
CHAPTER 18

Nest survival models

Jay Rotella, Montana State University

In this chapter, we will introduce how to analyze nest survival data with program MARK. Nest

survival is a key vital rate in the population dynamics of many birds. Accordingly, estimation of nest

survival is a key aspect of many studies of breeding bird populations. Given the strong interest in nest

survival, there is a rich literature detailing field techniques and estimation methods for this vital rate.

The development of estimation techniques has been very active in recent years (e.g., see Dinsmore et al.

2002, Rotella et al. 2004, and references therein) and so most of the analyses described in this chapter

are still relatively new.

At this point, you may be wondering why we need to go to the trouble of using program MARK

for analyzing nest survival data. After all, with nests you know how many nests you found and you

know the fate of every nest. Why not just compare the proportion of successful nests among groups

with different attributes? Well, for starters (and many of you probably already know this), it turns out

that this is not a valid approach for most data sets. As Harold Mayfield pointed out several decades

ago (Mayfield 1961, 1975), such an analysis is only valid if destroyed nests can be found with the same

probability as active ones. In most studies successful and unsuccessful nests are not found with equal

probability, and most nests are found after egg laying has commenced. Mayfield pointed out that under

these circumstances the proportion of successful nests, which he termed apparent nesting success, is

biased high relative to actual nesting success, the proportion of nests that survive from initiation to

completion. Klett et al. (1986:10) provide an excellent illustration of the source of this bias. In fact, it’s

so good that we’ll repeat the essence of the example here.

Imagine a study in which only active nests can be found. Nests are found at various ages (i.e., days

since the nestwas started). Young leave the nest35 days afternest initiation (in this example, immediately

after hatching, as is typical for species with precocial young). Assume that the probability that a nest

survives a single day (daily survival rate; DSR) is 0.96 regardless of calendar date or nest age, and thus,

the true probability of a nest surviving from initiation to completion is 0.2396 (0.9635). The following

table (at the top of the next page) shows the bias involved in working with the proportion of successful

nests if all nests aren’t found on or before the day they’re initiated. As you can see, overestimation is

likely and can be severe.

age of nest

when found

probability of surviving

to hatching

bias relative to actual

hatching success

0 0.9635
= 0.24 0.00
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5 0.9630
= 0.29 +0.05

10 0.9625
= 0.36 +0.12

15 0.9620
= 0.44 +0.20

20 0.9615
= 0.54 +0.30

25 0.9610
= 0.66 +0.42

30 0.965
= 0.82 +0.58

34 0.961
= 0.96 +0.72

Mayfield developed an ad hoc estimator of nesting success that overcomes the bias associated with

estimates of apparent nesting success. His approach calculates the daily survival probability for only

the days that nests were under observation. Thus, the Mayfield model accounts for the fact that some

nests are not under observation starting with the day of nest initiation.

To see how Mayfield’s method works, consider the following example where 10 nests were found at

an age of 0 days, another 10 were found at an age of 14 days, and another 10 were found at an age of

28 days. After being discovered, each nest’s fate was checked every 7 days until it failed or reached an

age of 35 days. The dataset can be summarized in the following table, which tabulates the number of

nests in the sample that survived to a given age – for example, we see that among the 10 nests found at

age 14 days, 8 survived to 21 days (i.e., an additional week), 7 survived to 28 days (i.e., an additional 2

weeks), and so on:

initial sample

size

age of nest

when found

7

days

14

days

21

days

28

days

35

days

10 0 days 7 6 5 3 3

10 14 days 8 7 4

10 28 days 8

The next step is to run Mayfield’s calculations on the data. Key steps are to calculate (1) how many

nests were unsuccessful and (2) how many days nests were exposed to potential nest failure (termed

exposure days). The number of unsuccessful nests is easy and intuitive to calculate: (10 − 3) + (10 −

4) + (10 − 8) = 15 failed nests. Exposure days may be a bit less obvious, but here’s how it’s calculated.

All nests in this example were checked every 7 days. So, if a nest survived the interval between 2 visits,

it was exposed to potential nest failure on each of the 7 days between visits. Thus, each time a nest

survived a re-visit interval, we simply need to add 7 days to the total number of exposure days. For

nests found at an age of 0 days, nests survived a total of 24 7-day intervals (7+6+5+3+3),which yields

168 exposure days. For nests first found at an age of 14 days, nests survived a total of 19 7-day intervals

(8 + 7 + 4), which yields 133 exposure days. For nests first found at an age of 28 days, nests survived a

total of 8 7-day intervals, which yields 56 exposure days.

But, what to do with nests that failed between two nest visits? We don’t know when the failure

occurred and so don’t know how many days of exposure to use. Mayfield calculations typically use 1/2

the interval length in the cases of failures that occurred on an unknown date between two nest visits.

So, these calculations are pretty simple to make as well. We know that 15 nests failed and, because all

intervals in this simple example were 7 days long, each failed nest is assumed to have survived through

3.5 exposure days (one half of the 7-day interval). Thus, we need to add 52.5 exposure days (15 nests x

3.5 days per nest) to the total. Using the values we’ve just calculated, we see that 15 nests failed during a

total of 409.5 exposure days (total = 168+133+56+52.5).Thus, the Mayfield estimate of daily mortality
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probability for nests is (15/409.5), or 0.0366.The Mayfield estimate of daily survival probability is simply

one minus the daily mortality rate, or (1− 15/409.5) or (1− 0.0366) or 0.963. Mayfield’s ad hoc estimator

thus focuses on daily survival probabilities and circumvents the problems inherent in using apparent

nest survival probabilities.

Subsequent to Mayfield’s (1961, 1975) publications, a variety of authors published a maximum-

likelihood approach to estimating daily survival probabilities and nesting success for data from nests

that were visited periodically (Johnson 1979, Hensler and Nichols 1981, Bart and Robson 1982). The

method is based in statistical theory and provides estimates of the mean and variance of daily survival

rate. Thus,use of the maximum-likelihood estimator (MLE) of daily survival probability and its variance

is recommended over use of Mayfield’s ad hoc estimator despite the fact that they produce very similar

point estimates of daily survival (and are in fact the same estimator in the case where nests are visited

every day).

Let’s review some key points made in this chapter so far: we can’t validly use the proportion of

successful nests as a surrogate for true nest success so we want to use maximum likelihood estimates

of DSR and its associated variance instead. As we’ve seen in earlier chapters, program MARK is a

very useful tool for doing just this sort of thing. Once we have estimates of DSR, we can raise it to the

appropriate power (number of days it takes to go from nest initiation to nest completion [e.g., 35 days])

to estimate true nest success, e.g., 0.9635
= 0.2396. With estimates of the variance of DSR, we can also

estimate the variance of nest success (var(0.9635) = [(35×0.9634)2 × var(DSR)]. So, by this point we hope

you’re starting to see how program MARK might be useful. But, it gets better because program MARK

allows one to evaluate a rich variety of competing models of nest survival rate and go well beyond what

was possible with basic Mayfield estimation.

Next, we use data collected on Mallard (Anas platyrhynchos) nests in North Dakota to introduce the

analysis of nest-survival date in program MARK. This data set is part of a larger data set collected

and analyzed by Stephens (2003) and the same data set used by Rotella et al. (2004) in their example

analysis. It contains information from 565 nests that were monitored on 18 sites during a 90-d nesting

season. Nests of various ages were found during periodic nest searches conducted throughout the

nesting season. Once a nest was found, it was re-visited every 4 to 6 days to determine its fate (a binary

outcome). For each nest, several covariates of interest were measured: (1) the date the nest was found;

(2) the nest’s initiation date, which provides information about the age of the nest when it was found,

its age during each day of the nesting season, and its expected hatch date (35 days after nest initiation,

which is when young typically leave the nest in this species); (3) a measure of how much the vegetation

around the nest site visually obscured the nest; (4) the proportion of grassland cover on the 10.4-km2

study site that contained the nest; and (5-7) the habitat type in which the nest was located (3 indicator

variables, each coded as 0 or 1, that were used to distinguish among nests found in 4 different habitat

types: native grassland, planted nesting cover, wetland vegetation, and roadside right-of-ways).

18.1. Competing models of daily survival rate

Up to this point, we haven’t discussed competing models. We’ve simply focused on the idea that we

need to estimate daily survival rate (DSR) and can use program MARK to do so. But, typically we’re

interested in evaluating competing hypotheses about sources of variation in nest survival. DSR might

vary spatially due to changes in features such as habitat characteristics and predator communities. DSR

might also be hypothesized to vary temporally. For example, one might hypothesize for a given species

that nests are more vulnerable later in the nesting season as predators develop a search image for nests

and key into nests as food sources. Thus, DSR may be predicted to be relatively high early in the season,

to drop off in the mid-season, and to stay low late in the season. One might also be interested in changes

in DSR that are associated with changes in nest age. For a songbird that feeds young in the nest, one
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might hypothesize that DSR will be lower during the nestling stage, when parents make many foraging

trips per day to and from the nest to provide for begging young, than it will be during egg-laying and

incubation stages, when fewer cues are provided to predators. In a multi-year study, we might wonder

if DSR differs among years.

It seems safe to say that we can think of lots of possible sources of variation in DSR. So, it also seems

reasonable to say that we will want to be able build and evaluate competing models of DSR. This may

seem readily obvious, but it was only recently that methods were developed for evaluating multiple-

regression type models of DSR (Dinsmore et al. 2002; and, yes, these methods were first developed in

program MARK).

Most studies of nest survival haveused Mayfield’s ad hoc estimator of DSR or the maximum likelihood

estimator of Johnson (1979) or Bart and Robson (1982), and these methods assume that DSR is the same

for all nests on all dates and for all nest ages (nest fates are independent and identically distributed: iid)

within the sample. To attempt to meet the assumption of homogeneity of fates within a given sample,

one can stratify data prior to analysis and create sets for which fates can reasonably be considered iid.

For example, data can be analyzed separately for different nesting stages, habitats, years, species, or

combinations of these. However, such stratification can be limiting and may prevent researchers from

exploring the full suite of models that are likely of interest. This is especially difficult when some of the

multiple factors that are thought to affect DSR are measured oncontinuous rather than categorical scales.

Although one can certainly discretize continuous variables and convert them to categorical values, this

won’t always be desirable.

Fortunately, program MARK allows us to model DSR as a function of multiple covariates and to

compare competing models. But, before we can begin building models, we need to consider the data

input for nest-survival data. It turns out that there are a few unique features to this data type.

18.2. Encounter histories format

Minimally, four pieces of information are required for each nest: (1) the day of the nesting season on

which the nest was found; (2) the last day the nest was checked when alive; (3) the last day the nest

was checked; and (4) the fate of the nest (0 = successful, 1 = depredated). Program MARK uses these

key pieces of information to generate an encounter history for each nest in live/dead (LDLD) format (see

Chapter 2). Although you’ll never see the LDLD type encounter histories in program MARK for this data

type, we will explore them a bit more below as they can help us understand what’s taking place with

nest survival data.

The days mentioned above refer to standardized days within the study’s nesting season. These

standardized days are obtained by first calculating the earliest date on which you began recording

data on nest survival, treating this date as day 1 of the nesting season, and then sequentially numbering

all subsequent days for which you observed nests up to the last date of data collection. For the Mallard

data set used in this example, data collection began on 24 April and continued for 90 days. So, 24 April

was standardized as day 1 and the last day was day 90.

The next step is to create an encounter history for each nest based on the critical information described

above. In the mallard study, the first nest was found on day 1 (April 24)of the season with 1 egg. This nest

was observed periodically over the next 35 days and was successful. Thus, this nest had the following

encounter history:

/* 1 */ 1 35 35 0 1;

Here, the encounter history begins with a comment (/* 1 */) referring to the nest’s identification

number (this is quite handy when data checking but not essential to provide). The key information
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follows the comment: (1) first is the day the nest(s) was/were found, labeled time i; (2) next is the last

day the nest(s) was/were known to be present, labeled time j, which for successful nests should be the

day the nest attempt was successfully completed (as it is in this example); (3) then comes the last day

that the nest(s) was/were checked or, for successful nests, the day that the nest attempt should have been

successfully completed (as it is in this example), labeled time k; (4) next is the fate of the nest(s): 0means

successful, and 1means destroyed or unsuccessful; and (5) the last value is the number (frequency) of

nests that had this history (this will usually be 1 but doesn’t need to be if multiple nests have the same

encounter history).

Later in the study, a nest had this encounter history:

/* 1931 */ 63 81 85 1 1;

From this, we can see that this nest was found on day 63 of the nesting season, last known to be active

on day 81, and last checked on day 85. The nest was unsuccessful and was destroyed sometime between

day 81 and day 85.

You may have noticed that for successful nests, all the information about survival time is contained

in times i and j. If you did, you’re paying attention and you’re right. Time k is only used for unsuccessful

nests to bracket the interval when the nest was destroyed. Another point worth emphasizing is the fact

that dates j and k should not extend beyond the nest’s successful completion date even if the actual nest

check was done after the hatch date (or, in the case of nidicolous species with a nestling stage, beyond

the expected fledging date). If you put in the actual check dates rather than completion dates, you’ll

give the nest credit for surviving days when it was no longer subject to possible failure – definitely not

something we want to do.

The histories above could be extended to include individual covariates after the 5 required variables.

In the mallard example, the following covariates were added to the encounter histories: (1) a measure of

how much the vegetation around the nest site visually obscured the nest; (2) the proportion of grassland

cover on the 10.4 km2 study site that contained the nest; (3) an indicator variable that was coded as 1 if

the nest was in native grassland and 0 otherwise; (4) an indicator variable that was coded as 1 if the nest

was in planted nesting cover and 0 otherwise; (5) an indicator variable that was coded as 1 if the nest

was in wetland vegetation and 0 otherwise; and (6) the age of the nest on the first day of the nesting

season. Because the age variable is for the first day of the nesting season, this value will be negative for

all the nests in the sample except those that were initiated (started) on or before day 1.

Several items are noteworthy about the covariates. First, date, which may be of interest as a covariate

in some models, is incorporated into the required fields of the encounter history, and so, there is no

need to include date information elsewhere. One might, of course, wish to have a variable(s) for year of

study in a multiple-year study. Second, in this example, there were 4 habitat types of interest but only 3

indicator variables are included: the 4th habitat type (roadside right-of-ways) is indicated if all 3 of the

indicator variables have a value of 0. Third, the age variable as described above might seem a bit odd at

first glance. Why do we want to work with the age of each nest on the first date of the nesting season?

The short answer is it allows us to generate each nest’s age on every other day of the nesting season and

these are critical to have if we think that DSR might vary by nest age. A longer answer comes below

when we use the age variable in modeling.

Is that it for covariates? Well, no. As we’ve seen for some other data types, the encounter histories

are assigned to groups, so we could also group the data in various ways, which is another way of

incorporating a group covariate. Group covariates can also be incorporated through the design matrix

in ways that will be explained below.

In the mallard example, data were originally recorded in interval-specific form, i.e., each row of data

contained information for one observation interval for an individual nest. For the 2nd nest found in the
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study, the following rows of raw data were recorded (shown at the top of the next page).

Nest ID Species Study Site Habitat Code Obs t IFate SDate Sage Robel PpnGR

2 MALL 14 PICov 1 5 0 1 3 0.88 0.96

2 MALL 14 PICov 2 5 0 6 8 0.88 0.96

2 MALL 14 PICOv 3 4 0 11 13 0.88 0.96

2 MALL 14 PICov 4 6 1 15 17 0.88 0.96

Here the columns represent (1) the nest’s identification number, (2) a species code, (3) the study site,

(4) a habitat code, (5) a number indicating which observation interval is represented on this row for this

nest, (6) the number of days in the observation interval, (7) the nest’s fate for this observation interval

(0 = successful, 1 = failed), (8) the day of the nesting season at the start of the interval, (9) the age of the

nest at the start of the interval, (10) a measure of how much the vegetation around the nest site visually

obscured the nest, and (11) the proportion of grassland cover on the 10.4 km2 study site that contained

the nest.

The data for nest #2were re-formatted for analyses in MARK as:

/* 2 */ 1 15 21 1 1 0.88 0.96 0 1 0 3;

To create the actual input file for MARK, the data for each nest to be used in the analyses must

be formatted appropriately. In addition, the first non-comment line of the file needs to consist of the

statement ‘Nest Survival Group=1 ;’. Following this command are the data for all of the nests in the

1st group. When this is done for the mallard data, the first portion of the encounter history file appears

as follows:

Nest Survival Group=1;

/* 1 */ 1 35 35 0 1 4.500 0.9600 0 1 0 1;

/* 2 */ 1 15 21 1 1 0.875 0.9616 0 1 0 3;

/* 4 */ 1 11 15 1 1 2.750 0.9616 0 1 0 3;

/* 5 */ 1 31 33 1 1 3.375 0.9616 0 1 0 3;

Note: The MARK help file, and Chapter 2 of this book, contains much useful information about how to

build the encounter history file. It is definitely worth taking the time to review the information provided.

18.3. Nest survival, encounter histories, & cell probabilities

In MARK, the data type for the encounter history is LDLD (although you won’t code it this way in the

INP file - MARK will handle this for you). The cell probability is modeled as the product of the survival

probabilities from time i to time 9− 1. For successful nests, i.e., fate=0, the last time seen alive (j) and the

last time (k) should always be the same and equal to the day the nest attempt was completed (which

may be hatch date for species with precocial young, or fledging date for species with altricial young).

For unsuccessful nests, fate> 0, 9 < :.

For successful nests, time k is ignored. For situations where the date of hatch is not known exactly,

none of the times should exceed the potential nest completion date, because the nest should not be
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considered at risk of failure when a nesting attempt has already been completed. For unsuccessful

nests, the cell probability for the nest is taken as the product of the survival rates from time i to time

9 − 1, times 1 minus the product of survival from j to : − 1.

The following series of examples for 5 occasions will clarify how to code nest survival data with the

triplet i, j, and k.

triplet history and interpretation

8 = 1, 9 = 3, : = 5, 5 0C4 = 1 1010100001, with cell probability (1(2(1 − (3(4)

8 = 1, 9 = 3, : = 3, 5 0C4 = 0 1010100000, with cell probability (1(2

8 = 1, 9 = 3, : = 3, 5 0C4 = 1 invalid, because the nest was observed both present and

destroyed on day 3

8 = 1, 9 = 1, : = 3, 5 0C4 = 1 1000010000, with cell probability 1 − (1(2

8 = 1, 9 = 1, : = 3, 5 0C4 = 0 invalid because the nest was observed present only on day

8 = 1. If the nest was still present on day 3, then 9 should

have been coded as 9 = 3

8 = 1, 9 = 3, : = 5, 5 0C4 = 0 partially invalid because the nest was observed for the

interval 1 to 5, when the nest was successful, but the coding

shown will only use the data from 1 to 3,giving 1000100000,

with cell probability (1(2. For 5 0C4 = 0, 9 = :

8 = 3, 9 = 3, : = 3, 5 0C4 = 0 >A 1 invalid because the nest was not observed over an interval

for either fate

The key difference between known-fate (discussed in the preceding chapter) and nest survival data

types is that with nest survival data, we don’t know exactly what day the nest was destroyed for cases

where the nest was unsuccessful. Thus, consider the cell probability for the following:

/*GGOO, 1995-076*/ 53 59 63 1 14;

This nest was found on day 8 = 53, checked and found still present on day 9 = 59, and found destroyed

(i.e., failed) on day : = 63. The last variable (an individual covariate) in this example is the age of the

nest at the time it was first found – 14 days old for the first nest.

The cell probability corresponding to this nest would look like:

(53(54(55(56(57(58

(

1 − (59(60(61(62

)

The first portion of the expression models the survival of the nest from day 8 = 53 to day 9 = 59. The

second portion of the expression, in brackets, models the failure of the nest during the interval from day

9 = 59 to day : = 63. That is, had the nest been successful during this interval, the probability would

have been (59(60(61(62. Because the nest was destroyed at some time during that interval, this quantity

is subtracted from 1. The complete encounter history for this example would consist of 52 pairs of ’00’,

followed by the following string with blanks inserted to delimit occasions denoted on the second line:

10 00 00 00 00 00 10 00 00 01

53 54 55 56 57 58 59 60 61 62
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Needless to say, having to write this out in full on your own would be a rather tedious exercise.

Fortunately, MARK handles all of this for you ‘behind the scenes’. But, it is important to understand

how the probability statements are created.

begin sidebar

Effective sample size and nest survival analyses

The effective sample size for AIC2 is computed somewhat differently for the nest survival model than

other models in MARK. Typically, each binomial trial in a model provides one degree of freedom. For

the nest survival model, each day that the nest is known to survive contributes 1 degree of freedom

because each day is a binomial trial where the result is known. However, the interval in which a nest

fails only contributes 1 degree of freedom also, because the exact day of failure is not known, but only

that the nest failed during the interval.

Thus, a record like

/*YGBB, 1995-074*/ 44 55 55 0 1 18;

contributes 10 degrees of freedom, because there are 10 binomial trials where the nest was known to

succeed. However, the following record only contributes a single degree of freedom, because the nest

failed somewhere in the interval 58-61.

/*WGGW, 1995-078*/ 58 58 61 1 1 18;

end sidebar

18.4. Building models

Here we introduce the steps for fitting nest survival models in MARK. First, we create a new MARK

database file from your nest-survival encounter history file using the ‘File | New’ menu option. Choose

the ‘Nest Survival’ data type and enter the required information. For our mallard example, we have a

90-occasion study (data were collected across 90 days), 1 attribute group, and 6 individual covariates.
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If you’d like, you can enter names for the individual covariates. As we have 6 that we’ll use in the

model-building exercises below, it’s probably best to name them. So, choose to ‘Enter Individual

Covariate Names’ and enter the following: Robel, PpnGrass, Native, Planted, Wetland, and AgeDay1.

Model 1: Constant Daily Survival Rate

Now that we have created a new database, we’ll start our model building with the simplest model, the

maximum likelihood version of the Mayfield model. Remember, in this model, we assume that all nests

in the sample under consideration have the same DSR on every day. So, we simply need to constrain

DSR accordingly.

This can be done with the PIM chart, the survival PIM window, or by choosing to run the appropriate

pre-defined model, which is listed appropriately as the S(.)model (although, again – as noted before,

we do not favor relying on pre-defined models – they’re available in MARK to expedite analysis of

common models, and should only be used if you have a firm grasp on what you’re doing).

begin sidebar

PIMs and nest survival

This brings up a question: how many PIMs are there for this nest survival dataset? Well, it turns out

that there is only one. That’s right: we’ve only got one group, and there are no parameters other than

survival (DSR) to estimate for this data type. It also brings up the question of how many cells there are

in the PIM. For this dataset, there are 90 encounter occasions and thus, there are 89 cells in the PIM to

estimate the survival probabilities across the 89 intervals. Unfortunately, for this example, the PIM is

so wide we can’t show you the whole thing – but, try it yourself.

end sidebar

OK, back to model building. To set up this model using the PIM window, simply set all the values in

the PIM to 1, which, of course, is the ((.) model we’re after here. The easy way to set all the values to 1

is to right-click the PIM window, and select ‘Constant’.

Next, go ahead and run this model. You might name the model something like ‘Constant DSR’ or
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‘B0’ (as it is an intercept-only model, and we usually denote the intercept as �0 or �1 (depending on

your convention), or ‘B0’ or ‘B1’in ASCII, respectively. Here we will use �0 for the intercept.). Be sure to

turn off the option ‘Standardize Individual Covariates’, because this option is not needed for these

data (i.e., the covariate values are scaled to not produce numerical problems), and because we will not

want to scale the AgeDay1 variable in a future analysis. So, to maintain compatibility of the models, we

uncheck the ‘Standardize Individual Covariates’ box.

Once the model has run, you can examine the real parameter estimates whereupon you’ll see the

following:

This is the estimate of DSR when DSR is constrained to be constant across all nests and all dates in

the sample. For mallards, it is typically considered that a nest must survive 35 days in order to make

it from the 1st day of egg laying to nest completion, which is the day the young leave the nest. So, you

could raise the estimated DSR to the 35th power to obtain a point estimate of nest success, which is

0.184.

Model 2: DSR Varies by Habitat Type

Often there is interest in whether or not DSR varies among nests found in different habitat settings.

Although there are certainly many metrics that can be used to describe the habitat conditions associated

with a nest, researchers often categorize habitat conditions and use a metric such as habitat type. In

the study of mallard nests, the researchers used 4 habitat types, which you’ll remember were described

using 3 dummy variables as individual covariates. To build a model that allows DSR to vary by habitat

type, you’ll need to use the design matrix and the individual covariates that tell MARK which habitat

type each nest was in. The following design matrix (top of the next page) can be used.
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begin sidebar

DM, groups and nest survival

If you have experience using groups in MARK, you may recognize that encounter histories for nests in

different habitats could be put in different groups. If this were done,you would have a different PIM for

DSR for each group and could evaluate a model that allows DSR to vary among habitat types without

using a design matrix. In this example, all of the data were entered in a single group, the habitat type

associated with each nest is input as an individual covariate, and the design matrix is used to build

models in which DSR is allowed to vary among habitat types. The modeling results obtained will be

the same regardless of whether habitat type is input using different groups or individual covariates.

end sidebar

Once you’ve specified the design matrix appropriately, you’re almost ready to run this model. When

you name the model, you might call it ‘Habitat Type’ or, in keeping with the naming strategy used

in the previous model, you might call it ‘B0 + B1 x Native + B2 x Planted + B3 x Wetland’. Once

again, be sure to turn off the option ‘Standardize Individual Covariates’, because this option is not

needed for these data. Next, you need to think through which habitat you’d like the estimates of the real

parameters to be for. One easy way to control this is by specifying that you want to use ‘User-Specified

Covariate Values’ (check the button in the lower right corner of the setup window. For more on this

topic, look in the MARK help file under ‘Individual Covariates and Real Parameter Estimates.’).

Let’s assume for now that you want to get estimates for Native vegetation (we’ll get estimates for

other habitat types later). Specify that you want to estimate the real parameters when Native = 1, i.e.,

when the habitat type is native grassland. For this model, all other parameter values can be left as 0:

values for Robel, PpnGrass, and AgeDay1 are ignored as they’re not in the model; values for Planted and

Wetland need to be 0 to ensure we’re only estimating DSR for nests in Native.
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We want to know the habitat-specific estimates of DSR. To get those, we’ll need to run the model 3

more times and choose to base the real parameter estimates from user-specified covariate values. When

you run this model, you’ll see that (1) the results for this model suggest that the simpler intercept-only

model (our ‘S(.)’ or ‘B0’ model) is more appropriate and (2) the estimate of DSR for native grassland

is 0.946 (SE = 0.005). Now, you can re-run the model 3 more times: setting ‘Planted=1’ and all other

variables to 0 on one run, setting ‘Wetland=1’ and all other variables to 0 on another run, and then finally

running the model with all variables set to 0. What will this last model run allow us to estimate? If you

figured out that this will allow you to obtain an estimate for roadside habitat (i.e., the habitat that a nest

is in for this example if it’s not in planted cover, native cover, or a wetland), then you’re getting this (or

this is old hat to you and you might consider reading something else!).

Notice that you don’t want multiple versions of this same model sitting in the results browser as

they influence the model weights. But, you may want to look at each and see what the habitat-specific

estimates ofDSR are (Native: 0.946 [SE = 0.005];Planted: 0.956 [SE = 0.003];Wetland: 0.951 [SE = 0.011];

and Roadside: 0.956 [SE = 0.009]).

You now see how MARK can be used to evaluate basic models of DSR using maximum likelihood

estimation and AIC. This alone would make MARK a very useful tool for analyzing nest survival data.

However, we can do much more. To showcase a few of the other types of models that can be run, we’ll

now explore models that allow DSR to vary based on factors such as habitat metrics measured on a

continuous scale.

Model 3: DSR varies with vegetation thickness (continuous covariate)

The input file contains an individual covariate labeled Robel (a continuous measure of how much the

vegetation around the nest site visually obscured the nest). One way to evaluate whether DSR varies

with Robel is to use the following design matrix:

When this model is run (you might call it ‘B0 + B1 x Robel’), you find that this model receives less

support than the simpler intercept-only model (our S(.)model).
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Model 4: DSR varies with the amount of native vegetation in the surrounding area

The input file contains an individual covariate labeled PpnGrass,which you may recall is a continuous

measure of the proportion of grassland cover on the 10.4 km2 study site that contained the nest. Given

interest in relationships between nest survival and spatial features of vegetation, models containing

such covariates may be of interest in some studies. And, as you can probably now readily envision,

such models are readily evaluated in MARK.

You can use the design matrix to build a model containing PpnGrass and if you do, you will find that

this model receives more support than any of the models discussed so far. In fact, there is evidence that

DSR is higher on sites that contain more grassland cover than on sites with less cover.

But, we’ll assume that we have other a priori models that are of interest and will run them all before

getting into the details about inferences that can be drawn from the analysis.

Model 5: DSR varies across the nesting season

One might predict that nests will be more or less vulnerable as the season progresses. Changes

might be predicted to occur because the abundances of predators and alternate prey are thought to

vary seasonally or because vegetation characteristics may change dramatically over the course of the

season in some habitat settings. Certainly other interesting hypotheses might exist as well. For now,

let’s just evaluate a model that constrains DSR across the nesting season such that it is forced to follow

a trend (a linear trend on the logit scale).

To build a trend model, go ahead and open the PIM window and set the values to all different (i.e., so

that the values in the 89 cells of the PIM take on the values 1, 2, 3, . . . , 89). Next, open a reduced design

matrix with 2 columns. Now, because our PIM had 89 parameters, the design matrix has 89 rows and 2

columns. Fill the first column in with 1’s (we want to estimate a � term for our intercept) and the second

column in with numbers running from 1 to 89 (we want to estimate a � term for a slope indicating how

the log-odds of DSR change with increasing season date; log-odds are discussed in Chapter 6).

Go ahead and run this model (you might call it ‘B0 + B1 x Date’). You can see that there’s not

much support for this model and that the real estimates don’t indicate any large changes in DSR over

the season. Even though in this case we don’t see much seasonal variation in DSR, you can probably

envision how this model might be of interest in other studies. Also, you might also be interested in

pursuing curvilinear versions of this model (e.g., a model with a quadratic term) where the middle

of the nesting season is expected to have the highest (or perhaps the lowest) DSR. If you did want to

evaluate a quadratic term you would create a third column in the design matrix and fill it with the

squared values of 1, 2, 3, . . . , 89, which, of course, are 1, 4, 9, . . . , 7921.‗

‗ An easy way to do this is to build an Excel spreadsheet that has columns containing the values and to copy and paste them
into the design matrix in MARK.
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Model 6: DSR varies with nest age

One might predict that nests will be more or less vulnerable as they age. This could be of interest

because the species is known to provide predators with fewer and fewer cues each day as the nest ages.

Perhaps this occurs because the species is known to increase nest attentiveness and to take fewer breaks

from incubation as hatching nears. In contrast, in other species, one might predict that DSR is lower

later in nesting when nestlings and feeding of nestlings may provide more cues to predators. Obviously,

the predictions will vary by species. Regardless, we can use MARK to model a variety of models that

allow DSR to vary with nest age.

Let’s examine a simple model that allows DSR to follow a trend in accordance with nest age. To build

this model, we first need to let DSR be different on each day of the nesting season. To do this, we once

again need a PIM that is numbered from 1 to 89. Next, open a design matrix with 2 columns. Fill the

first column of the design matrix with 1’s (our intercept). Now for something that is new, at least in

this chapter. We want to build a model that contains each nest’s age on each day of the nesting season.

Fortunately, we have the covariate AgeDay1, which you may recall tells us the age of the nest on the 1st

day of the nesting season (a negative value for most of the nests!). We will now use this covariate and

one of MARK’s handy design matrix functions to fill in our design matrix.

In the MARK help file (or in Section 11.4 of Chapter 11 of this book), you should read over the

section on design matrix functions – you can find it by searching for ‘Design Matrix Add and Product

Functions’ in the helpfile index. We will use the ‘add’ function, which not surprisingly is a function

that adds 2 arguments together.

To create an individual covariate that is each nest’s age on each day of the nesting season, we will

start with AgeDay1 and simply add 0 to it on the first day of the nesting season, 1 to it on the 2nd day

of the nesting season, 2 to it on the 3rd day of the nesting season,. . ., and 88 to it on the 89th day of the

nesting season. The actual function takes the form ‘add(argument1,argument2)’ where the 2 arguments

in this case are AgeDay1 and a continuous string of discrete numbers from 0 to 88. Some of you may be

concerned about the fact that negative values were entered for most nest ages on day 1 of the nesting

season. But, the negative values are never actually used to compute a survival, because a nest doesn’t

enter the likelihood until the ‘add(AgeDay1,x)’ value is zero, assuming that the correct age on day 1

(i.e., the correct negative value) has been entered. This business of adding to a negative age may be

conceptually difficult at first but it does work!

The completed design matrix appears as follows:

Go ahead and run this model (you might call it ‘B0 + B1 x Nest Age’). Be sure to uncheck the

‘Standardize Individual Covariates’ box, because otherwise the adding of the values in each row

of the design matrix will not perform as you are expecting. You’ll see that the results indicate that DSR

might vary with nest age. But first, we might just want to run a few models that consider multiple

Chapter 18. Nest survival models



18.4.1. Models that consider observer effects on DSR 18 - 15

covariates at once.

Note that you can also construct a model with age in a quadratic (or higher power function). Simply

add a third column to the design matrix, and enter ‘power(add(AgeDay1,0),2)’ in the 1st row of the

3rd column, ‘power(add(AgeDay1,1),2)’ in the 2nd row of the 3rd column, and so on, ending with

‘power(add(AgeDay1,88),2)’ in the 89th row of the 3rd column. (As noted above, in both Chapter 11 of

this book and in MARK’s help file for design matrix functions, there are instructions for how to create

such a column efficiently in Excel using Excel’s ‘concatenate’ function).

Model 7: models with multiple covariates

Let’s imagine that the researchers had predicted a priori that DSR might vary with nest age and each

of the various habitat measures (Habitat Type, Robel, and PpnGrass). So, let’s build 3 more models by

simply adding to the design matrix used for the ‘B0 + B1 x Nest Age’ model. We can do this using

the ‘Add Column’ function (or the combination of the ctrl key and the ‘A’ key) while the design matrix

window is active.

Let’s go ahead and run these 3 models and call them: (1) ‘B0 + B1 x Nest Age + B2 x Robel’, (2) ‘B0

+ B1 x Nest Age + B2 x PpnGrass’, and (3) ‘B0 + B1 x Nest Age + B2 x Native + B3 x Planted +

B4 x Wetland’.

It seems pretty clear that it’s worth considering nest age and that PpnGrass appears to be important

as well. We’ll look at the details of model results a bit more below, but first, let’s consider another factor

possibly affecting DSR that one might want to investigate.

18.4.1. Models that consider observer effects on DSR

Although we won’t go into all the details here, it seems worth pointing out that MARK also allows

one to readily evaluate possible effects of observer visits to nests on DSR if the appropriate information

is entered in the encounter history. In the case of the mallard study, 89 individual covariates could be

added to the encounter history that simply are coded as 0 or 1 and that indicate whether a nest was

visited on each day of the nesting season or not. These 89 covariates might be called something like

VisitDay1, VisitDay2,. . ., VisitDay89. The idea being that we could then build a design matrix that

modeled DSR as a function of whether or not a nest was visited on a given day.

For example, if these covariates were included in the dataset, you could build a design matrix like

the one shown at the top of the next page.
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Further, you could include consideration of nest visits at the same time that other covariates were

also considered. In cases where there is concern that nest visits may affect DSR on the day of the visit,

such models may be of considerable interest. Other versions of such models could be built to consider

more complex effects of visits on DSR, e.g., effects that are strongest immediately after a visit but that

persist for multiple days.

Also recognize that you definitely do not want to use the ‘Standardize Individual Covariates’

option with the model shown in the above design matrix. If you were to standardize the individual

covariates, each of the 89 variables VisitDay1 through VisitDay89 would be standardized differently,

and as a result, the model would be nonsense. That is, the �8 value (�2) would be multiplying variables

with different meanings in each row. So, by not standardizing the individual covariates, the meaning

of VisitDay1 is the same as the meaning of VisitDay2, etc.

18.5. Model results

The most parsimonious model of DSR included Nest Age and PpnGr. This model was 1.06 AIC2 units

better than the second-best model, which included Nest Age but not PpnGr, and was > 2.90 AIC2

units better than all other models evaluated. Models that held daily survival probability constant or

simply allowed it to vary by habitat type, i.e., the only model types that have been used in many recent

publications on nest survival, received little support (ΔAIC2 > 6.11). The best model indicated that DSR

increased with nest age (�̂ = 0.0188, SE = 0.008) and grassland extent (�̂ = 0.369, SE = 0.211), as can be

seen in the following graphic:
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Note: individual covariate values were not standardized in the analysis that produced these estimates so

that actual nest ages and levels of PpnGrass could be used when producing the estimates; convergence

was not problematic here.

When the logit link is used, our estimate of DSR for any combination of nest age and PpnGrass is

simply
exp

(

�0 + �1(Nest age) + �2(PpnGrass)
)

1 + exp
(

�0 + �1(Nest age) + �2(PpnGrass)
)

So, for example, the estimated DSR for age=15:

So, the estimates presented in the figure can readily be obtained by substituting in the estimates of

the �’s and various values of nest age and PpnGrass.

Of course, one would want to see some measure of uncertainty on these graphs as well. So, it is worth

considering how we can obtain estimates of the SE associated with various estimates of DSR. This is a bit

more complicated because now there are 3 estimated �’s and an associated (3 × 3) variance-covariance

matrix for those estimates.

One method of incorporating the variances and covariances associated with the 3 �’s is the ‘Delta

method’ (Seber 1982). Although we won’t go into the use of the Delta method in this chapter (it is

described in detail in Appendix B‗), the figure (above) provides estimates of DSR and 95% confidence

intervals estimated by the Delta method for 15-days-old nests for different levels of PpnGrass.

18.6. Individual covariates and design matrix functions

In chapter 11 (section 11.4) we introduced several special functions that you can use in the design matrix,

to make it easier to build specific models. These functions are especially useful for building complex

models involving individual covariates. In Chapter 11 (section 11.4), there is a fairly comprehensive

review of how to use several of these (specifically, the add and ge function) for a nest survival analysis

‗ Complete details for the construction of CI for parameter estimates that are functions of covariates can be found in Chapter 6,
and Chapter 11.
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which has fairly common design considerations.

18.7. Additional applications of the nest success model

Another application of the nest success model is to estimate the survival of radio-tracked animals when

the animals are not monitored in discrete intervals, as required by the known-fate data type (see the

preceding chapter on known-fate analysis). Consider that such data are no different than a set of nests

where all the nests are not visited on the same day. A DSR is estimated for each day of the study based

on the sample of animals available on that day, and the exact day of death is not required (just as the

exact day that a nest was destroyed is not known). We call these kinds of data ‘Ragged Telemetry Data’

because the sampling scheme is ragged, but useful estimates can still be obtained.

18.8. Goodness of fit and nest survival

Like the known fate data type, the saturated model for the nest survival data type is a useful model.

Because the saturated model fits the data perfectly, there is no GOF test provided in Program MARK.

However, a goodness of fit test for nest survival data was developed recently by Sturdivant et al. (2007),

and it can be implemented with published SAS code, but not in MARK. Additional details, including

code and sample datasets, can be found at: http://www.montana.edu/rotella/nestsurv/.

18.9. Summary

For nest survival data,Program MARK provides an excellent alternative to traditional constant-survival

methods that have been used in most studies of nest survival to date. The methods shown in this

chapter (1) can be used to conduct analyses of stratified data (appropriate if the simplifying assumptions

of constant survival apply) and provide estimates that are almost identical to Mayfield estimates (or

various refinements), (2) permit comparisons of survival probabilities among groups, (3) allow a much

broader variety of covariates and competing models to be evaluated, and (4) should be employed in

most nest-survival studies. It is worth noting that these methods can also be used for analyzing survival

data collected from radiomarked individuals using ragged (uneven) intervals among animals and over

time. The MARK help file provides more comments on this topic.

Despite these advances, further analysis improvements would be useful. Improved methods of

estimating goodness-of-fit and for detecting and estimating overdispersion, or extra-binomial variation,

would be useful given that a variety of factors may cause overdispersion. Nest-success data are com-

monly collected according to multilevel designs that result in grouped data, e.g., multiple observations

on at least some nests, multiple nests per site, and multiple sites within each year. Thus, undetermined

random effects of individuals, sites, and years could cause overdispersion or within-group correlations

in daily survival probabilities, e.g., nest fates from multiple nests from within a colony or from a given

study plot may not be independent. In addition, the spatial clustering of covariate levels could generate

spatial correlation in nest survival rates and thus cause overdispersion. The random-effects model

described by Rotella et al. (2004) can estimate random effects due to one source, e.g., site.

However, even these methods do not accommodate multi-level nonlinear mixed models (e.g., some

random effects associated with site, some associated with year, and others associated with individual

nests),although,as mentioned above, they will be of interest in some studies (note: This is a good example

of a situation where the MCMC tool in MARK could be used, but further discussion of that complex

topic is beyond the scope of this chapter). Finally, in some studies, uncertainty will exist about nest ages
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and when transitions among nest stages occur (Williams et al. 2002). This problem has been addressed

for stratified data (Stanley 2000, 2004) but not yet for data with more complex covariates.
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