have a look at the �
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estimates (which were estimated on the logit scale), and associated estimates of the SE (and thus,
variances) of those estimates, reported byMARK . The estimates are shown in the following table:

model  � cSE cvar

f ! 6 ?Cg 0.3107252 0.3161188 0.0999311

f ! 6 ?�g 0.2221574 0.3109805 0.0967089

From the preceding, we calculate the estimated unconditionalvariance of  � � on the logit scale! � as

cvar
� ¢ �

�
=

'Õ

8=1

F 8

h
cvar

�  � 8

�
� M 8

�
¸

�  � 8 � ¢ �
�2

i
– where ¢ � =

'Õ

8=1

F 8
 � 8

where the F 8are the Akaike weights ( � 8) scaled to sum to 1.

For our two candidate models, the model averaged estimate is

¢ � = ¹0•86520� 0•3107184º ¸ ¹ 0•13480� 0•2221763º

= 0•2987863•

Thus, for our two candidate models,

cvar
� ¢ ! 3–?

�
=

'Õ

8=1

F 8

h
cvar

�  � 8

�
� M 8

�
¸

�  � 8 � ¢ �
�2

i

= 0•86520
h
0•0999311̧ ¹ 0•3107184� 0•2987829º2

i

¸ 0•13480
h
0•0967089̧ ¹ 0•2221763� 0•2987829º2

i

= 0•10041161•

So the estimated variance � on the logit scale! � is 0.10041161, so the estimated SE is
p

0•10041161=
0•31687791. Thus, the estimated 95% CI � on the logit scale! � is 0•2987863� ¹ 1•96 � 0•31687791º =
»� 0•3222944–0•9198670¼. Note the close similarity of this 95% CI and the one calculat ed above using
the Delta method.

Now, the �nal step � back-transforming the CI from the logit s cale ! real probability scale. As
discussed in detail in Chapter 6, the back transform of  � estimated on the logit scale to the real
probability scale is

4
 �

1 ¸ 4
 �
•

So,

4� 0•3148382

1 ¸ 4� 0•3148382
= 0•4201167– and

40•912404

1 ¸ 40•912404
= 0•71501500•

Thus, the back-transformed 95% CI is»0•4201167–0•71501500¼, which is what is reported by MARK
(presented a few pages back), to within rounding error, and i s thus also quite similar to the one
calculated above using the Delta method.

A reasonable question at this point might be `why doesn't MARK generate model-averaged
estimates for the � estimates on the link scale?'. The answer is largely technical (and at some levels,
philosophical), but the `short-form' is because it is uncle ar how best to do this sort of averaging
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of � estimates in general (there are any number of technical issues: what is � if a particular term
isn't included in a candidate model? Is the estimator of the u nconditional variance robust on the
transformed scale, which might be strongly non-linear? And so on.).

In fact, some of these issues may in part explain the slight di screpancy in the CI between the two
approaches usedabove). While there is a `lively' debate about the issue of `modelaveraging � estimates',
there is a fair consensus that you should only model average t he reconstituted `real estimates', which
is precisely what MARK does.

end sidebar

4.6. Signi�cance?

OK, �ne. What about `signi�cance'? We'd hazard a guess that a t this point, some (many?) of you may
be wondering � `OK � we can select a model, and can talk about th e relative support of this model
versus another model, we can come up with good average values, but � based on structural di�erences
in the models, can we say anything about the signi�cance of on e or more factors?'. Often, this is the
question of primary importance to the analyst � is there a `si gni�cant' sex di�erence? Do the colonies
di�er `signi�cantly'? Is there evidence for a `signi�cant' trend over time?

Clearly, any discussion of importance, or `signi�cance' (i n a statistical or biological context) starts
with calculating the magnitude of the `e�ect' � the di�erenc e in some parameter between 2 groups, or
time intervals, or some other axes over which you want to char acterize di�erences in the parameter. The
question we face is `is the di�erence as estimated a `signi�c ant' di�erence'? Note that for the moment
we've repeatedly referred to `signi�cance' parenthetical ly, since it might mean `biological signi�cance',
or `statistical signi�cance', or both. It is critical to thi nk critically about which context is appropriate.

For example, if we simply look at the estimates for our most pa rsimonious model from our analysis of
the swift data, we see that the estimated survival for the `po or' colony is 0.577, and for the good colony is
0.770 � a di�erence of 20%. If the survival probabilities for both colonies were in fact constant over time,
then we can estimate lifespan as¹1•� ln¹( ºº. Thus, estimated lifespan in the good colony is 3.83 years,
while in the poor colony, estimated lifespan is 1.82 years, l ess than 50% of the estimate for the good
colony. Whether or not x.xx years (or whatever time unit is appropriate for the organism in question)
is biologically signi�cant is entirely dependent on the bio logy of the organism. Since this example is
dealing with birds, you can rest assured that a 50% di�erence in expected lifespan is likely to be highly
signi�cant in the biological sense. But, this is where the bi ologist must use his/her judgment as to what
is (or is not) a biologicallymeaningful di�erence.

Since the e�ect size is `estimated', it will have an associated uncertainty which we can specify in terms
of a con�dence interval (CI) (the theory and mechanics of the estimation of the e�ect size, and the SE
for the e�ect, are covered in Chapter 6). The question then be comes � what are the plausible bounds on
the true e�ect size, and are biologically important e�ect si zes contained within these bounds? Suppose
we consider a relative di�erence in survival of 15% or greate r to be biologically important.

Suppose the estimated e�ect size for the di�erence in surviv al between the colonies was 19.3%, with
a CI of 1.7%-36.9% As such, we might consider the results asstatistically'signi�cant', since the CI doesn't
include 0, but biologicallyinconclusive, because the CI includes valuesbelow15%.

It is just these sorts of questions of `biological subjectivity' which undoubtedly contributed to the
popularity of focussing on `statistical signi�cance', sin ce it gives the appearance of being `objective'.
Putting aside the philosophical debate as to which type of `s igni�cance' is more important, we'll
introduce the basic mechanics for classical signi�cance testing (in the statistical sense) as implemented
in MARK .
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4.6.1. Classical signi�cance testing in MARK

The classical `statistical' approach focusses on assessing the `signi�cance' of one or more factors on
variation in a particular parameter of interest. You may rec all from Chapter 1 that we can use the
properties of ML estimates as the basis for a number of di�ere nt `statistical tests' (Wald, Fisher's score...)
to compare the relative �t of di�erent competing models to th e data.

One such test (the likelihood ratio test; LRT) is available in MARK . To apply an LRT, you take
some likelihood function L ¹� 1–� 2– • • • –� =º, and derive the maximum likelihood values for the various
parameters� 8. Call this likelihood L 5. Then, �x some of the parameters to speci�c values, and maxim ize
the likelihood with respect to the remaining parameters. Ca ll this `restricted' likelihood L A. The
likelihood ratio test says that the distribution of twice th e negative log of the likelihood ratio, i.e.,
� 2 ln¹L A•L 5º is approximately " 2 distributed with with r degrees of freedom (where Ais the number
of restricted parameters). The LRT compares a restricted model which is ` nested' within the full model
(i.e, as is generally true with `classical hypothesis testing', the LRT compares a pair of models).

begin sidebar

a (slightly) more technical derivation of the LRT

Consider some likelihood maximized for some true parameter value � . If we write a Taylor expansion
around this value as

L ¹� º = L ¹  � º ¸

�
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� =  �
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So, we can express the Taylor expansion as the di�erence between the true parameter and the
estimated parameter, as follows:
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Dropping o� the residual term,
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Now, consider a simple binomial process, where we aim to esti mate the parameter  ?. Then, we can
write

� 2
�
L ¹?º � L ¹  ?º

� �=

 

�
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�
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�2•

Now, recall from Chapter 1 (and basic common sense) that the M LE for  ? is ¹=• # º (say,n successes

in N trials). Also recall that � @2L •@?2 is an estimate of the variance of  ?.
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Then,
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Now, some classical results show that as # ! 1 , then

 ? ! #
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In other words, the parameter estimate is asymptotically no rmal convergent assample size increases,

and (more to the point here), that � 2¹L ¹?º � L ¹  ?ºº (i.e., the deviance) is " 2 distributed.

This is a very convenient result � it says that as the sample si ze n approaches 1 , the test statistic

� 2 ln¹� º will be asymptotically " 2 distributed with degrees of freedom equal to the di�erence i n
dimensionality (number of parameters) of the two models bei ng compared. This means that for a
great variety of hypotheses, a practitioner can take the lik elihood ratio � , algebraically manipulate �

into � 2 ln¹� º, compare the value of � 2 ln¹� º given a particular result to the " 2 value corresponding to
a desired statistical signi�cance, and create a reasonabledecision based on that comparison.

end sidebar

In practical terms, the �rst step in using the LRT with models �t using MARK is to determine which
models are nested. While this is not always as straightforwa rd as it seems (see the-sidebar- a few
pages ahead), it is relatively straightforward for our pres ent example.

Consider the �gure shown below, which represents the hierar chical relationship of the 4 models we
�t to the male European dipper data. In this �gure, `nested' m odels are connected by the arrows. The
direction of the arrows leads from a given model to the model ' nested' within it. Any two `nested' models
can be comparedstatistically using a likelihood ratio test . Provided that the reduced (less parameterized)
model is satisfactory, the di�erence in deviances between t wo nested models is distributed as a " 2

statistic with n degrees of freedom, where n is the di�erence in the number of parameters between the
two models.

! C?C

! � ?C ! C?�

! � ?�

Now,we re-draw this �gure (top of the next page),showing the di�erences in deviance among `nested'
models,and the di�erence in the numberof parameters,we obt ained from ourEuropean dipperanalysis.
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! C?C

! � ?C ! C?�

! � ?�

3•0
4 ¹4º

%=
0•5

52

2•414¹4º%=
0•6605•414

¹9º

%
=

0•797

2•377¹5º%=
0•795 %=

0•7
003•0

0 ¹5º

The `signi�cance' of these di�erences (in the traditional s ense) can be estimated from any standard
" 2 table, or directly using MARK . Recall from Chapter 3 that in MARK you can request a likelihood
ratio test (LRT) between any two models, using the ` Tests ' menu. However, MARK doesn't `know this',
and performs LRT for all models with unequal numbers of parameters, and outputs resu lts from all
these comparisons.

Clearly, the `unequal number of parameters' criterion is no t a particularly good one, so you'll need to
pay attention. A signi�cant di�erence between models means two things: (1) that there is a signi�cant
increase in deviance with the reduction in the number of para meters, such that the reduced model �ts
signi�cantly less well, and (2) the parameter(s) involved c ontribute signi�cantly to variation in the data.

As we can see from the �gure, there is no signi�cant di�erence in model �t (di�erence in deviance)
between the most parameterized model (the CJS model ! C?C) and any of the 3 other models. Thus, any
of the 3 other models would be a `better model' than the CJS model, since they �t the data equally well
(statistically), but require fewer parameters to do so (i.e ., are more parsimonious).

From the preceding �gure and from the AIC 2 values tabulated in the results browser (shown at the
top of the next page) we see that the most parsimonious model overall is model f ! � ?�g� i.e., the model
where both survival and recapture probability are constant over years.

However, before we go any further, what hypotheses have we ju st tested? Consider the test of the CJS
model f ! C?Cg versus f ! � ?Cg. In this comparison we are testing the following `hypothesi s': that there
is signi�cant variation in survival over time. We are compar ing the �t of a model where survival is
allowed to vary over time f ! C?Cg to one where it doesn't f ! � ?Cg. Since the �t of these two models is

not `signi�cantly' di�erent in the classical statistical s ense (" 2 = 3•05– 35= 4– %= 0•552), we might state
that `there is no evidence at a nominal  = 0•05 level of signi�cant annual variation in survival'.
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begin sidebar

Which models are nested?

While the preceding example was simple enough, determining which models are nested is not always
trivial. Here, we take a slightly more extended look at `nest edness' and linear models.

Let's begin with addressing the question of why aren't model s f ! � ?Cgand f ! C?�gin the preceding
example nested? The easiest way to resolve which models of the models in this example are nested,
and which aren't, is to try to answer the following question: `would starting model A be equivalent to
reduced model B if you eliminated one or more of the factors from model A?' If so, then model B is
`nested' within model A.

For example, if we start with model f ! C?Cg(model A), we want to know if model f ! C?�g(model B)
is nested within it. So, what happens if you `remove one or mor e of the factors from model A '? Well,
in this case we see that if we eliminate `time' from capture in model A, then model A is transformed
into model B. Thus, we can say that model B f ! C?�g is nested within model A f ! C?Cg.

However, now compare models f ! � ?Cg and f ! C?�g. If we consider these models as A and B
respectively, we see that there is no simple transformation of model A into model B; we would have
to drop the time-dependence from the recapture model, and ad d time to the survival model, to make
models A and B equivalent. Since nesting requires only addition or subtra ction of parameters (but not
both), then these models are clearly not nested.

But, these examples are very simple. What about situations where `nestedness' is not so obvious.
For example, are the models f . = Gg and f . = ln ¹Gºg nested? Clearly, we need a more general set of
rules. Let's start by considering models which arenested.

nested models: Two models are nested if one model can be reduced to
the other model by imposing a set of linear restrictions on the vector of
parameters.

For example, consider models 5and 6, which we'll assume have the same functional form and error
structure. For convenience, we'll express the data as deviations from their means (doing so eliminates
the intercept from the linear model, since it would be estima ted to be 0). These two models di�er then
only in terms of their regressors.

In the following

5 : . = � 1G1 ¸ &0

6 : . = � 1G1 ¸ � 2G2 ¸ &1–

the model 5 is nested within model 6 because by imposing the linear restriction that � 2 = 0, model 6
becomes model 5.

What about non-nested models? Things get a bit more complex here, but we'll operationally de�ne
non-nested models as

non-nested models : Two models are non-nested, either partially or
strictly (discussed below), if one model cannot be reduced to the other
model by imposing a set of linear restrictions on the vector of parameters

Examples of non-nested models include (but are not limited t o):

ˆ No linear restriction possible to reduce on model to another

Consider the following two approximating models:

5 : . = � 1G1 ¸ � 2G2 ¸ &0
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6 : . = � 2G2 ¸ � 3G3 ¸ &1•

Models 5 and 6 are non-nested because even if we impose the restriction on model
6 that � 3 = 0, model 6 does not become model 5.

In fact, in this example, models 5and 6 arepartially non-nested, because they have one
variable in common ( G2). If the two models didn't share G2, then they would be strictly
non-nested.

However, you need to be somewhat careful in de�ning models as strictly non-nested.
There are, in fact, two cases where models with di�erent sets of regressors may not be
strictly non-nested.

Consider the following two models:

5 : . = � 1G1 ¸ &0

6 : . = � 2G2 ¸ &1•

If either � 1 or � 2 equals zero, then the models are nested. This is trivially tr ue. Less
obvious, perhaps, is the situation where one of more of the ex planatory variables in one
model may be written as a linear combination of the explanato ry variables in the second
model.

For example, given the two models

5 : . = � 1G1 ¸ &0

6 : . = � 2G2 ¸ &1–

consider a third model � where

� : . = � 3G3 ¸ &2 = � 1G1 ¸ � 2G2 ¸ &2•

Then, perform the following hypothesis tests: model � versus model 5 (i.e., � 2 = 0
versus � 2 < 0), and model � versus model 6 (i.e., � 1 = 0 versus � 1 < 0).

ˆ Di�erent functional forms used in two models

The following are clearly di�erent function forms

5 : . = - � ¸ &

6 : ln¹. º = ln¹- º� ¸ � •

end sidebar

4.6.2. Some problems with the classical approach...

Seems straightforward, right? Ah, but there are at least two `mechanical' problems with this approach
(we'll ignore the more philosophical questions concerning the apparent subjectivity of specifying the
nominal  -level for evaluating the `signi�cance' of an LRT, although it is clearly an important part of
the larger debate).

First, the LRT is only strictly appropriate when the models b eing compared are nested. Fornon-nested
models, you can use either the AIC, or approaches based on a resampling (`bootstrapping') approach.

Second, if you look (again) at the hierarchial diagram shown at the top of the next page, you should
notice that there are in fact 2 di�erent pairs of nested models (joined by red arrows) we cou ld compare
(using an LRT) to test for annual variation in survival: f ! C?Cg versus f ! � ?Cg, or model f ! C?�g versus
f ! � ?�g.
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! C?C

! � ?C ! C?�

! � ?�

?

?

In both cases, we are testing for signi�cant annual variatio n in survival (i.e., ! Cvs ! �). Do the two
di�erent sets of model comparisons give the same results? Do both tests lead to the same conclusion
about annual variation in apparent survival, ! ?

We'll brie�y explore this question using live encounter dat a contained in the �le LRT-demo.inp � 5
sampling occasions. Here are the results of �tting models f ! C?Cg–f ! C?�g–f ! � ?Cg and f ! � ?�g:

Our interest lies in comparison of model f ! C?Cg with model f ! � ?Cg, versus a comparison of model
f ! C?�g with model f ! � ?�g. Using `Tests | LR Tests ', we generate the following test results:

The model comparisons of interest are shaded in the preceding �gure. For the comparison of the
general model f ! C?Cg with nested (reduced) model f ! � ?Cg, the LRT yields a " 2

2 = 1•158, which is not
close to signi�cant at the nominal  = 0•05 level (% = 0•5604). versus a comparison of model f ! C?�g
with model f ! � ?�g. Taken alone, this would suggest no strong evidence for annu al variation in apparent
survival.

However, now consider the comparison of the general model f ! C?�g with nested (reduced) model

f ! � ?�g. Here, the LRT yields a " 2
3 = 8•861, which is in fact signi�cant at the nominal  = 0•05 level

(%= 0•0312). So, this comparison would suggest that thereis evidence for annual variation in apparent
survival, opposite to what we concluded in the �rst analysis !

The observation that the di�erentmodelcomparisons yielde dvery di�erent results,and thus di�erent
conclusions, is clearly a problem. In fact, for any typical c andidate model set, there are likely to be 7 1

Chapter 4. Building & comparing models



4.6.3. `Signi�cance' of a factor using AIC 4 - 66

pairs of nested models which could be compared using a LRT to t est the same hypothesis. And there
is a fair likelihood that in many cases, these LR tests will yi eld di�erent, often contradictory results (as
in our present example).

Thus, the obvious question is: which of the possible nested comparisons for a given hypothesis is the
`right one' to use? A commonly suggested approach (which is n ot without its critics) is to start from the
most parsimonious acceptable model still containing the e� ect you want to test, and then use the LRT to
test the nested model without this factor. You can use AIC (or sequential LRT tests where appropriate)
to identify the model which has the fewest parameters while s till �tting the data and containing the
factor you are interested in. The advantage of using this mod el is that tests are generally most powerful
in a `parsimonious context'. In our example, model f ! C?�g is more parsimonious than model f ! C?Cg,
and thus we might conclude that the LRT between model f ! C?�g and nested (reduced) model f ! � ?�g
is the more powerful of the two comparisons, and thus, suppor ting a conclusion of `signi�cant' annual
variation in apparent survival.

4.6.3. `Signi�cance' of a factor using AIC

Despite several di�culties with the classical approach to t esting for `statistical signi�cance', there
would seem to be one singular advantage relative to multimod el inference based on an information
theoretic index like the AIC or BIC. Namely, that there is a re latively straightforward way (caveats
notwithstanding) to give some sort of statement about the `s igni�cance' (importance) of some factor(s).
Is there something equivalent that can be done with the infor mation theoretic approach?

Burnham & Anderson have noted that assessment of the relativ e importance of variables has often
been based only on the best model (e.g., often selected usinga stepwise testing procedure of some sort).
Variables in that best model are considered `important', wh ile excluded variables are considered `not
important'. They suggest that this is too simplistic. Impor tance of a variable can be re�ned by making
inference from all the models in the candidate set. Akaike we ights are summed for all models containing
predictor variable (i.e., factor) G9, 9= 1– • • • – '. Denote these sums asF ¸¹ 9º. The predictor variable with
the largest predictor weight, F ¸¹ 9º, is estimated to be the most important, while the variable wi th the
smallest sum is estimated to be the least important predicto r.

Can we be somewhat more `formal' about this? Consider the fol lowing example � a simple linear
model with three regressors, G1– G2 and G3. The objective was to examine the eight possible models
consisting of various combinations of these regressors.

The following tabulates each of the possible models, along w ith hypothetical AIC weights (in the
table, a 1̀' indicates that G8 is in the model; otherwise, it is excluded).

G1 G2 G3 F 8

0 0 0 0.00

1 0 0 0.10

0 1 0 0.01

0 0 1 0.05

1 1 0 0.04

1 0 1 0.50

0 1 1 0.15

1 1 1 0.15

The selected best model has a weight of only 0.5 (suggesting strong model selection uncertainty).
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However, the sum of the weights for variable G1 across all models containing G1 is 0.79. This is evidence
of the importance of this variable,across all eight of the mo dels considered. Variable G2 was not included
in the selected best model, but this does not mean that it is of no importance (which might be the
conclusion if you made inference only on the K-L best model). Actually, its relative weight of evidence
support is 0.35. Finally, the sum of AIC weights for G3 is 0.85.

Thus, the evidence for the importance of variable G3 is substantially more than just the weight
of evidence for the best model. We can order the three predictor variables in this example be their
estimated importance: G3– G1– G2 with importance weights of 0.85, 0.79, and 0.35, respectively. This basic
idea extends to subsets of variables. For example, we can judge the importance of a pair of variables,
as a pair, by the sum of the AIC weights of all the models that include th at pair of variables. Similar
procedures apply when assessing the relative importance of interaction terms.

To demonstrate this in application to a mark-recapture anal ysis, consider the results from the swift
analysis:

We notice that the two most parsimonious models in the candid ate model set have colony di�erences
in the survival parameters � model f ! 2 ?Cg and model f ! 2 ?�g have virtually all of the support in the
data. Moreover, the top two models, comprising ¹0•857¸ 0•133º = 99% of the support in data, both have
! 2 in common for the survival parameter. Meaning, only models w ith a colony e�ect on the apparent
survival rate have any appreciable support in the data.

At this point,we mightconclude that there is considerable e vidence ofa di�erence in survivalbetween
the 2 colonies. What about using cumulative support over all models in the model set? The summed
AIC weights for colony , time , and colony.time for survival are: 0.9896, 0.0098, and 0.0007, respectively.
Clearly, there is very strong support for a colony e�ect.

As suggested by Burnham & Anderson (2002, 2004), summing support over models is regarded as
superior to making inferences concerning the relative impo rtance of variables based only on the best
model. This is particularly important when the second or thi rd best model is nearly as well supported
as the best model or when all models have nearly equal support . While this approach seems to have
some merit, there is by no means consensus that this is the `best approach', or that it `works' in all cases
� see for example Murray & Conner (2009).

Further, there are `design' considerations about the set of models to consider when a goal is assessing
variable importance. For example, it seems to be particular ly important is that the model set be `sym-
metrical' or `balanced' with respect to each factor of inter est (i.e., that the model set has roughly the
same number of models with, and without a particular factor) . This is not always easy to accomplish
(e.g., how do you balance models for interaction terms?). See Doherty, White & Burnham (2010), and
Arnold (2010) for a discussion of this and related issues. The -sidebar- starting on the next page is also
quite relvant to this issue.
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begin sidebar

The `masquerading variable' issue...

Anderson (2007) and Arnold (2010) both discuss the `pretending' or `masquerading' variables problem
where a variable with little or no information is included in the minimum AIC 2 model to produce
a model relatively close in weight to the minimum AIC 2 model. Because the new model with the
unimportant variable is close to the top model, the natural c onclusion is that the additional variable
is important. However, as Anderson (2007) and Arnold (2010) both discuss, such is not the case. The
additional model has valid weight, but only because the mode l is identical to the top model with only
the additional variable added. The variable is `riding on th e coat tails' of the minimum AIC 2 model.

For the moment, just consider the theory for use with AIC (not AIC 2),and that the additional variable
only adds 1 parameter to the new model. Likelihood theory sho ws that the � 2 ln¹L º for the new model
can never be smaller than the top AIC model, i.e., the additio n of another variable can only improve
the � 2 ln¹L º. Suppose that the new model has exactly the same� 2 ln¹L º, so that the AIC for the new
model is exactly 2 units larger than the minimum AIC model bec ause of the additional parameter (i.e.,
the additional variable increases  by 1). The AIC value for the new model can never be lower than 2
AIC units (unless there is a numerical optimization issue, a lways something to be aware of).

However, likelihood theory also tells us just how much the � 2 ln¹L º is expected to change, because

the di�erence between the two � 2 ln¹L º values is a likelihood ratio test and is distributed as a " 2
1

distribution, i.e., a " 2 distribution with 1 degree of freedom. That is, a likelihood ratio test of the null

hypothesis of no e�ect for a single degree of freedom is distr ibuted as " 2
1 under the null hypothesis.

Because the expected value (mean) of" 2
1 is just the degrees of freedom, the mean di�erence in the

� 2 ln¹L º values is 1 under the null. Further, the probability that the di�erence in the two � 2 ln¹L º
values is 7 2 (i.e., the addition of the covariate now generates a model w ith smaller AIC than the

original model) is Pr
�
" 2

1 � 2
�

= 0•157299.

Now extend this thinking to include variables with � 1 parameter, e.g. time e�ect or a categorical
variable requiring multiple parameters to model it. Again, the null distribution of the likelihood ratio

test is just distributed as " 2
35 where df is the di�erence in the number of parameters of the 2 models

(i.e., the number of parameters required to model the covari ate).

Consider the curve Pr
�
" 2

35 � ¹ 2� 35º
�

= the P-value of the likelihood ratio test when the AIC values
of the 2 models are equal. The following graph shows what this curve looks like (blue line) for df up
to 20 parameters in the added variable:

One important observation from this graph is that a variable with 7 8 df is below the usual  = 0•05
level shown with the orange �at line. What this means is thata likelihood ratio testof the variable would
reject the null hypothesis, yet AIC would still select the mo del without the variable. The di�erence in
conclusions between a likelihood ratio test and AIC model se lection only increases as the df increases
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beyond 8. AIC will select the model without the variable even though the variable is statistically
signi�cant ( %5 0•05) in a likelihood ratio test. In contrast, to the left of 8 pa rameters, AIC is selecting
the covariate model even though %7 0•05.

Now return to using AIC 2 instead of AIC. The AIC 2 value is always larger than the AIC value, but
the same impacts still occur. A lower bound of 2 for a single df variable is no longer �xed,but gets larger
as the sample size gets smaller. But your interpretation of t he importance of the variable added must
still re�ect this coat-tail e�ect of the variable `riding on the strength' of the minimum AIC 2 model.

end sidebar

4.7. LRT or AIC, or something else?

At this point, you're probably mulling over a few things. Fir st, we've covered a lot of ground � both
technically, and conceptually. We've seen how to build and � t various models to our data using
MARK . We've also introduced the important topic of `model select ion' � the use of LRT and AIC
(or BIC), counting parameters, and `hypothesis testing'. W e've also considered the important idea of
`model averaging'. You're also probably thinking (hopeful ly) thats it's about time for us to make broad,
categorical suggestions about what to do � AIC/BIC or LRT? Si gni�cance test, or e�ect size?

Alas, prepare to be disappointed. While we have our personal opinions, MARK itself is `politically
neutral' on this one � you can choose to adopt an `information theoretic' approach, or invoke a classic
LRT approach (but not combinations of the two � you have to pick either of the `two ro ads', and not
mix and match the two), and talk about the signi�cance of an e� ect based on a nominal P-value.

The whole issue of whether or not to use P-values, and `classical hypothesis testing' is (and has been
for some time) the subject of much debate in the literature. T he fairly recent advent of methods for
model selection based on information theory, and model aver aging, has added some additional nuance
to the discussion � for example, Stephens et al. (2005), Lukacset al. (2005).

The literature related to `model selection' and `multi-mod el inference', is large,and expanding rapidly.
As a starting point, start by having a careful read of the semi nal text by Burnham & Anderson:

Model Selection and Multi-Model Inference (2nd Edition)- Ken
Burnham and David Anderson. (2002) Spring-Verlag. 496
pages.

Additionally, Hooten & Hobbs (2015) have recently publishe d a very thorough treatment of both
Bayesian and `frequentist' approaches to model selection (including the AIC � see also Hooten & Cooch
(2019), for a less technical overview of some of the same material).

4.8. Summary

In this chapter, we looked at the basic mechanics of using MARK to construct and evaluate several
models. We've looked at the problem of staggered entry of mar ked individuals into the population
(and how this leads logically to the triangular parameters s tructures � the PIMs). We've also considered
(at an introductory level) the mechanics and theory of model selection: the LRT and the AIC. In the
next chapter, we'll consider goodness of �t testing � an esse ntial step in evaluating models.
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Addendum � counting parameters

Although MARK does a good job of counting parameters, it is important that y ou understand how the
model structure determines the number of parameters that ar e theoretically estimable. What MARK
does is indicate (report) how many parameters are estimable, given the model, and the data. MARK
does not indicate how many parameters are theoretically est imable, given the structure of the model.
On occasion, there are discrepancies between the two.

There are 2 reasons why a particular model parameter might no t be estimable. The �rst is because
the parameter may be confounded with 1 or more other paramete rs in the model. An example is
the last ! and ? parameters in a time-speci�c Cormack-Jolly-Seber model, w here only the product
of ! and ? can be estimated, but not the unique values of each. In this case, the parameters are not
identi�able because of the structure of the model. This is referred to as intrinsic non-identi�ability . The
second situation arises either because the data are inadequate, or as an artifact of the parameter being
`poorly estimated' near either the 0 or 1 boundaries. This is referred to as extrinsic non-identi�ability. If
a parameter is extrinsically non-identi�able because of `p roblems' with the data, then you may need to
manually increase the number of estimated parameters MARK reports (given the data) to the number
that shouldhave been estimated (if there had been su�cient data). While there has been signi�cant
progress in formal `analytical' analysis of intrinsic iden ti�ability, these methods are complex, and do
not apply generally to problems related to inadequate data o r parameters estimated near the boundary.
A numerical approach based on `data cloning' which can be used generally to help identify parameters
that are not estimable is available in MARK is presented in Appendix F.

intrinsically non-identi�able parameters � an ad hoc approach

While there are methods (formal, numerical) for identifyin g intrinsically non-identi�able parameters,
it is important that you develop an `intuitive understandin g' of the how such parameters arise in the
�rst place. Let's assume that our data are `good' � there are n o `structural problems' and that the only
remaining task is to determine which parameters are separat ely identi�able. We'll concentrate on the 4
models we've examined in this chapter. We'll introduce an ap proach which is generally useful, if a bit
cumbersome. In future chapters, where we explore signi�can tly more complex models, we'll comment
as needed on how the number of parameters was determined. Our most complex model in this chapter
is the CJS model � complete time-dependence in both survival and recapture. In many ways, the most
fundamental di�culty in counting parameters in general is n icely contained in this model, so it is a
good starting point.

However, before we dive in, consider a much simpler situatio n. Consider the case of only 2 occasions,
a release occasion, where newly marked individuals are released, and a single recapture occasion. This
situation is common in short-term studies. In general, unde r this sampling scheme, what is done is
to express the proportion of the individuals marked and rele ased on the �rst occasion captured on
the second occasion as a measure of the `survival probability'. This fraction, also known as the `return
probability', is still widely found in the literature.

Unfortunately,naïve use of return probability poses real p roblems,since, in fact, it does not necessarily
estimate survival probability at all. As noted in Lebreton et al. (1992), the number of individuals seen
on the second occasion is the result of 2 events, not one; the frequency of individuals seen again on
the second occasion is de�ned by the product of the number rel eased on occasion 1 (' 1) times the
probability of surviving to occasion 2 ( ! 1), times the probability of being seen at occasion 2 given
that it is in fact alive at occasion 2 (the recapture probabil ity, ?2). Since the value of ! 1 and ?2 can
vary between 0 and 1, the observed number of individuals at oc casion 2 could re�ect an in�nite set of
di�erent combinations of either survival or recapture prob ability. For example, suppose 100 individuals
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are marked and released at occasion 1, and 50 of these marked individuals are seen subsequently at
occasion 2. The return probability is (50/100) or 0.5. Howev er, does this really mean that `survival' is
50%? Not necessarily. What it means is that (100� ! 1?2º = 50, or ¹! 1?2º = 0•5. As you quickly see, there
is an in�nite set of combinations of ! 1 and ?2 which, when multiplied together, lead to the product 0.5.
Thus,we can'tnecessarily say that `survival' is 0.5,merely that the combinedprobability of surviving and
being recaptured is 0.5. In other words, with only 2 occasion s, the survival and recapture probabilities
are not `individually identi�able' � we cannot derive estim ates for both parameters separately.

What do we need to do? Well, in order to separately derive esti mates for these parameters, we need
more information. We need at least one additional recapture occasion. The reason is fairly obvious if
you look at the capture histories. As per Lebreton et al. (1992), let 1̀' represent when an individual
is captured at a particular occasion, and `0' represent when it is not captured. With only 2 occasions
and individuals released marked only on the �rst occasion, o nly 2 capture histories are possible: 10
and 11. As we just observed, with only two captures we can estimate o nly the product of survival and
recapture. What about three occasions? As noted in Chapter 1, under this sampling scheme, at least 4
capture histories are possible for individuals marked on th e �rst occasion:

encounter history probability

111 ! 1?2! 2?3

110 ! 1?2
�
1 � ! 2?3

�

101 ! 1
�
1 � ?2

�
! 2?3

100 1 � ! 1?2 � ! 1
�
1 � ?2

�
! 2?3

The capture histories are given with the probability statem ents which, when multiplied by the
number released at occasion 1, de�ne the number of individua ls with a given capture history expected
at occasion 3. Concentrate for the moment on the third captur e history in the table: `101'. You can see that
there is a fundamental di�erence in this capture history fro m the one preceding it (where individuals
are seen on each occasion). For capture history 1̀01', individuals were released on occasion 1, not seen
on occasion 2, but were seen again on occasion 3.

What does this sort of individual tell us? Well, clearly, if t he individual was seen on occasion 3, then
it must have been alive on occasion 2. The fact that we didn't s ee the individual at occasion 2 allows us
to estimate the recapture probability, since recapture pro bability is merely the probability of seeing an
animal at a particular occasion given that it is alive. Thus, because we have information from the third
occasion, we can separately estimate the survival and recapture probabilities ! 1 and ?2 respectively.

Speci�cally,

# 111

# 101
=

! 1?2! 2?3

! 1
�
1 � ?2

�
! 2?3

= ��! 1 ?2� �! 2 ��?3

� �! 1
�
1 � ?2

�
� �! 2 ��?3

=
?2

1 � ?2
•

Of course, MARK shields you from the complexities of the actual estimation i tself, but in a very
broad sense, it is the presence of 1̀01' individuals along with the other capture histories that al lows us
to estimate survival and recapture rate separately.
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But, it is important to note that we can't separately estimat e all the parameters. Consider for instance
! 2 and ?3. Can we separate them? No! In fact, the product of these two parameters is completely
analogous to a return probability between occasions 2 and 3. If we wanted to separate these 2 parameters,
we'd need a fourth occasion, and so on.

Thus, in sucha modelwhere bothsurvivaland recapture proba bility are time-dependent, the terminal
parameters are not individually identi�able � all we can do i s estimate the product of the 2. Lebreton
et al. (1992) refer to this product term as � 3.*

Thus, we can re-write our table, and the probability stateme nts, as:

encounter history probability

111 ! 1?2� 3

110 ! 1?2

�
1 � � 3

�

101 ! 1

�
1 � ?2

�
� 3

100 1 � ! 1?2 � ! 1
�
1 � ?2

�
� 3

Now, we come to the original question: how many parameters do we have? In this case, with 3
occasions, and time-dependence in both survival and recapture, we have 3 estimable parameters: ! 1,
?2, and � 3. Do we always have a `beta' parameter � a terminal product tha t cannot be separated into its
component survival and recapture elements? The answer is, `no'. Whether or not you have a `beta' term
depends upon the structure of your model.

We can demonstrate this by going back to the 4 models used in th is chapter. We start with the fully
time-dependent CJS model. From the preceding discussion, you might expect that there is likely to
be a `beta' term, since we have time-dependence for both parameters. Your intuition is correct. How
can we count them? While there are a number of possible schemes you could use to count parameters
(including rote memory of certain algebraic relationships between the number of time units and the
number of parameters for a given type of model � see Table 7 in L ebreton et al. 1992), we prefer a more
cumbersome, but fairly fool-proof way of counting them with out resorting to memorization.

To use this approach, simply do the following. For a given mod el, write out all the saturated capture
histories,and their associated probability statements, f or each cohort. A `saturated capture history' is the
capture history where the individual was seen on each occasi on following its release. In our European
dipper example, there are 7 occasions, so our table of saturated capture histories, and substituting � 7 =
! 6?7, the associated probability statements, would look like th e table shown below:

encounter history probability

1111111 ! 1?2! 2?3! 3?4! 4?5! 5?6� 7

0111111 ! 2?3! 3?4! 4?5! 5?6� 7

0011111 ! 3?4! 4?5! 5?6� 7

0001111 ! 4?5! 5?6� 7

0000111 ! 5?6� 7

0000011 � 7

Now, all you need to do is count how many unique parameters the re are. A parameter is unique if
it occurs at least once in any of the probability statements. If you count the unique parameters in this

* To some degree, using� was an unfortunate choice, since the� parameter takes on singular importance � and refer to someth ing
altogether di�erent than `parameter confounding' � in the c ontext of linear models, which we introduce in depth in chapt er 6.
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table, you will see that there are 11 of them: 5 survival proba bilities ( ! 1 to ! 5), 5 recapture probabilities
(?2 to ?6), and one `beta' term, � 7, the product of ! 6?7. Note, that this is only a technique to help you
count the number of `potentially' identi�able parameters � this does not necessarily mean that all of
them are estimable. That is determined by the data. We introd uce an approach (based on `data cloning')
for handling this issue in Appendix F.

Now,a fair question is `why do we need to write out the saturat ed capture histories and the probability
statements for all cohorts, since we could have used just the �rst cohort to count unique parameters?'.
Well, the answer is, in this case, you really didn't need to. H owever, as you will see, this approach is
useful and necessary for more complicated models. We introd uce it now just to get you in the habit.

Let's consider the next two models: f ! C?�g and f ! � ?Cg. From the results browser, we see that both
models have 7 parameters. Let's con�rm this. Again, we use th e `saturated capture histories approach'.

Start with the model f ! C?�g:

encounter history probability

1111111 ! 1?! 2?! 3?! 4?! 5?! 6?

0111111 ! 2?! 3?! 4?! 5?! 6?

0011111 ! 3?! 4?! 5?! 6?

0001111 ! 4?! 5?! 6?

0000111 ! 5?! 6?

0000011 ! 6?

Now, in this case, we do not have a terminal � term. The terminal product is ! 6?�. Are both parts
separately estimable? Yes. Since the constant recapture probability occurs at each occasion, we can use
the information from preceding occasions to estimate the va lue of p. And, if we know the recapture
probability p, then we can estimate any of the survival probabilities, inc luding ! 6.

Speci�cally, ! 6 is estimated as

 ! 6 =
 � 7

 ?
–

under the assumption that ?7 = ? (this is clearly an untestable assumption). Thus, we have 7 identi�able
parameters: 6 survival rates (! 1 to ! 6) and 1 recapture probability ( p). For the model f ! � ?Cg,we have the
same situation (7 estimable parameters) but in reverse. Finally, for our model f ! � ?�g(constant survival
and recapture), there are only two estimable parameters.

How does MARK count parameters?

Needless to say,MARK uses a more `technical' approach to counting the number of estimable param-
eters than the ad hocapproach described above. Here, we summarize some of the `technical details'.

In Chapter1,we considered the derivation of the MLE and the v ariance fora simple example involving
a model with only 2 parameters: ! and ?. The likelihood for the particular example was given as

ln L ¹! – ?º = 7 ln¹! ?! ?º ¸ 13 ln¹! ?¹1 � ! ?ºº ¸ 6 ln¹! ¹1 � ?º! ?º ¸ 29 ln¹1 � ! ? � ! ¹1 � ?º! ?º•

Chapter 4. Building & comparing models



Addendum � counting parameters 4 - 75

We �rst derived the Hessian H as the matrix of second partial derivatives of the likelihoo d L with
respect to the parameters! and ?):

H =

2
6
6
6
6
6
6
6
4

@2L
@! 2

@2L
@! @?

@2L
@?@!

@2L
@?2

3
7
7
7
7
7
7
7
5

•

Next, we evaluated the Hessian at the MLE for ! and ? (i.e., we substituted the MLE values for our
parameters �  ! = 0•6648 and  ? = 0•5415 � into the Hessian), which yielded the information matr ix I :

I =

�
� 203•06775 � 136•83886
� 136•83886 � 147•43934

�
•

The negative inverse of the information matrix ( � I � 1) is the variance-covariance matrix of the
parameters ! and ?

� I � 1 = �

�
� 203•06775 � 136•83886
� 136•83886 � 147•43934

� � 1

=
�
� 0•0122 0•0181

�
•

While deriving the variance-covariance matrix is obviousl y the basis for estimating parameter
precision, there is further utility in the information matr ix: skipping the theory, the e�ective rankof
the information matrix is an estimate of the maximumnumber of estimable parameters (but this does
not account for confounded parameters). The e�ective rank o f

� I � 1 =

�
0•0131 � 0•0122

� 0•0122 0•0181

�
–

is 2, meaning, we have 2 estimable parameters (which by now we know to be true for this model).

What is the e�ective rank of a matrix? Technically, the rank o f a matrix (or a linear map, to be complete)
is the dimension of the range of the matrix (or the linear map) , corresponding to the number of linearly
independent rows orcolumns of the matrix (or to the numberof nonzero singularvalues of the map). The
details can be found in any introductory text on linear algeb ra, but the basic idea is easily demonstrated.

Consider the following ¹4 � 4º matrix

A =

2
6
6
6
6
6
6
4

2 4 1 3
� 1 � 2 1 0

0 0 2 2
3 6 2 5

3
7
7
7
7
7
7
5

•

We see that the second column is twice the �rst column, and tha t the fourth column equals the sum
of the �rst and the third. Thus, the �rst and the third columns are linearly independent, so the rank of A
is 2.

What about a less obvious case? For example, suppose we re-write the likelihood in terms of time-
speci�c ! and ? parameters:

ln L ¹! 1–! 2– ?2– ?3º = 7 ln¹! 1?2! 2?3º ¸ 13 ln¹! 1?2¹1 � ! 2?3ºº
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¸ 6 ln¹! 1¹1 � ?2º! 2?3º ¸ 29 ln¹1 � ! 1?2 � ! 1¹1 � ?2º! 2?3º•

We use MARK to �nd the MLE estimates as:  ! 1 = 0•6753,  ?2 = 0•5385, and  ! 2 =  ?3 = 0•5916. Now,
what is important here is that the terminal � 3 term is estimated as the product of ! 2 and ?3 � in fact,
the estimates of ! 2 and ?3 could be any values from 0 ! 1, as long as the product ¹! 2?3º = ¹0•5916º2 =
0•3500, (where 0•3500=  � 3 =  ! 2  ?2º. This becomes important later on.

For now, though, let's concentrate on parameter counting. F irst, we derive the Hessian, which for this
model f ! C?Cg is given as

H =

2
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

@2L

@! 2
1

@2L
@! 1@! 2

@2L
@! 1@?2

@2L
@! 1@?3

@2L
@! 2@! 1

@2L

@! 2
2

@2L
@! 2@?2

@2L
@! 2@?3

@2L
@?2@! 1

@2L
@?2@! 2

@2L

@?2
2

@2L
@?2@?3

@2L
@?3@! 1

@2L
@?3@! 2

@2L
@?2@?3

@2L

@?2
3

3
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

•

Again, the variancesof the parameters are along the diagonal, and the covariancesare o� the diagonal.

Next, we substitute in the MLE estimate for our 4 parameters. While we have unique estimates for  ! 1
and  ?2, what about the terminal  � 3 term? If we use the values MARK reports (  ! 2 =  ?3 =  � 3 = 0•5916),
then the resulting information matrix is singular (meaning : we can't invert it to derive the variance-
covariance matrix). Is this a problem?

Well, yes and no. A problem clearly if we want to estimate the v ariance-covariance matrix for our
parameters (which we obviously want to do for any model). But , if the information matrix is singular,
what can you do? Well, what if instead of  ! 2 =  ?3 = 0•5916, we instead had used  ! 2 = 0•3500– ?3 = 1•0
(such that  � 3 still equals 0.3500). Again, remember that the estimates of ! 2 and ?3 could be any value
from 0 ! 1, as long as the product ¹! 2?3º = ¹0•5916º2 = 0•3500 (as noted above).

Substituting these values into the Hessian yields the infor mation matrix, from which the negative
inverse yields the variance-covariance matrix:

I =

2
6
6
6
6
6
6
4

� 108•12 � 48•14 � 67•80 � 16•85
� 48•14 � 147•03 22•87 � 51•46
� 67•80 22•87 � 117•25 8•01
� 16•85 51•46 8•01 � 18•01

3
7
7
7
7
7
7
5

! � I � 1 =

2
6
6
6
6
6
6
4

0•024 � 0•008 � 0•016 � 0•006
� 0•008 318•191 0•005 � 909•091
� 0•016 0•005 0•019 0•008
� 0•006 � 909•091 0•008 2597•417

3
7
7
7
7
7
7
5

•

Obviously, the variances for ! 2 and ?3 are `wonky' (from the Latin). We discussed earlier how this
can (on occasion) be used as a rough diagnostic to when parameters are inestimable.

But, our main objective here is to determine how manyparameters are estimable? If we take the rank
of this information matrix, we get 4, which is correct, becau se in e�ect we've `manually separated' the
elements of the  � 3 term. What if we had calculated the rank of the matrix substit uting  ! 1 = 0•6753,
 ?2 = 0•5385, and  ! 2 =  ?3 = 0•5916? We noted already that the information matrix using the se values
is singular, but...what about the rank? In fact, if we take th e rank of the information matrix, we get 3,
which matches the number of estimable parameters.
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But, how many parameters are actually estimated given the data? In MARK , computation of the
Hessian is performed with a �nite central di�erence approxi mation for the second derivatives (i.e., the
second derivatives are estimated numerically, not analytically). How does this work? Well, �rst de�ne
L 0–0 as the log likelihood computed for the maximum likelihood es timates of a � 8and � 9. Further de�ne
L 1–0 as the log likelihood computed with � 8 incremented by the amount h, and L 2–0 as the log likelihood
computed with � 8 incremented by the amount 2 � . Similarly, L � 2–0 is the log likelihood computed with
decremented by the amount 2� . Using this notation, the second partial of the log likeliho od for � 8 is
computed as:

@2L 0–0

@� 2
8

=
1

12� 2

�
� L 2–0 ¸ 16L 1–0 � 30L 0–0 ¸ 16L � 1–0 � L � 2–0

�
–

and the joint partial of the log likelihood for � 8 and � 9 is computed as:

@2L 0–0

@� 8@� 9
=

1

4� 2

�
� L 1–1 ¸ L 1–� 1 � L � 1–1 ¸ L � 1–� 1

�
•

Given the number of function evaluations needed to compute t hese derivatives, it is obvious why the
computation of the variance-covariance matrix takes so lon g to calculate once the optimizations have
completed* . However, a precise calculation of the information matrix i s needed, not only to provide an
estimate of the variance-covariance matrix of the � estimates, but also to compute the estimated number
of parameters.

To invert and also compute the rank of the Hessian, a numerica l approach based on a singular-value
decomposition is computed (for you techno-philes � using th e DSVDC algorithm of Dongarra et al. 1979,
as implemented in LINPACK ). This algorithm returns a vector of singular values(the S vector) of the
same length as the number of rows or columns of the Hessian, sorted into descending order.

The trick at this point is to determine whether the smallest v alue(s) of the singular values in the
S vector is (are) actually zero. Two rules are applied to make t his decision. First, a threshold valueis
computed (and printed in the full output �le) that is, in e�ec t, a guess at what the minimum singular
value would be smaller than if there were more betas than can b e estimated. This threshold is based on
the number of parameters used in the optimization and the val ue of hused to compute the Hessian. The
precision of the numerical estimates in the Hessian is a function of h, as well as the number of columns
in the design matrix (the number of � values). In MARK , the threshold is estimated from the gradient
(of the likelihood) as the maximum value of G times 2.

Using this threshold value, all values of the conditioned si ngular values vector that are smaller than
the threshold are considered to be parameters that have not been estimated. Conversely, all values of the
conditioned singular value vector that are greater than the threshold are considered to be parameters
that were estimated, and are part of the parameter count.

The threshold condition may suggest that all of the � values were parameters that were estimated, i.e.,
the smallest conditioned singular value is greater than the threshold. An additional test is performed
to evaluate whether some of the � parameters were not actually estimated. The ratio of consecutive
values in the sorted singular value array is used to identify large jumps in the singular values. Typically,
the ratios of consecutive values decline slowly until a larg e gap is reached where parameters are not
estimated.

* All experienced MARK users have learned to be patient as the variance-covariancematrix is calculated, especially for complex
models
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As an example, consider the following portion of the full out put for the global model (i.e., model
f ! C?Cg) of the male European dipper data, where the last ! and last ? is identi�able only as a product
(i.e., they are not separately estimable � a point we've made before). Thus, instead of the 12 parameters
that you might have initially assumed are estimable, only 11 are actually estimated.

Here are the relevant sections from the full MARK output. First, the threshold is reported as:

Threshold {phi(t)p(t) - sin - standard optimization} = 0.66 80064E-005

Where does this value come from? As noted earlier, the numeri cal threshold value is estimated from
the gradient as the maximum value of G times 2. For the male dippers, using a sin link with model
f ! C?Cg, the gradient and the maximum value of the gradient, G, are given as:

Gradient {phi(t)p(t) - sin - standard optimization}:
0.000000 -0.3304314E-05 0.000000 0.3125295E-05 -0.33400 32E-05
0.000000 0.000000 0.000000 -0.1947290E-05 -0.1883578E-0 5
0.000000 0.2452112E-05

Maximum ABS(G) {phi(t)p(t) - sin - standard optimization} = 0.3340032E-05

The threshold from the gradient for this model is thus calcul atedas¹2� 0•3340032� � 05º = 0•6680064� � 005,
as reported by MARK (above).

Next, the sorted S vector:

S Vector {phi(t)p(t) - sin link}:
44.93890 42.21556 38.37998 34.75334 27.85340
15.31132 13.39506 10.90580 10.07123 2.918919
2.862238 0.1477205E-05

We see that only the �nal singular value (0 •1477205� � 05) is less than the threshold (0•6680064� � 005),
and so MARK concludes that there are 11 estimable parameters:

Number of Estimated Parameters {phi(t)p(t) - sin link} = 11

As discussed earlier,MARK also evaluates the ratio of consecutive values in the sortedsingular value
array to identify large jumps in the singular values. For the male dipper data, using the sin link, the
`gaps' (ratios) reported by MARK are:

Ratio Threshold = 50.00000 Max Gap (11/12) = 1937604. Next Max Gap (9/10) = 3.450328

Only the �nal ratio (of singular values 11 and 12) is greater t han the threshold of 50, whereas the next
largest ratio of singular values 9 and 10 is smaller than the t hreshold. The singular value ratio which is
greater than the threshold involves singular values 11 and 1 2. The preceding ratio, involving parameter
10 and 11 is not (in this case, it isn't even the second largestratio � the second largest ratio involves
singular values 9 and 10). So, this indicates that singular value 12 is the unique singular value which is
not estimable (i.e, ¹10•11º 5 50–¹11•12º 7 50, so singular value 12 is not estimated).

To make it easier to identify which model parameters corresp ond to the singular values, MARK
prints a vector indicating the likely ordering of parameter s by estimability (from most to least):

A Attempted ordering of parameters by estimatibility:
5 4 3 12 2 11 10 9 1 7 8 6

Beta number 6 is a singular value.
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This suggests that the `least estimable' parameter (singular value 12) is parameter 6, which corre-
sponds to  ! 6, which we know to be confounded with ?7 (and therefore not separately estimable).

So,both the `threshold' and `gap value' criteria lead to the same conclusion,and soMARK reports that
11 parameters (out of 12 structural parameters) are estimable, given the model structure, and the data,
and places that value (11) in the browser for the column in the browser showing number of parameters.

An important point is how the link function can play into this process. In the above example, thesin
link was used, so that parameters on their boundaries were st ill considered estimable. In contrast, with
the logit link, parameters on their boundary often appear to have not b een estimated (the underlying
reason for this statement is discussed at length in Chapter 6). The following output is for the identical
model, f ! C?Cg, but now run using a logit link.

For the logit link, the threshold is estimated as:

Threshold {phi(t)p(t) - logit link} = 0.7471357E-005

Now, if we look at the S vector

S Vector {phi(t)p(t) - logit link}:
10.71643 9.017176 8.331518 7.603417 6.789932
2.093137 0.9428915 0.9341091 0.9204661 0.5904492

0.7234874E-06 0.5507724E-08

we see that the �nal 2 singular values are smaller than the thr eshold, soMARK reports 10 parameters,
not 11:

Number of Estimated Parameters {phi(t)p(t) - logit link} = 1 0

If we consider the `gap' (ratio) approach,we see (below) tha t the maximum `gap' (ratio) in the ordered
S vector occurs for singular values 10 and 11 (� 816–115), while the next maximum gap, for singular
values 11 and 12, is much smaller (� 131):

Ratio Threshold = 50.00000 Max Gap (10/11) = 816115.4 Next Max Gap (11/12) = 131.3587
Gap Method for Num. of Estimated Parameters {phi(t)p(t) - lo git link} = 10

Because both ratios are greater than the threshold of 50, theparameters corresponding to those
singular value ratios are deemed to be not estimated � in this case singular values 11, and 12.

To make it easier to identify which model parameters corresp ond to the singular values, MARK
prints a vector indicating the likely ordering of parameter s by estimability (from most to least):

Attempted ordering of parameters by estimatibility:
5 4 3 2 6 1 11 10 9 7 12 8

Beta number 8 is a singular value.

This suggests that the `least estimable' parameter is parameter 8 (singular value 12), which corre-
sponds to  ?3. The next `least estimable' parameter is parameter 12 (singular value 11), which is  ?7,
which we know to be confounded with  ! 6.

So,both the `threshold' and `gap value' criteria lead to the same conclusion,and soMARK reports that
10 parameters (out of 12 structural parameters) are estimable, given the model structure, and the data,
and places that value (10) in the browser for the column in the browser showing number of parameters.
However, we know that the value 10 is incorrect � it should be 1 1.
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The di�erence between the results using the logit and sin lin ks can be traced to  ?3. If you look at
the real parameter estimates, you'll see that ?3 is estimated at its upper boundary of 1. For parameters
estimated near the 0 or 1 boundaries, the estimates often appear to be singular, and not estimable. For
this example, the � estimate for this parameter (?3) was 21.011, which appears numerically (for the log
likelihood) to have almost a zero �rst and second derivative for this parameter. In fact, a graph of the
likelihood over possible � values in the range of, say, 19 to 23 would suggest the log likelihood is �at.
As a result, this parameter is considered by MARK to not have been estimated, even though it actually
was estimated. The user must correct the parameter count manually.

Alternatively,use the sin link to avoidproblems withhighl y parameterizedmodels where one ormore
parameters might be estimated near the 0 or 1 boundaries (we'll talk a lot more about link functions in
Chapter 6).

When `threshold' < `gaps'...

In the preceding, both the `threshold' and `gap' approaches yielded identical results, in terms of how
many parameters each approach `concluded' were estimable,given the model structure, and the data.
Whathappens if they di�er? Here,we consider the output from model f ! C?Cgfor the male dippers,using
a logit link, but specifying an `alternative optimization' routine (something called simulating annealing,
which is introduced in Chapter 10). Looking at the full outpu t indicates a variety of `problems' to
consider.

First, MARK reports that the numerical convergence (when optimizing th e likelihood) is suspect:

* * WARNING * * Numerical convergence suspect.

In contrast to the preceding examples (using standard optim ization), the estimated threshold is quite
large:

Threshold {phi(t)p(t) - logit - SA optimization} = 12.50235 0

If we next consider the ordered S vector

S Vector {phi(t)p(t) - logit - SA optimization}:
11.96782 10.58541 9.014868 8.330652 6.789937
2.093127 0.9435693 0.9341522 0.9204858 0.5904339

0.2303222E-07 0.8980657E-08

we see that all 12 of the singular values are less than the threshold value. So, MARK concludes that
none of the parameters are estimable, which is clearly probl ematic:

Number of Estimated Parameters {phi(t)p(t) - logit - SA opti mization} = 0

Looking next at the `gap' (ratio) results, we see that this ap proach does a bit better. In fact, it returns a
value of 10 estimable parameters, as in the preceding analysis using the standard optimization routine
and the logit link:

Ratio Threshold = 50.00000 Max Gap (10/11) = 0.2563513E+08 Next Max Gap (5/6) = 3.243920

Gap Method for Num. of Estimated Parameters {phi(t)p(t) - lo git - SA optimization} = 10
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Now, at this point, you're faced with an obvious problem. The two approaches MARK uses to `count
parameters' yield very di�erent outcomes (and in addition, we know that 0 parameters as determined
by the `threshold' approach has to be wrong). So, what to do?

Even though MARK will output the larger of the two values to the browser, you sh ould spend
some time evaluating the models and your data carefully if th e two estimates di�er. MARK will
actually `�ag' this di�erence so you're aware of it, in sever al ways. First, when numerical evaluation
of the likelihood has completed, MARK responds with a popup window, which indicates (near the
bottom) that the `number of parameters estimated from gap method (=10) and thr eshold method
(=4) differ. Inspect full output ':

In addition, MARK will indicate in the results browser that there is a potentia l issue with the number
of parameters estimated, by changing the color of the model n ame (white letters on blue background),
with ` Check Par Cnt' (`check parameter count') *

Both `warnings' prompt you to more examine the `full output' (shown on the next page), and will
also print out the full vector of successive ratios of the sin gular values, as one approach to help you try to
�gure out why the reported number of estimable parameters mi ght di�er between the two approaches.

* * WARNING * * Number of parameters estimated from gap method(=10) and
threshold method (=0) differ. Inspect full output.

Ratios of S Vector {phi(t)p(t) - logit - SA optimization}:
1/2 1.130595 2/3 1.174217 3/4 1.082132 4/5 1.226912 5/6 3.24 3920
6/7 2.218308 7/8 1.010081 8/9 1.014847 9/10 1.558999 10/11 0 .2563513E+08
11/12 2.564648

* You can directly edit this modi�ed model name � say, after che cking the full output to diagnose the di�erence between the t wo
parameter counts � by double-clicking the model name in the b rowser. Doing so will also change the color scheme back to the
default (black text on white background).
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Finally,you may notice that MARK gives you the option of choosing between two di�erentproced ures
to estimate the variance-covariance matrix of the estimates. The �rst is the inverse of the Hessian matrix
obtained as part of the numerical optimization of the likeli hood function. This approach is not reliable,
and should only be used when you are not interested in the stan dard errors, and already know the
number of parameters that were estimated. The only reason for including this method in the program
is that it is the fastest � no additional computation is requi red for the method.

The second method (the default) computes the information ma trix directly using central di�erence
approximations to the second partial derivatives. This met hod (labeled the 2ndPart method) provides
the most accurate estimates of the standard errors, and is the default and preferred method.

Because the rank of the variance-covariance matrix is used to determine the number of parameters
that were actually estimated, using di�erent methods will s ometimes result in a di�erent number of
parameters estimated, which can have important implicatio ns for model selection.
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