
CHAPTER 15

Closed population capture-recapture models

Paul Lukacs, University of Montana

A fair argument could be made that the marking of individuals in a wild population was originally

motivated by the desire to estimate a fundamental parameter: abundance (i.e., population size). By

comparing the relative proportions of marked and unmarked animals in successive samples, various

estimators of animal abundance could be derived. In this chapter, we consider the theory and mechanics

of estimation of abundance from closed population capture-recapture data, using program MARK.‗

Here, the population of interest is assumed to be closed geographically – no movement on or off the

study area – and demographically – no births or deaths.

15.1. The basic idea

How many individuals are there in the sampled population? If the population is (or assumed to be)

closed, then the numberof individuals in the population being sampled is a constant over time. Meaning,

the population size does not change at each sampling event. With a little thought, you quickly realize

that the canonical estimate of population size is a function of (i) how many unique individuals are

encountered over all sampling events, and (ii) what the probability is of encountering an individual at

least once. For a single sampling event, we can express this more formally as

#̂ =
=

?̂
,

where the numerator (=) is the number of unique individuals encountered, and the denominator (?) is

the probability that any individual will be encountered.

This expression makes good intuitive sense. For example, suppose that you capture 50 individuals

(= = 50), and the encounter probability is ? = 0.5, then clearly, since there is a 50:50 chance that you

will miss an individual instead of encountering it, then

#̂ =
=

?̂
=

50

0.5
= 100.

‗ Prior to MARK, program CAPTURE was a widely used application for closed population abundance estimation. All of the
likelihood-based models from CAPTURE can be built in MARK, plus numerous models that have been developed since then.
Further, there are some important differences between MARK and CAPTURE: (i) for likelihood-based models, CAPTURE
returns the estimate from the integer, and not the floating point value that maximizes the likelihood; (ii) all of the heterogeneity
models in CAPTURE (except "1ℎ) are not likelihood based, so will give quite different estimates than those from MARK.
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15.1.1. The Lincoln-Petersen estimator – a quick review

The most general approach to estimating abundance, and ?, in closed populations is based on what is

known as the Lincoln-Petersen estimator (hereafter, the ‘LP’ estimator). The LP estimator is appropriate

when there are just two sampling occasions, and the population is closed between the two occasions.

Imagine you go out on the first occasion, capture a sample of individuals, mark and release them

back into the population. On the second occasion, you re-sample from (what you hope is) the same

population. In this second sample, there will be two types of individuals: those that are unmarked (not

previously captured) and those with marks (individuals captured and marked on the first occasion).

The basic sampling structure is shown in Fig. (15.1).

marked ( )n1

previously
marked ( )m2

first
sample marked ( )n1

second
sample

total
population

sampling
occasion 1

sampling
occasion 2

Figure 15.1: Schematic representation of the LP sampling scheme. The entire left-most vertical bar (the sum of
light- and dark-grey areas) represents the total population, N. The light-grey represents the proportion of the
total population that is sampled on the first sampling occasion. The number encountered, and marked, during
this first sample, is =1. The middle bar is the same population at the time of the second sample, with the same total
abundance,N,which we assume is constant between sampling occasions. During the second sample, indicated as
the proportion of the total population bounded by the dashed-line box, some of the =2 total sampled individuals
are newly encountered – dark-grey – while some (<2, the light-grey portion) were previously encountered.
Adapted from Powell & Gale (2015).

We develop the LP estimator by noting that the proportion of marked animals in the population

after the first sample is simply =1/# , where # is the size of the population (and which, of course, is

what we’re trying to estimate). Note that the numerator of this expression (=1) is known, whereas the

denominator (#) is not. In the second sample (Fig. 15.1), the ratio of the previously marked to the total

number of individuals sampled is, simply, <2/=2.

Now, the key step, based on the following assumption – we assume that all individuals (marked or

not) are equally catchable (meaning, we assume random mixing of marked and unmarked after the first

sample). Under this assumption, then this proportion of previously marked individuals in the second

sample should be equivalent to the proportion of newly marked individuals in the first sample:

<2

=2

=
=1

#
.
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Next, a little algebraic rearrangement of this equation, and we come up with the familiar LP estimator

for abundance, as

#̂ =
=1=2

<2

.

We might also use the canonical form noted earlier, where abundance is estimated as the count

statistic divided by the encounter probability:

#̂ =
=

?̂
.

If =1 is the number of animals caught and marked at the first sampling occasion, and if <2 is the

number of the animals caught in both occasions, then assuming that (i) all =1 individuals are alive and

in the sample at occasion 2, and (ii) that marked and unmarked individuals have the same probability

of detection, then the probability of encountering any of those =1 marked individuals is

?̂ =
<2

=2

.

Thus, the ratio of the count statistic to the detection probability is the Lincoln-Petersen estimator:

#̂ =
=1

?̂
=
=1=2

<2

.

15.2. Likelihood

While the ‘algebraic’ (LP) estimator for # developed in the preceding section is simple, reasonably

intuitive and undoubtedly quite familiar, here we consider a more formal approach, based upon

maximum likelihood estimation.

15.2.1. Full likelihood approach

We start by re-visiting the simple two sample study we used to motivate the LP estimator introduced

in the previous section. For such a study, there are only 4 possible encounter histories: ‘11’, ‘10’, ‘01’,

and ‘00’. The number of individuals with encounter history ‘00’ is not known directly, but must be

estimated. So, the estimation of abundance proceeds by using the number of individuals observed who

were encountered at least once.

We can express the probability distribution for =1, =2, and<2, given the A (total) observed frequencies

of the 3 observable encounter histories ( ‘11’, ‘10’ and ‘01’), as

%
(
=1, =2, <2

�� #, ?1 , ?2

)
=

# !

<2!
(
=1 − <1

)
!
(
=2 − <2

)
!(# − A)!

×
(
?1?2

)<2
[
?1

(
1 − ?2

) ] (=1−<2)
[ (

1 − ?1

)
?2

] (=2−<2)
[(

1 − ?1

) (
1 − ?2

) ] (#−A)
.

Two important things to note in this expression. First,# appears in the multinomial coefficient of the

likelihood function. Second, the probability expression is written including a term for each encounter

history, and with the exponent representing the number of individuals with a given encounter history
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(expressed in the standardnotation introducedearlier). Forexample, the probability of encounterhistory

‘11’ is ?1?2, the probability of encounter history ‘10’ is ?1(1 − ?2), and so on.

Note also that the encounter history representing individuals that were never caught (i.e., ‘00’ for a

two occasion case) also appears (as the final term) in the likelihood (but not in the encounter histories

file – since (obviously) there are no data for individuals that were never captured!).

More generally, we can write the likelihood as

L
(
#, p

�� data
)
∝

# !

(# −"C+1)!

∏

ℎ

%[ℎ]=ℎ · %[not encountered]#−"C+1 ,

where p is the vector of encounter probability parameters, "C+1 is the number of unique animals

encountered (i.e., A in the expression on the previous page), and =ℎ is the number (frequency) of

individuals with encounter history ℎ.

Now, it is possible to rewrite the likelihood in terms of the number of individuals never caught, 50,

such that 50 = # −"C+1 (the notation ‘ 50’ originates from the frequency (count) of animals observed 0

times). The likelihood now becomes

L
(
50 , p

�� data
)
∝

( 50 +"C+1)!

50!

∏

ℎ

%[ℎ]=ℎ · %[not encountered] 50 .

The 50 parametrization is useful computationally because 50 is bounded on the interval [0,∞], thus

forcing the logical constraint that #̂ ≥ "C+1. In fact, MARK uses the 50 parametrization for ease of

computation by using the log link function to constrain 5̂0 ≥ 0, but presents the results in terms of #̂

as a derived parameter (i.e., #̂ = 5̂0 +"C+1 and v̂ar [#̂] = v̂ar [ 5̂0]).

The fact that MARK uses 50, the number of individuals never caught, in the likelihood has important

implications you must keep in mind. Consider a study with two different sites (say, sampling plots) –

you may be interested as to whether or not there is a difference between sites in abundance. How would

you build a model where (say) you set #̂1 = #̂2? Answer – you can’t. You can only apply constraints to

parameters that are included in the likelihood. Abundance # isn’t in the likelihood, so you can’t build

models that constrain # .

But, #̂ = 5̂0 + "C+1, and since "C+1 is a constant, then #̂ ∝ 5̂0. So wouldn’t constraining 5̂0 be

equivalent to constraining #̂? If you think about it for a moment, you should realize the answer is ‘no,

this is generally not reasonable’. Why? Consider setting 5̂0,1 = 5̂0,2. This is easy enough to do in MARK,

but, does it really make sense to say that ‘the number never caught is the same in the 2 locations...’?

Probably not. So, in short, you cannot constrain # in any meaningful way. [But, that doesn’t mean

you can’t address the question of whether or not abundance differs between groups – we address one

approach in Addendum 1.]

15.2.2. Conditional likelihood

It is sometimes convenient to use a conditional likelihood approach to estimating abundance, where #

(or, equivalently, 50) is not a parameter in the likelihood. This is possible if you ‘condition’ the analysis

only on those individuals which are encountered (i.e., A).

Recall that the probability that any individual in the population is encountered at least once during

a two-sample study is

?∗ = 1.0 − (1 − ?1)(1 − ?2).
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Thus, we can re-write the conditional probability expression for the capture histories as

%
(
{G8 9}

�� A, ?1 , ?2

)
=

A!

G11!G10!G01!
×

(
?1?2

?∗

)G11
(
?1

(
1 − ?2

)

?∗

)G10
( (

1 − ?1

)
?2

?∗

)G01

.

The ML estimates for this model are again fairly easy to derive (see Williams, Nichols & Conroy 2002

for the details).

The primary advantage of using this conditional likelihood approach is that individual covariates can

be used to model the encounter process. Individual covariates cannot be used with the full likelihood

approach introduced in the preceding section, because the term (1 − ?1)(1 − ?2) . . . (1 − ?C) is included

in the likelihood, and no covariate value is available for animals that were never captured.

In contrast, the conditional likelihood approach conditions this multinomial term out of the likeli-

hood, and so an individual covariate can be measured for each of the animals included in the likelihood.

When individual covariates are used, a Horvitz-Thompson estimator is used to estimate # :

#̂ =

"C+1∑

8=1

1

1 −
[
1 − ?̂1(G8)

] [
1 − ?̂2(G8)

]
...

[
1 − ?̂C(G8)

] .

An example is perhaps the best way to illustrate the difference between the full and conditional

likelihood approaches. Consider the 4 possible encounter histories for 2 sampling occasions:

encounter history probability

11 ?1?2

10 ?1

(
1 − ?2

)

01
(
1 − ?1

)
?2

00
(
1 − ?1

) (
1 − ?2

)

For each of the encounter histories except the last, the number of animals with the specific encounter

history is known. For the last encounter history, the number of animals is 50 = (# − "C+1), i.e., the

population size (#) minus the number of animals known to have been in the population ("C+1).

The approach (first described by Huggins 1989, 1991) was to condition this last encounter history out

of the likelihood by dividing the quantity ‘1 minus this last history’ into each of the others. The result

is a new multinomial distribution that still sums to one. The derived parameter N is then estimated as

#̂ =
"C+1[

1 −
(
1 − ?̂

) (
1 − ?̂

) (
1 − ?̂

) ] ,

for data with no individual covariates. A more complex estimator is required for models that include

individual covariates to model the ? parameters.

Here’s a simple example of how this works, given 2 occasions. Let ?1 = 0.4, ?2 = 0.3. At the top of

the next page, we tabulate both the unconditional probability of a given encounter history (i.e., where N

is in the likelihood), and the conditional probability of the encounter history, where the individuals not

seen are not included (i.e., are ‘conditioned out’). Note that if ?1 = 0.4 and ?2 = 0.3, then the probability

of not being captured at all is (1− ?1)(1− ?2) = 0.42, such that the probability of being captured at least

once is ?∗ = (1 − 0.42) = 0.58.
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history unconditional Pr(history) Pr(history | captured)

11 ?1?2 (0.4 × 0.3) = 0.12
(
?1?2

)
/?∗ 0.12/0.58 = 0.207

10 ?1

(
1 − ?2

)
0.4 (1 − 0.3) = 0.28

[
?1

(
1 − ?2

) ]
/?∗ 0.28/0.58 = 0.483

01 (1 − ?1)?2 (1 − 0.4) 0.3 = 0.18
[ (

1 − ?1

)
?2

]
/?∗ 0.18/0.58 = 0.310

00
(
1 − ?1

) (
1 − ?2

)
(1 − 0.4)(1 − 0.3) = 0.42 (not included because not captured)

In either case, the probabilities for all 4 histories sum to 1.0 (i.e., (0.12+ 0.28+ 0.18+ 0.42) = 1.0, and

(0.207 + 0.48 + 0.310) = 1.0). Each forms a multinomial likelihood that can be solved for ?1 and ?2, by

maximizing the likelihood expression.

As noted earlier, the derived parameter N is then estimated as

#̂ =
"C+1[

1 −
(
1 − ?̂

) (
1 − ?̂

) (
1 − ?̂

) ] ,

for data with no individual covariates.

Regardless of whether or not you include individuals not encountered in the likelihood, the key to

understanding the fitting of closed capture models is in realizing that the event histories are governed

entirely by the encounter probability.

In fact, the process of estimating abundance for closed models is in effect the process of estimating

detection probabilities – the probability that an animal will be caught for the first time (if at all), and the

probability that if caught at least once, that it will be caught again. The different closed population

models differ conceptually on how variation in the encounter probability (e.g., over time, among

individuals) is handled. The mechanics of fitting these models in MARK is the subject of the rest

of this chapter.

begin sidebar

What does ‘closure’ really mean?

The ‘closed captures’ data types all assume the population of interest is closed during the sampling

period (White et al. 1982). Meaning, the models assume that no births or deaths occur and no

immigration or emigration occurs. Typically, we refer to a closed population as one that is free of

unknown changes in abundance, as we can usually account for known changes.

A few methods have been developed to test for closure violations. Program CloseTest (Stanley &

Burnham 1999) can test the assumption of closure in some cases, although it is no longer in widespread

use. The Pradel model with ‘survival and recruitment’ parameterization has also been used to

explore closure violations (Boulanger et al. 2002; see chapter 13 for details of the Pradel model),

and offers some flexibility. By analyzing closed population capture-recapture data with the Pradel

‘survival and recruitment’ parameterization, one could test for closure and violations of closure.

For example, a model with ! fixed to 1 (no losses), and 5 fixed to 0 (no entries) would represent a

model with ‘full closure’, and could be compared to a model where both ! and 5 are unconstrained.

To test violations of closure due to emigration, you could construct a model with ! fixed to 1, with 5

unconstrained. Alternatively, to test for violation of closure due to immigration, you could construct

a model with 5 fixed to 0, with ! unconstrained.

Heterogeneity in capture probability can cloud our ability to detect closure violations. In situations

where the population is truly closed, heterogeneity in capture probability can cause both the tests of

immigration and emigration to reject the null hypothesis of closure.

end sidebar
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15.3. Model types

MARK currently supports 12 different closed population capture-recapture data types. These different

data types can be classified within a hierarchy of dichotomous divisions – as shown in the diagram,

below:

full likelihood conditional likelihood

full mixtures + mis-ID

f0, ,  , ,p c a p

mixtures + mis-ID

f  p0,  , ,a p

p cº

closed captures + mis-ID

f ,0, ,p c a

full mixtures

f ,0, ,p c p

mixtures

f  p0,  ,p
closed captures

f0, ,p c

Mo

f  p0,

p=1c=1

pºc

a=1

p=1
a=1

p cºp=1

Huggins full mixtures
+ mis-ID p c,  , ,a p

Huggins mixtures + mis-ID

p, ,a p

p cº

Huggins closed captures
+ mis-ID p c, ,a

Huggins full mixtures
p c, ,p

Huggins mixtures
p,p

Huggins closed captures

p c,

Huggins Mo

p

p=1c=1

p cº

a=1

p=1
a=1

p cºp=1

p M| t+1

more
general

more
constrained

The first and most important split is between the models with abundance (or, rather, 50) in the

likelihood (Otis et al. 1978) and those with abundance conditioned out of the likelihood (Huggins 1989).

We refer to the former as ‘full likelihood’ models, and the latter as either ‘conditional likelihood’ or

‘Huggins’ models. This is a major division that results in the two types of models not being comparable

with standard AIC-based model selection techniques.

The remainder of the splits reflect one or more constraints on different parameters, and which

parameters are included in the likelihoods. As noted earlier, the encounter histories in MARK are

determined by the underlying encounter probabilities only. Minimally, most models in MARK are

parameterized in terms of two different encounter parameters:

p – the probability of first capture (i.e., the probability that an animal in the population will

be captured – and marked - for the very first time)

c – the probability of recapture (conditional on having been captured at least once before).

The 2 parameter is generally used to model for behavioral effects following initial

capture.

Both ? and 2 can be time specific, although some specific constraints are required to ensure iden-

tifiability (discussed later). As a matter of convention in this chapter, we will use bold p’s and c’s to

indicate a set (vector) of parameters that are (potentially) time varying, italic, un-subscripted ?’s and 2’s

to indicate constant parameters, and italic, subscripted ?’s and 2’s refer to specific sampling occasions.

It is perhaps easiest to introduce the various models and parameters indicated in the preceding

figure, by associating them with the different data types available in MARK. When you select ’closed

captures’ in the data type specification window, MARK presents you with a popup window allowing

Chapter 15. Closed population capture-recapture models
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you to select among these 12 different data types (top of the next page).

The first data type is labeled ‘Full Likelihood p and c’. These are the models of Otis et al. (1978).

They are based on the full likelihood parametrization with three types of parameters; ?8 , 28 , and 50 (the

number of individuals in the population, but not encountered).

The second data type is labeled ‘Huggins p and c’. These are the models of Huggins (1989). In this

model, the likelihood is conditioned on the number of animals detected and 50 therefore drops out of the

likelihood. These models contain only ?8 and 28 ; the abundance # is estimated as a derived parameter.

As noted earlier, the primary advantage of the Huggins data type is that individual covariates can be

used to model ? and 2.

The next 4 model types are heterogeneity models. These models incorporate a finite mixture as an

approximation to individual heterogeneity in the ?8 parameter. In this model,

?8 =

{
?8 ,� with Pr(�)

?8 ,� with Pr(1 − �),

for the case with two mixtures � and �, although the model can be extended to >2 mixtures. As written

(above), the parameter � is the probability that the individual occurs in mixture �. For >2 mixtures,

additional � parameters must be defined (i.e., ��, ��,...), but constrained to sum to 1.

Note that the ‘heterogeneity models’ for both full likelihood closed captures and the Huggins’

models come in one of two forms, differentiated by the presence of either (i) the mixture parameter,

�, and both the ?8 and 28 parameters, or (ii) the mixture parameter,�, and a single encounter parameter,

?, only. The latter parameterizations (with only the � and ? parameters) represent simple individual

heterogeneity models, with parameters �, ?8 ,� = ?� , and ?8 ,� = ?�, and assume no temporal or

behavioral variation. In contrast, the full parametrization models (including �, ? and 2 parameters)

provide for all three effects of time, behavior, and heterogeneity. Of course, any of the reduced models

can be run from the full parameterizations if the appropriate constraints are applied.

The next six data types generalize the previous six data types to handle uncertainty in identification

of individuals, typically from genotyping error (Lukacs & Burnham 2005). These models include an

additional parameter, , that is the probability that the individual was correctly identified on its first

observation. In these models, # is estimated as a derived parameter. While it is possible to con-

struct models for every data type using only the ‘Full Likelihood heterogeneity pi, p, and c with

mis-identification’ or ‘Huggins heterogeneity pi, p, and c with mis-identification’ models,

the other data types are included to allow the user a less cumbersome set of parameters for building

more constrained models.
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Finally, there is a ‘Huggins p and c with Random Effects’ model, which uses numerical integra-

tion to integrate out continuous, individual random differences in latent encounter probability. This

approach is conceptually somewhat ‘outside’ the simple ‘full likelihood’ versus ‘conditional likelihood’

models split introduced earlier.

The heterogeneity, misidentification and random effects models will be treated in more detail later

in this chapter.

15.3.1. Constraining the final p

A subtlety of the closed population models is that the last p parameter is not identifiable unless a

constraint is imposed. When no constraint is imposed on the last ?8 , the likelihood is maximized with

the last ? = 1, giving the estimate #̂ = "C+1. Why?

Consider a simple 2 occasion study. For this study, there are 4 possible encounter histories: ‘11’, ‘10’,

‘01’, and ‘00’. Under the full likelihood model, the probabilities of observing each history are:

history probability

11 ?122

10 ?1

(
1 − 22

)

01
(
1 − ?1

)
?2

00
(
1 − ?1

) (
1 − ?2

)

Our interest concerns the final ? parameter, ?2. We see that ?2 is a term in the probability expression

for the ‘01’ and ‘00’ histories only. Taking the ratio of the observed frequency of ‘00‘ individuals to the

observed frequency of ‘01’ individuals (which is an ad hoc way of estimating ?2; see Chapter 1), then

5{00}

5{01}

=
✘✘✘✘
(
1 − ?1

) (
1 − ?2

)

✘✘✘✘
(
1 − ?1

)
?2

=

(
1 − ?2

)

?2

.

Focus on the LHS of this expression. The numerator, 5{00} , must be 0. Why? This must be true since

the ‘00’ history refers to individuals not seen. So, the observed frequency of animals not seen, 5{00} , is

0 (obviously), and thus the LHS of our equation is 0/ 5{01} = 0.

Thus, we solve for ?2 as

5{00}

5{01}

=

(
1 − ?2

)

?2

0 =

(
1 − ?2

)

?2

= 1 − ?2

∴ ?̂2 = 1.
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OK, so the final encounter probability ?2 is estimated at 1. But, why is that a problem? If you think

about it, with ‘perfect’ first detection at any occasion, the number of individuals never encountered

throughout the study ( 50) would be 0, which in turn makes #̂ = "C+1.

Let’s confirm this ‘logical conclusion’ by means of some simple algebra. Recall that the canonical

estimator for #̂ is the count statistic (in this case, "C+1) divided by the encounter probability. For a two

occasion study,

#̂ =
"C+1(

1 −
[(

1 − ?̂1

) (
1 − ?̂2

) ] ) .

If ?̂2 = 1, then

#̂ =
"C+1(

1 −
[(

1 − ?̂1

) (
1 − ?̂2

) ] )

=
"C+1(

1 −
[(

1 − ?̂1

) (
1 − 1

) ] )

=
"C+1(
1 − 0

)

= "C+1.

Thus, unless a constraint is placed on the last ?, then the estimated abundance# will simply be "C+1.

Thus, it is diagnostic to check to see whether #̂ = "C+1, and if so, to see if the last ?8 estimate equals 1.

If they are, then you’ve forgotten to constrain ?.‗

So, in model "C , the constraint of ?8 = 28 is imposed, providing an estimate of the last ? from the

last 2. Likewise, under model "1 , the constraint of ?8 = ?· is imposed, so that the last ? is assumed

equal to all the other ? values. A similar constraint is used for model "1ℎ , i.e., ?8 ,� = ?�, ?8 ,� = ?�,

and so on. Under model "C1 , the ?8 and 28 are modeled as a constant offset ($14 ℎ) of one another, i.e.,

28 = (?8 +$14 ℎ). This relationship will depend on the link function used, but the last ?8 is still obtained

as 28 minus the offset (where the offset is estimated from the data on the other ?8 and 28 ).

Under model "C1ℎ , the offset between the ?8 and 28 is applied, with an additional offset(s) included

to model the relationship among the mixtures, i.e., ?8 ,� = (?8 ,� +$�), ?8 ,� = (?8 ,� +$�), with a different

offset applied to each succeeding mixture. Similarly, 28 ,� = (?8 ,� + $14 ℎ) = (?8 ,� + $� + $14 ℎ), with the

resulting relationship depending on the link function used. With this model, the relationship between

the mixtures of the ?8 is maintained, i.e., the ordering of the mixtures is maintained across occasions.

Model"Cℎ can also be modeled as an additive offset between the mixtures, although other relationships

are possible because the last ?8 for each mixture is estimated from the corresponding last 28 .

Although other relationships than those of the preceding paragraph can be proposed to provide

identifiability, the proposed models must provide identifiability of all the initial capture probabilities.

‗ The diagnostics of the final ?̂ = 1 and #̂ = "C+1 strictly apply only to the full likelihood model. Under the conditional likelihood

(Huggins) model, the final ?̂ ≠ 1, and #̂ ≠ "C+1. However, the reported estimates of ?̂ and #̂ from the unconstrained Huggins
model will be meaningless, since the SE will generally be unrealistically large.
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15.4. Encounter histories format

All of the closed capture-recapture models use the LLLL encounter histories format (see chapter 2 for

more detail). By the definition of a closed population, animals are not dying, therefore a dead encounter

is not possible. On the same line of reasoning, time between sampling occasions is not relevant because

there is no survival or movement process to consider. Encounter histories are followed by group

frequencies. For the Huggins models, group frequencies can be followed with individual covariates.

All encounter histories end with the standard semicolon.

/* Closed capture-recapture data for a Huggins model.

tag #, encounter history, males, females, length */

/* 001 */ 1001 1 0 22.3;

/* 002 */ 0111 1 0 18.9;

/* 003 */ 0100 0 1 20.6;

If you wish to analyze a data set that contains covariates in the input with both full and conditional

likelihoods, you must initially import that data set by selecting a ‘Huggins’ data type. The ‘Closed

Captures’ data type will not allow individual covariates to be specified. In this case, it is likely best to

create two separate MARK files for the analysis because the AIC2 values are not comparable between

the ‘Closed Captures’ and ‘Huggins’ data types.

15.5. Building models

Now it is time to move on to the actual mechanics of closed population abundance estimation in MARK.

We will analyze some simulated data contained in (simple_closed1.inp). In this simulated data set

(which consists of 6 encounter occasions), true # = 350. The total number of individuals encountered

was "C+1 = 339 (so, 11 individuals were never seen). Open MARK and create a new database using

the ‘File | New’ option. Select the ‘Closed Captures’ radio-button. When you click on the ‘Closed

Captures’ radio-button, a window will open that allows you to select a model type, shown earlier in

this chapter. To start, select ‘Full Likelihood p and c’.

Enter a title, select the input file, and set the number of encounter occasions to 6.

To start, we’ll construct some of the ‘standard’ closed capture models, as originally described in Otis

et al. (1978). Model notation for the closed capture-recapture models in the literature often still follows

that of Otis et al. (1978). Now that more complex models can be built, it seems appropriate to use a

notation that is similar to the notation used for other models in MARK. Thus, our notation in this

chapter will be based on a description of the parameters in the models.

At the top of the next page, we present a table contrasting model notation based on Otis et al.

(1978) and expanded notation based on a more explicit (and informative) description of the parameters.

Combinations of the models described are possible.
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Otis notation Expanded notation Description

"0 { 50 , ?(·) = 2(·)} Constant ?

"C { 50 , ?(C) = 2(C)} Time varying ?

"1 { 50 , ?(·), 2(·)} Behavioral response

"ℎ or "ℎ2 { 50 , ?0(·) = 20(·), ?1(·) = 21(·),�} Heterogeneous ?

If you look closely at the ‘expanded notation’, you’ll see that models are differentiated based on

relationships between the ? and 2 parameters. This is important – the closed capture-recapture models

are one of the model types in MARK where different types of parameters are modeled as functions of

each other. In this case ? and 2 are commonly modeled as functions of one another. This makes intuitive

sense because both ? and 2 relate to catching animals.

With that said, let’s begin building a few models to learn the mechanics of using MARK to estimate

abundance. We’ll start with models { 50 , ?(·) = 2(·)}, { 50 , ?(C) = 2(C)}, and { 50 , ?(·), 2(·)} (i.e., models

"0 , "C and "1).

Let’s first examine the default PIM chart for the ‘Full Likelihood p and c’ models:

MARK defaults to a time-varying parameter structure where there is a different ? and 2 for each

occasion. Recall from section 14.3.1 that abundance is not estimable with this model structure because

no constraint is imposed to estimate ?6. If this default, fully time-dependent model is fit to the data,

#̂ = "C+1 and ?̂6 = 1.0 regardless of the data. Therefore, in every model we build we must put some

constraint on ?8 for the last encounter occasion so that this parameter is estimated.

If we open the PIM windows, we’ll notice that the ?’s and 2’s have only a single row of text boxes.

For example, for ? (shown at the top of the next page):

Chapter 15. Closed population capture-recapture models



15.5. Building models 15 - 13

In the closed capture models, every individual is assumed to be in the population and at risk of

capture on every occasion. Therefore, there is no need for cohorts (expressed as multiple rows in the

PIM window) as there is for many of the open-population models.

We’ll start with { 50 , ?(·) = 2(·)} – for this model, there is no temporal variation in either ? or 2, and

the two parameters are set equal to each other. This model is easily constructed using the PIM chart:

Go ahead and run this model, and add the results to the browser. Couple of important things to

note. First, it is common for AIC2 values to be negative for the full likelihood closed captures models.

Negative AIC2 values are legitimate and interpreted in the same way as positive AIC2 values. The

negative AIC arises due to the portion of the multinomial coefficient that is computed. Recall that for

the full likelihood for the 2-sample situation, the multinomial coefficient was written as

# !

<2!
(
=1 − <1

)
!
(
=2 − <2

)
!(# − A)!

≡

(
50 +"C+1

)
!

<2!
(
=1 − <1

)
!
(
=2 − <2

)
! 50!

,

which, after dropping terms that did not include # (or 50), simplifies to

(
50 +"C+1

)
!

✚
✚<2!✘✘✘✘✘(

=1 − <1

)
!✘✘✘✘✘(
=2 − <2

)
! 50!

∝
( 50 +"C+1)!

50!
,
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which is frequently negative (which results in a negative AIC2). In contrast, AIC2 values from the

conditional likelihood models are typically positive. Regardless, the model with the ‘most negative’

AIC2 , i.e., the one furthest from zero, is the most parsimonious model.

Also, note that MARK defaults to a sin link, just as it does with all other data types when an identity

design matrix is specified. In the case of the closed models, the sin link is used for the ?’s and 2’s, but

a log link is used for 50. The log link is used because 50 must be allowed to be in the range of [0 → ∞].

Therefore, no matter what link function you select, a log link will be used on 50. If you choose the

‘Parm-Specific’ option to set different link functions for each parameter, be sure you choose a link that

does not constrain 50 to the [0, 1] interval. Choose either a log or identity link (log is preferable).

Now, we’ll build model { 50 , ?(C) = 2(C)} (i.e., model "C). Remember, there is no 2 parameter for the

first occasion because it is impossible for an animal to be recaptured until it has been captured once.

MARK offers an easy way to assure that the correct ?’s line up with the correct 2’s: under the ‘Initial’

menu select ‘make c=p’ and renumber with overlap. The constraint on ?6 in this model is that ?6 = 26.

Here is the PIM chart:

Finally, we’ll build model { 50 , ?(·), 2(·)} (i.e., model "1). Here, we’re accounting for possible differ-

ences in ‘behavior’ between the first encounter, and subsequent encounters. Such a ‘behavioral’ effect

might indicate some permanent ‘trap effect’ (trap ‘happiness’ or trap ‘aversion’). Formodel { 50 , ?(·), 2(·)},

shown at the top of the next page, there is a ‘behavior’ effect, but no temporal variation:
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Note that there is no ‘overlap’ (i.e., no function relating ? and 2) for this model – this is analogous to

the default model { 50 , ?(C), 2(C)}, shown earlier. However, in this instance, all parameters are estimable

because of the constraint that ? and 2 are constant over time – the lack of estimability for the final ? occurs

if ? is time dependent. As such, model { 50 , ?(·), 2(C)} would be estimable, while model { 50 , ?(C), 2(·)}

would not (for this model #̂ = "C+1). You might want to confirm this for yourself.

begin sidebar

simple extension – removal models

Now let’s consider a removal model. These are commonly used in fisheries work where the researcher

does not want to subject a fish to multiple passes of electricity. Therefore, the fish that are encountered

are held aside until all sampling has occurred.

To accomplish this in MARK, build an { 50 , ?(C), 2(·)} or { 50 , ?(·), 2(·)} model. Then click ‘Run’ to

open the run window. Click the ‘fix parameters’ button. A window will open listing all of the real

parameters in the model. Simply fix 2 = 0, and run the model.

Note, however, that a special requirement of removal data is that there has to be a general downward

trend in the number of animals removed on each occasions, i.e., there has to be some depletion of the

population. Seber & Whale (1970) showed that# and ? can be estimated from data when the following

“failure criterion” is satisfied:

C∑

9=1

(C + 1 − 29)D9 > 0,

where t is the number of sampling (removal) occasions, and D9 is the number of animals captured and

removed on occasion 9.

end sidebar

15.6. Closed population models and the design matrix

In the preceding, we constructed 3 simple models using the PIM chart. While using the PIM chart was

very straightforward for those models, through the design matrix MARK allows models to be fit that

were not possible with the PIM chart. For example, it is possible to build an { 50 , ?(C) = 2(C) + 1} model
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where capture probability and recapture probability are allowed to vary through time, but constrained

to be different by an additive constant on the logit scale. It is also worth noting that these extended

models are not available in program CAPTURE (one of several reasons that CAPTURE is no longer

preferred for fitting closed population abundance models).

As introduced in Chapter 6, one approach to doing this is to first build a general model using PIMs,

and then construct the design matrix corresponding to this general model. Then, once you have the

generalmodel constructedusing the design matrix,all othermodels of interest can be constructedsimply

by modifying the design matrix. In this case, the most general model we can build is { 50 , ?(C), 2(C)}. As

noted earlier, we know before the fact that this particular model is not a useful model, but it is convenient

to build the design matrix for this model as a starting point.

To do this we need the PIMs in the full time varying setup (as shown earlier). Go ahead and run

this model, and add the results to the browser. Look at the real and derived parameter estimates – note

that (i) ?̂5 = 1.0, and (ii) #̂ = "C+1 = 339. Note as well that the reported SE’s for both ?̂5 and #̂ are

impossibly small – a general diagnostic that there is ‘something wrong’ with this model. As discussed

earlier, this is not a useful model without imposing some constraints since the estimate of #̂ = "C+1.

Now, the design matrix. Recall that there are 12 parameters specifying this model: 1 → 6 for ?, 7 → 11

for 2, and parameter 12 for abundance, # . Thus, our design matrix will have 12 columns. Now, if you

select ‘Design | Full’, MARK will respond with the default DM shown below:

Here, we see a DM which is strictly analogous to what we might have expected for 3 parameters –

each parameter (in this case, ?, 2 and 50) has a separate ‘block’ within the matrix: ? in the upper-left,

2 in the middle, and 50 in the lower-right. If you go ahead and run this model, you’ll see (below) that it

gives you exactly the same model deviance as the general model built with PIMs.

You’ll also note, however, that the AIC2 reported for this DM-built general model is not the same as

the AIC2 reported for the general model built with PIMs (−530.1030 versus −528.0812). If the model
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deviances are the same, but the reported AIC2 values are different, then this implies that the number

of estimated parameters is different. In fact, we see that the number estimated for the ‘full default DM’

model is 10, whereas for the model built with PIMs, the number reported is 11. In fact, for this model, the

difference in the number reported isn’t particularly important, since this is not a ‘reasonable’ model in

the first instance (as mentioned several times earlier in this chapter). The fact that the model deviances

‘match’ indicates that the DM is correct.

However, while this is ‘technically’ true, the default DM assumes that there is no interest in creating a

functional relationship between any of the parameters. While normally this is a reasonable assumption

(e.g., in a CJS live encounter study, there is no plausible reason to create a functional relationship between

! and ?), this is clearly not the case for closed population abundance models, where many of the models

of interest are specified by imposing a particular relationship between ? and 2. For example, model

{ 50 , ?(C) = 2(C)} imposes a relationship between ? and 2 at each sampling occasion C.

How do we accommodate our interest in specifying these relationships between ? and 2 in the DM?

In fact, it is very easy, with a simple conceptual ‘trick’ – we’re going to treat the two parameters ? and

2 as if they were levels of some putative ‘treatment’ – in precisely the same way (structurally) that we

handled age (TSM) effects for individuals marked as young in age (TSM) models (Chapter 7 – section

7.2). As a reminder, recall how we would construct the design matrix to correspond to the PIM for

survival for a simple age model, with 2 age classes, and time-dependence in each age class. Assume

that we have 7 occasions.

Recall that the PIM for this model looks like:

1 7 8 9 10 11

2 8 9 10 11

3 9 10 11

4 10 11

5 11

6

So, based on the number of indexed parameters in the PIM, we know already that our design matrix

for survival would need to have 11 rows and 11 columns.

What does the linear model look like? Again, writing out the linear model is often the easiest place to

start. In this case we see that over a given time interval, we have, in effect, 2 kinds of individuals: juveniles

(individuals in their first year after marking), and adults (individuals at least 2 years after marking). Thus,

for a given TIME interval, there are 2 groups: juvenile and adult. If we call this group effect AGE, then we

can write out our linear model as

‘survival’ = AGE + TIME + AGE.TIME

= �1

+ �2(AGE)

+ �3(T1) + �4(T2) + �5(T3) + �6(T4) + �7(T5)

+ �8(AGE.T2) + �9(AGE.T3) + �10(AGE.T4) + �11(AGE.T5).

Again, recall from Chapter 7 that there is no (AGE.T1) interaction term. Also remember, we’re treating

the two age classes as different groups – this will be the key ‘conceptual step’ in seeing how we apply

the same idea to closed population abundance models.
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The design matrix corresponding to this linear model is:

So, column B2 in this design matrix indicates a putative ‘age group’ – for a given cohort, and a given

time step, is the individual young (indicated with the dummy ‘1’) or adult (indicated with the dummy

‘0’). If you don’t recall this connection, go back and re-read section 7.2.

Now, what does this have to do with building design matrices for closed abundance estimation

models? The connection relates to the idea of creating a ‘logical group’. For age models, we used the

age of an individual for a given cohort and time step as a grouping variable. For closed population

abundance models, we do the same thing – except that instead of age, we’re going to ‘group’ as a

function of whether or not the individual has been captured at least once or not. In other words, we’re

going to treat the parameters ? (caught for the first time) and 2 (caught subsequently) as levels of a

putative ‘encounter’ group (analogous to young and adult, respectively).

This will make more sense when you see how we set up the DM. Here it is – note that it is identical

to the age (TSM) model (above):

Column B1 is the common intercept – this is a necessary step (and a key difference from the default

DM) in order to allow us to specify a functional relationship between ? and 2. Column B2 is the column

which specifies the putative ‘encounter group’ – first encounter (corresponding to parameter ?) or

subsequent encounter (corresponding to parameter 2). Note that there are 6 ‘1’s; for ?, but only 5 ‘0’s’

for c (since there is no 2 parameter for occasion 1).
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This is entirely analogous to having no adults in the first occasion for individuals marked as young.

Columns B3 → B7 correspond to the time steps – again, note that for parameter 2, there is no time

coding for interval 1. These are followed by the interaction columns B8→ B11. Again, there is no logical

interaction of ? and 2 for occasion 1 (since there is no parameter 21), so the interaction columns start

with time interval 2. Finally, column B12 for the parameter 50.

Go ahead, run this model, and add the results to the browser:

We see that the model deviances for the general model constructed with (i) PIMs, (ii) the default DM

(which used a separate intercept for each parameter), and (iii) the modified DM which used a common

intercept, are all identical.

Now, let’s use the DM to build the 3 models we constructed previously using PIMs. First, model

{ 50 , ?(·) = 2(·)}. We see that (i) there is no temporal variation (meaning, we simply delete the columns

corresponding to time and interactions with time from the DM – columns B3 → B11), and (ii) ? = 2

(meaning, we delete the column specifying difference between the ‘encounter groups’ – column B2):

Run this model and add the results to the browser:
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We see the model results match those of the same model constructed using PIMs.

What about model { 50 , ?(·), 2(·)}? Here, we again delete all of the time and interaction columns, but

retain the column coding for the ‘encounter group’ term in the model:

Again,we see (below) that the results of fitting this model constructed using the DM approach exactly

match those from the same model constructed using PIMs:

Finally, model { 50 , ?(C) = 2(C)}. Here, we have no ‘encounter group’ effect, but simple temporal

variation in ? and 2. We simply delete the interaction and ‘encounter group’ columns:
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We see (below) that the model deviances are identical, regardless of whether or not the PIM or DM

approach was used.

Now, let’s consider a model which we can’t build using the PIM-only approach (or, as noted, if we’d

relied on the default DM) – a model with an additive ‘offset’ between ? and 2. As we introduced in

Chapter 6, to build such additive models, all you need to do is delete the interaction columns from the

DM – this ‘additive’ model is shown below:

Remember that this model constrains time-specific estimates of ? and 2 to parallel each other by a

constant offset. In effect, this is a ‘behavior+time’ model. Whether or not this is a ‘meaningful’ model

is up to you.

15.7. Heterogeneity models

If one were to take a strict random sample from a closed population (i.e., such that all individuals have

the same probability of being included in the sample), one would expect the estimate of abundance to

be unbiased (although a particular estimator might lead to bias under some circumstances). In the case

of individual heterogeneity in the probability of encounter, where in the limit each individual 8 in the

population has a unique encounter probability, ?8 , negative bias in estimates of abundance is expected.

Individuals with high detection probabilities would tend to appear in the encountered sample in greater

proportion than they occur in the population (in effect, this is analogous to censoring individuals

with low encounter probabilities out of the sample). This results in the estimated average encounter

probability of encountered individuals tending to be greater than the true population average.
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Thus, the denominator in the canonical estimator for abundance,"C+1/?̂
∗, is generally biased high in

the presence of individual heterogeneity,and the resulting estimate of abundance is biased low. This will

be especially true in situations where the overall mean encounter probability is low; when the overall

mean encounter probability is high, then even individuals with relatively low encounter probability are

likely to be encountered at least once during the sampling period.

Largely because of concerns of the effect of individual encounter heterogeneity on bias in abundance

estimate,deriving models forestimating abundance from closed populations that account for individual

heterogeneity has been of historical interest, and has generally proven difficult.

There have been 2 fairly distinct, but not mutually exclusive, approaches to development of such inter-

mediate models. The first considers models where the source of the heterogeneity among individuals

is assumed observable, and can potentially be accounted for by ≥ 1 individual, measurable covariates

– some individual trait that influences the detection probability of that individual. The individual

covariate approaches have the advantage of potentially informing as to the underlying causes of the

heterogeneity in encounter probability, in addition to reducing bias in abundance estimators. MARK

allows individual heterogeneity to be approximated with finite mixtures (as above) or with individual

covariates (using Huggins’ conditional likelihood models).

Alternatively, there is a class of models where individual heterogeneity in encounter probability is

unobservable (i.e., not modeled as a function of≥ 1 factors or covariates), and is modeled as an individual

random effect. Such models are very general because they do not require specification of the possible

source(s) of the heterogeneity. Instead, they posit a parametric probability distribution for {?8} (i.e., the

set {?8} is a random sample of size # drawn from some probability distribution), and use appropriate

methods of parametric inference.

Such unobservable heterogeneity models can be broadly classified in terms of whether the distri-

bution of individuals is modeled as either a discrete- or continuous-mixture, where the population is

implicitly a mixture of individuals with different probabilities of encounter. Norris & Pollock (1996)

and Pledger (2000, 2005) proposed discrete-mixture models where each individual ?8 may belong to

one of a discrete set of classes (reviewed by Pledger & Phillpot 2008); because the discrete set of classes is

finite, these models are often referred to as finite-mixture models. Alternatively, the mixture distribution

can be continuous infinite (Dorazio & Royle 2003). A commonly used distribution is the logit-normal,

where individuals ?8 are drawn from a normal distribution (on the logit scale) with specified mean �

and variance �2, that is, logit(?8) ∼ N(�, �2).

MARK allows you to fit a class of models which are parameterized based on what are known as

‘finite mixtures’. In these models,

?8 =

{
?8 ,� with Pr(�)

?8 ,� with Pr(1 − �),

for the case with two mixtures � and �, although the model can be extended to >2 mixtures. As written

(above), the parameter � is the probability that the individual occurs in mixture �. For >2 mixtures,

additional � parameters must be defined (i.e., ��, ��,...), but constrained to sum to 1.‗ In practice, most

data sets generally support no more than 2 mixtures. Note that the�parameter is assumed to be constant

over time (i.e., an individual in a given mixture is always in that particular mixture over the sampling

period). This has important implications for constructing the DM, which we discuss later.

Alternatively,MARK also allows the fitting of a continuous mixture,based on the logit-normal,using

numerical integration of individual heterogeneity (modeled as a random effect), using Gaussian-Hermite

‗ In practice, this means that you should use the multinomial logit link function, MLogit, to ensure that the estimates do sum to
1. The MLogit link was introduced in Chapter 10.
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quadrature. As discussed by Gimenez & Choquet (2010), integration by Gaussian-Hermite quadrature is

very robust under the assumption that the random effect is Gaussian (or nearly so), and computationally

is much more efficient than approaches based on Monte Carlo (MCMC) sampling. Further, because

Gaussian-Hermite integration can be embedded in a classical likelihood-based modeling framework,

we can use established methods for goodness-of-fit testing and model selection to evaluate the rela-

tive performance of different heterogeneity models in estimating abundance from closed population

encounter data (White & Cooch 2017).

Here, we introduce both the discrete- and continuous-mixture approaches, as applied to closed

population abundance estimation.‗ Althoughit remains to be determinedhow well this approachwould

work if the distribution of encounter rates was strongly asymmetric, the underlying model of normally

distributed individual random effects on the logit scale for ? provides a more realistic biological model

of heterogeneity than discrete-mixture models when individual heterogeneity is thought to occur over a

continuous scale rather than a discrete set of mixtures.

There are clearly cases, however, where the main source of individual heterogeneity might be better

modeled assuming discrete classes (say, in cases where the main source of difference in encounter

probability is an underlying discrete attribute, which may not be observable; e.g., sex, in cases where

the sex of the organism is not observable given the data. Or situations where the disease ‘state’ (infected,

not infected) cannot be determined easily on encounter. And so on.).

Our purpose here isn’t to fully compare and contrast the two approaches in terms of relative bias and

precision – it is more than likely that the performance of the two models will differ depending on the

true underlying distribution of the heterogeneity (which, of course, is not known). Instead, we focus on

the mechanics of the two approaches in MARK.

15.7.1. Finite, discrete mixture models

Before we demonstrate the ‘mechanics’ of fitting finite mixture models to the data, let’s first consider

the encounter histories (there are 2: possible encounter histories for a :-occasion study), and their

probabilities, for a 4-occasion case for the ‘Full likelihood p and c’ data type:

history cell probability

1000 ?1(1 − 22)(1 − 23)(1 − 24)

0100 (1 − ?1)?2(1 − 23)(1 − 24)

0010 (1 − ?1)(1 − ?2)?3(1 − 24)

0001 (1 − ?1)(1 − ?2)(1 − ?3)?4

1100 ?122(1 − 23)(1 − 24)

1010 ?1(1 − 22)23(1 − 24)

1001 ?1(1 − 22)(1 − 23)24

1110 ?12223(1 − 24)

history cell probability

1101 ?122(1 − 23)24

1011 ?1(1 − 22)2324

0110 (1 − ?1)?223(1 − 24)

0101 (1 − ?1)?2(1 − 23)24

0011 (1 − ?1)(1 − ?2)?324

0111 (1 − ?1)?22324

1111 ?1222324

0000 (1 − ?1)(1 − ?2)(1 − ?3)(1 − ?4)

‗ In fact, ‘finite mixture models’ and ‘individual random effects’ models (based on Gaussian-Hermite quadrature) are available
for a number of additional data types in MARK – see Addendum 2 to this chapter.
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If we want to add a finite mixture to the cell probability (i.e., for ‘Full Likelihood Heterogeneity

with pi, p, and c’ data type, with two mixtures), we modify the probability expressions as follows:

history cell probability

1000
∑2
0=1

(
�0?01(1 − 202)(1 − 203)(1 − 204)

)

0100
∑2
0=1

(
�0(1 − ?01)?02(1 − 203)(1 − 204)

)

0010
∑2
0=1

(
�0(1 − ?01)(1 − ?02)?03(1 − 204)

)

0001
∑2
0=1

(
�0(1 − ?01)(1 − ?02)(1 − ?03)?04

)

1100
∑2
0=1

(
�0?01202(1 − 203)(1 − 204)

)

1010
∑2
0=1

(
�0?01(1 − 202)203(1 − 204)

)

...
...

Note: the finite mixture models have a separate set of ?’s and 2’s for each mixture.

We will demonstrate the fitting of finite mixture (‘heterogeneity’) models to a new sample data set

(mixed_closed1.inp). These data were simulated assuming a finite mixture (i.e., heterogeneity) using

the generating model { 50 ,�, ?(·) = 2(·) = 2>=BC0=C} – 9 occasions, 2 mixtures, # = 2,000, � = 0.40, and

?�� = 0.25, ?�� = 0.75. In other words, two mixtures, one with an encounter probability of ? = 0.25,

the other with an encounter probability of ? = 0.75, with the probability of being in the first mixture

� = 0.40.

Start a new project, select the input data file, set the number of occasions to 9, and specify the ‘Full

Likelihood Heterogeneity with pi, p, and c’ data type. Once we’ve selected a closed data type

with heterogeneity, you’ll see that an option to specify the number of mixtures is now available in the

‘specification window’ (lower-right side). We’ll use 2 mixtures for this example.

Once you have specified the number of mixtures, open the PIM chart for this data type (when you

switch data types, the underlying model will default to a general time-specific model):

Notice that there are twice as many ?’s and 2’s as you might have expected given there are 9 occasions

represented in the data. This increase represents the parameters for each of the two mixture groups.
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The PIM for the ?’s now has two rows defaulting to parameters 2 → 10 and 11 → 19.

Parameters 2 → 10 represent the ?’s for the first mixture, and 11 → 19 the ?’s for the second mixture.

It becomes more important with the mixture models to keep track of which occasion each 2 corresponds

to because now both parameter 2 and 11 relate to occasion 1 which has no corresponding 2 parameter.

We’ll follow the approach used in the preceding section, by first fitting a general model based on

PIMs to the data. You might consider model { 50 ,�, ?(C), 2(C)} as a reasonable starting model. However,

there are two problems with using this as a general, starting model. First, you’ll recall that there are

estimation problems (in general) for a closed abundance model where both ? and 2 are fully time-

dependent. Normally, we need to impose some sort of constraint to achieve identifiability. However,

even if we do so, there is an additional, more subtle problem here – recall we are fitting a heterogeneity

‘mixture’ model, where the parameter � is assumed to be constant over time. As such, there is no

interaction among mixture groups possible over time. Such an interaction would imply time-varying

�. Thus, the most general meaningful model we could fit would be an additive model, with additivity

between the mixture groups, and interaction of ? and 2 within a given mixture group. Recall that we

can’t construct this model using PIMs – building an additive model requires use of the design matrix.

We see from the PIM chart (shown on the previous page) that the default model structure has 36

columns (i.e., 36 total structural parameters). Note: if you select ’Design | Full’, MARK will respond

with an error message, telling you it can’t build a default fully time-dependent DM. Basically, for

heterogeneity models, you’ll need to build the DM by hand – meaning, starting with a reduced DM. So,

we select ‘Design | Reduced’, and keep the default 36 columns.

Now, how do we build the DM corresponding to the PIM chart on the preceding page? We start by

first writing out the linear model. To do so, we need to first consider the ‘groups’ in our model. Here,

we have in fact 2 groups: (i) the putative ‘encounter group’ (ENC) representing the ? and 2 parameters

(as we saw in the preceding section), and (ii) a new ‘heterogeneity’ group (HET) representing what we

might for convenience think of as the ‘�’ and ‘1− �’ groups. So, 2 ‘ encounter groups’, 2 ‘heterogeneity

groups’, 9 occasions (TIME), and the various plausible interactions among them.

Here is our linear model (which we write only in terms of parameters ? and 2. Parameters � and 50
are simple scalar constants):

5 = ENC+HET+TIME+(ENC.HET)+(ENC.TIME)+(HET.TIME)+(ENC.HET.TIME)

= �1

+ �2(ENC)

+ �3(HET)

+ �4(ENC.HET)

+ �5(T1) + �6(T2) + �7(T3) + �8(T4) + �9(T5) + �10(T6) + �11(T7) + �12(T8)

+ �13(HET.T1) + �14(HET.T2) + �15(HET.T3) + · · · + �20(HET.T8)

+ �21(ENC.T2) + �22(ENC.T3) + �23(ENC.T4) + · · · + �27(ENC.T8)

+ �28(ENC.HET.T2) + �29(ENC.HET.T3) + · · · + �34(ENC.HET.T8)
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So, 34 parameters in this linear model. If we add 2 (one each for � and # , respectively), we get 36

total. The design matrix corresponding to this model is shown on the next page (although you might

need to put on some ‘special reading glasses’ to see it all):

Now, some important things to note from the linear model and corresponding DM. First, the two

‘groups’ (encounter and heterogeneity; ENC and HET, respectively) are each coded by a single column

(single �) – columns B3 for ENC and B4 for HET. 9 sampling occasions, so 8 columns for time (B5→ B12).

The remaining columns code for the two-way interactions between ENC (E), HET (H) and time (T), and

the three-way interaction (H.E.TG ).

Now, if you run this model constructed using the DM, you’ll see that the model deviance is identical

to the model constructed using PIMs (indicating that our DM is correct). However, if you look at

the parameter estimates, you’ll quickly notice that, as expected, quite a few of the parameters aren’t

identifiable. In particular, the final ?̂ estimates for the two mixture groups have problems, and the

derived estimate of #̂ is simply "C+1 (the SE of the abundance estimate is clearly wrong).

Why the problems? Simple – despite the fact we have 2 mixture groups, this is still model {?(C), 2(C)},

which we know is not identifiable – and thus, is not a useful model to fit to the data – without constraints.

One possible constraint is to model ? and 2 as additive functions of each other. How can we modify the

DM to apply this constraint?

Simple – by eliminating the interactions between ENC and TIME. In other words, deleting columns

B14→ B20 (coding for the interaction of ENC and TIME), and columns B29→ B35 (coding for the 3-way

interaction of HET, ENC, and TIME) from the DM shown on the previous page. This model allows time

variation, behavioral variation and individual heterogeneity in capture probability, yet does so in an

efficient and parsimonious (and estimable) manner.

We can use this DM to create additional, reduced parameter models. For example, we could build

model { 50, ?0(C) = 20(C) = ?1(C) + I = 21(C) + I } representing capture probability varying through time

and additive difference between mixture groups, but with no interaction between ? and 2 over time (no

behavior effect). We do this simply by deleting the ENC column from the DM.

As a final test – how do we modify the DM to match the true generating model, which for these

data was model { 50 ,�, ?� = 2� , ?� = 2�}? To build this model from our DM, we simply delete (i)

all the time columns, (ii) any interactions with time, and (iii) the encounter group column (ENC). We
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delete the encounter group column because we’re setting ? = 2. We retain the heterogeneity (mixture)

group column (HET) since we want to allow for the possibility that encounter probability differs between

mixtures (which of course is logically necessary for a mixture model!).

Both the real and derived parameter estimates (�̂ = 0.607, ?̂�� = 0.250, ?̂�� = 0.754, #̂ = 1,995.494)

are quite close to the true parameter values used in the generating model. [But, what about �̂? The true

value we used in the simulation was� = 0.40. The estimated value �̂ = 0.607 is simply the complement.]

We can confirm that this corresponds to model { 50 ,�, ?� = 2� , ?� = 2�} by comparing the model fit

with that from the PIM-based equivalent. We can do this in one of two ways – we can either (i) stay within

the ‘Full Likelihood Heterogeneity with pi, p, and c ’ data type,andbuild the appropriate PIMs,

or (ii) change data type to the simpler ’Full Likelihood Heterogeneity Pi and p’, which defaults to

ourdesiredmodel. Ifwe take the firstapproach,allwe need to do is modify the two encounterprobability

PIMs as follows, for ? and 2, respectively, so they both have the following structure:

So, constant over time and no behavior effect (i.e., ? = 2) within mixture group. If you run this

model, you’ll see that it yields an identical model deviance (555.1792) as the model built earlier using

the modified DM.

What about changing data types? Well, you might think that you need to restart MARK, and begin

a new project after first specifying the new data type. In fact, you don’t need to – you can simply ‘tell’

MARK that you want to switch data types (something MARK lets you do within certain types of models

– in this instance, closed population abundance estimators). All you need to do is select ‘PIM | change

data type’ on the main menu bar, and then select ‘Full Likelihood Heterogeneity Pi and p’ from

the resulting popup window. As noted earlier, the default model for this data type is the model we’re

after – it is simply a reduced parameter version of the full model.

Interpreting 0̂ from finite mixture models

So, you do an analysis using a closed population heterogeneity abundance model, based on finite

mixtures, and derive an estimate of �̂. Perhaps you’ve built several such models, and have a model

averaged estimate of ¯̂�. So, what do you ‘say’ about this estimate of �̂?

Easy answer – generally nothing. The estimate of �̂ is based on fitting a finite mixture model, with a

(typically small) number of discrete states. When we simulated such data (above), we used a discrete

simulation approach – we simply imagined a population where 40% of the individuals had one

particular detection probability, and 60% had a different encounter probability. In that case, because

the distribution of individuals in the simulated population was in fact discrete, then the real estimate

of �̂ reflected the true generating parameter.

However, if in fact the variation in detection probability was (say) continuous, then the estimate of

�̂ reflects a ‘best estimate’ as to where a discrete ‘breakpoint’ might be (breaking the data into a set of

discrete, finite mixtures). Such an estimate is not interpretable, by and large. Our general advice is to

avoid post hoc story-telling with respect to �̂, no matter how tempting (or satisfying) the story might

seem.
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15.7.2. Continuous mixture models using numerical integration

Now, we’ll consider models where we assume that the individual heterogeneity is continuous logit-

normal. The basic ideas underlying continuous mixture models are relatively simple. First, we assume

a population where individual encounter probabilities were randomly drawn from a logit-normal

distribution, specified by a known �? and �2
? . The continuous mixture model is implemented in MARK

for using the Huggins estimator, extended by including an individual random effect for the encounter

probability (?8:) of each individual 8 constant across occasions : = 1, . . . , C on the logit scale following

McClintock et al. (2009) (see also Chapter 19), Gimenez & Choquet (2010), and White & Cooch (2017):

logit(?8:) = �: + &8 ,

with �: a fixed effect modeling time, and &8 a normally distributed random effect with mean zero and

unknown variance �2
? . Hence

?8: =
1

1 + 4G?(−(�: + �?/8))
,

where /8 ∼ #(0., 1). Therefore, individual 8 on occasion : has the probability of being encountered

?8: =

∫ +∞

−∞

1

1 + 4G?
(
−(�: + �?/8)

) !(/8)3/8 ,

where !(/8) is the probability density function of the standard normal distribution. The estimate of

population abundance, #̂ , is obtained following Huggins (1989) as the summation across animals

encountered ≥ 1 time,

#̂ =

"C+1∑

8=1

(
1

?∗8

)
,

where

?∗8 = 1 −

∫ +∞

−∞

:∏

8=1

(
1 −

1

1 + exp
(
−(�: + �?/8)

)
)
!(/8)3/8 .

Because this integral does not have a closed form, the likelihood must be integrated numerically

– in program MARK, this is accomplished using Gaussian-Hermite quadrature (McClintock et al. 2009,

Gimenez & Choquet 2010, White & Cooch 2017).

To demonstrate the mechanics, we’ll start with the same simulated data set we used in the preceding

section where we introduced discrete-mixtures (mixed_closed1.inp). Recall that these encounter data

were simulated using the generating model { 50 ,�, ?(·) = 2(·)} – 9 occasions, 2 mixtures, # = 2,000,

� = 0.40, and ?�� = 0.25, ?�� = 0.75. In other words, the data do in fact consist of two discrete classes of

individuals, one with an encounter probability of ? = 0.25, the other with an encounter probability of

? = 0.75, with the probability of being in the first mixture � = 0.40. With a bit of thought, you should

realize that this data set is not symmetrical around some ‘mean’ encounter probability.

Start a new project – 9 occasions. We’ll now select ‘Closed captures | Huggins’ p and c with

Random Effects’ as the data type:
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Once you click the ‘OK’ button, MARK will present you with the PIM for the first parameter – in

this case, the parameter is �? (‘sigmap’), the standard deviation of the continuous distribution of the

individual variation in encounter probability p:

As you can see, there is only a single ‘cell’ in the PIM – meaning, we assume that �? is constant over

all sampling intervals. The is analogous to assuming the � is a constant over time in discrete mixture

models.

If we look at the default PIM chart

we see that we have the standard Huggins ? and 2 parameters, and only a single ‘blue box’ for the

new ‘sigmap’ parameter. Since �? is a single parameter, and is assumed to be a constant over all

sampling intervals, then the structure of the (linear) models used for ? and 2 is identical to standard

Huggins models. So, we could very easily fit models {�? , ?· = 2·}, {�? , ?· , 2·}, {�? , ?C = 2C} (i.e., models

"0 , "1 , "C , but with an additional parameter, �?). For example, for model {�? , ?C = 2C}, we could

simply modify the PIM chart as shown at the top of the next page.

Now, if you set this model up, and run it, the first thing you’ll notice is that the model takes a lot longer

to run that does a simple {?C = 2C} model. Numerically integrating out the individual heterogeneity as

an individual random effect takes some computation time.

We’ll run this model, and models {�? , ?· = 2·} and {�? , ?· , 2·} as well, and add the results to the

browser:
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If we look at the real parameter estimates, for, say, model {�? , ?C = 2C}, we see estimates for ?C = 2C ,

and for �? :

Of course, over a candidate set of models, we might be interested in model averaged estimates of our

real parameters, but for closed population abundance models, our usual interest concerns the derived

estimate of abundance, #̂ .

Here we see the model-averaged estimate of ¯̂# = 2028.974.

How does this compare to the model-average estimate if we ignore heterogeneity, or if we use a

discrete-mixture approach? If you fit models {?· = 2·}, {?· , 2·}, and {?C = 2C} (i.e., models "0 , "1 , "C ,
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without the additional parameter, �?), the model averaged estimate is ¯̂# = 1941.475, which is quite a bit

different than the estimate from models fit using the individual random effect approach. If instead we fit

mixture models {�, ?· = 2·}, {�, ?· , 2·}, and {�, ?C = 2C} (i.e., models"0 , "1 , "C , but with an additional

mixture parameter, �), the model averaged estimate is ¯̂# = 1994.152, which is only a bit different than

the models fit without any structure to account for heterogeneity. Recall that true # = 2,000 for this

data set, so it appears as if, in this case, modeling heterogeneity as an individual random effect has

performed a bit less well than either using finite mixtures, or ignoring the heterogeneity altogether.

To emphasize the fact that results of using different approaches to heterogeneity can be ‘twitchy’

(from the Latin), here are some summary results from a large series of simulations (1,000) with true

# = 100, �? = 1.0, ?real = 0.35, : = 5 occasions, where the encounter data were generated under true

model "0,'� (i.e., ?· = 2·, with logit-normal variation in ?8 for each individual 8). To these simulated

data, we fit 3 models to the data: {?· = 2·}, {�? , ?· = 2·}, and {�, ?· = 2·}.

For model {?· = 2·}, we see (below) that the distribution of estimates of # from each simulation

(and various moments of the distribution of the estimates), as negatively biased with respect to the true

value of # = 100 (vertical red line). This is entirely as expected:
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For model {�? , ?· = 2·}, where we use GH quadrature to integrate out the individual heterogeneity,
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both the mean and median are unbiased (meaning, the expectation from this model is unbiased with

respect to true # = 100).

On the other hand, if we fit a 2-point discrete mixture model {�, ?· = 2·},
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the mean of the distribution is impressively ‘silly’: >> 5, 000, entirely driven by a few very large, and

very spurious estimates for# (shown in aggregate by the large frequency bar at∼ 250). While there are

approaches for handling these spurious values (say, by penalizing the likelihood), they don’t always

seem to work (especially for low ?, and low number of sampling occasions). But the standard finite-

mixture formulation clearly has some issues for these (and potentially other) situations.

begin sidebar

A convenient short-cut: pre-defined closed population models

It is fair to argue that the main objective for fitting closed population abundance models is to come

up with the best estimate of abundance. Generally, this will involve averaging over multiple models

(model-averaging for closed population abundance estimation is covered in section 14.10).

As part of this process, we will typically fit a candidate set of approximating models to the data –

using either the full or conditional (Huggins) likelihood approach. In many cases, the model set will

consist at minimum of what are commonly referred to as the ‘Otis models’ – described by Otis et al.

(1978). In general this minimal model set consists of some or all of the following 8 models (for either

the full or conditional likelihood approach):

Otis notation Expanded notation K

"0 { 50 , ?(·) = 2(·)} 2

"C { 50 , ?(C) = 2(C)} C + 1

"1 { 50 , ?(·), 2(·)} 3

"C1 { 50 , ?(C) = 2(C) + I} C + 2

"ℎ2 { 50 , ?0 (·) = 20 (·), ?1 (·) = 21 (·),�} 4

"Cℎ2 { 50 , ?0 (·) = 20 (·) + C, ?1(·) = 21(·) + C,�} C + 3

"1ℎ2 { 50 , ?0 (·) = 20 (·) + I, ?1(·) = 21(·) + I, �} 5

"C1ℎ2 { 50 , ?0 (·) = 20 (·) + C + I, ?1 (·) = 21 (·) + C + I, �} C + 4
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At this point in the chapter, building these models ‘by hand’, using a design matrix, is not overly

difficult. But, it can be somewhat time-consuming.

However, there is a time-saving option in MARK which will let you build all or some of these 8

models as ‘pre-defined’ models. From the browser, simply select ‘Run | Pre-defined models’. You

will then be presented with the ‘Setup Numerical Estimation Run’ window. Now, though, instead of

a button for ‘fixing parameters’, you’ll see a button to ‘Select Models’.

If you click this button, you will be presented with the following:

Note that the Otis model naming conventions are used (while perhaps not particularly informative

of the underlying model structure, they are compact). All you need to do is select the models you’d

like to fit. Although not indicated explicitly, all of the models are constructed using a design matrix

(for some models, especially the heterogeneity models, this point might be implicit).

What is not immediately obvious, though, is that if you pick all 8 models, then MARK will fit all

8 models, even if the underlying data types when you started the analysis seems different than one

of the pre-defined models. For example, suppose you start an analysis using the ‘Full likelihood p

and c’ data type. Recall that for this data type, the 3 structural parameters are: ?, 2, 50. There is no �

parameter for finite mixture heterogeneity models. Nonetheless, if you include heterogeneity models

from the pre-defined models list (e.g.,model"Cℎ2), then MARK will go ahead and (i) internally change

the data type from ‘Full likelihood with p and c’ to ‘Full likelihood heterogeneity with pi,

p and c’, and then (ii) fit the pre-defined model to the encounter data.

Related to the preceding, if you want unconditional (Huggins) data types, then you have to have set

the data type to Huggins,andvice versa for full likelihoodmodels.The PIM structure at the time you hit

the ‘Run | Pre-defined Models’ dictates whetheryou get the full orHuggins likelihoods.Forexample,

if you have set the data type to Huggins conditional likelihood, then ‘Run | Pre-defined Models’

present the same 8 models as for the full likelihood approach, plus 4 additional models including

individual random effects:

While in general pre-defined models should be used cautiously – since there isn’t a lot of ‘thinking’
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involved with fitting them to the data – being able to build some of the canonical closed population

abundance models with only a few clicks can be a real time-saver.

end sidebar

Closing comment: individual heterogeneity – the bane of abundance estimation

It is perhaps reasonable to speculate that in preceding example, where the underlying heterogeneity

simulated in the data was truly continuous logit-normal, that GH integration will perform particularly

well, better than a finite-mixture approach which models heterogeneity as if there were in fact discrete

‘groups’ of individuals. However, in the absence of strong prior information (or, ‘expectation’) about the

form of the heterogeneity (at the least, continuous versus discrete), it is probably somewhat misleading

to imply that one approach or the other will be the most robust in modeling heterogeneity.

While the approaches discussed in the preceding can be effective, the single best way to minimize

the bias caused by individual heterogeneity is to get ? as high as possible – the ‘big law’ of capture-

recapture design. When ? is high there is little room for variation and little chance that an individual

is not detected.

Bill Link (2003, 2004) demonstrated that different models of the form of individual heterogeneity

can lead to very different estimates of abundance and fit the data equally well. The magnitude of the

differences in abundance estimates is related to ?; when ? is small the differences can be large. Therefore,

to have much hope of estimating abundance with little bias, capture probability must be relatively high.

In addition, the primary issue with using the individual random effects estimator (and likely discrete-

mixture approaches as well) in adequately fitting complex models is obtaining an adequate number of

occasions to be able to estimate �? (or �) with any precision. A lower level of > 5 occasions is likely

necessary to achieve reasonable performance for either the continuous- or discrete-mixture approaches

(White & Cooch 2017).

Individual heterogeneity is a common source of bias, typically causing capture-mark-reencounter

estimates of population abundance to be biased low. Continuous- and finite-mixture models may be an

effective approach to eliminate this bias when an adequate number of capture occasions are available

and detection probabilities are relatively high. To have much hope of estimating abundance with little

bias, we reiterate the ‘big law’ – encounter probability must be relatively high.

In sampling situations with low encounter probabilities (? ≤ 0.2), and a low number of samples

( ≤ 5), the investigator will need to be aware of the potential for biased estimates, and evaluatewhether

or not the direction of bias (which reflects the estimator – generally negative for models that do not

account for heterogeneity, and potentially positive for models that do account for heterogeneity) is

important in the applied context. For example, for management of small, threatened populations, the

potential ramifications of under-estimating (negative bias) or over-estimating (positive bias) abundance

are clearly of some importance.

15.8. Misidentification models

The likelihoods and cell probabilities get more complicated when we want to include the possibility

of misidentification into the cell probabilities. In order to do this we must assume that (i) an individual

encountered more than once is correctly identified (i.e., individuals captured on multiple occasions

are correctly identified – owing to the greater amount of information gathered on which to base the

identification), and (ii) individuals encountered only once may or may not be correctly identified.

First, we consider the closed capture cell probabilities without finite mixtures. We will add the

possibility of misidentification (where  is the probability of correctly identifying the individual) to
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the probabilities for a 4-occasion full likelihood closed population capture-recapture model:

history cell probability

1000 ?1(1 − 22)(1 − 23)(1 − 24) + ?1(1 − )

0100 (1 − ?1)
[
?2(1 − 23)(1 − 24) + ?2(1 − )

]

0010 (1 − ?1)(1 − ?2)
[
?3(1 − 24) + ?3(1 − )

]

0001 (1 − ?1)(1 − ?2)(1 − ?3)
[
?4 + ?4(1 − )

]

1100 ?122(1 − 23)(1 − 24)

1010 ?1(1 − 22)23(1 − 24)

1001 ?1(1 − 22)(1 − 23)24

1110 ?12223(1 − 24)

1101 ?122(1 − 23)24

1011 ?1(1 − 22)2324
...

...

In the encounter histories for individuals encountered only once their probability expression is a

summation across the two possible ways the history could have occurred; for example, consider history

‘0100’; captured for the first time, marked and released alive at occasion 2. Conditional on being alive

and in the sample (i.e., available for capture) over the entire sampling period, then the probability

of observing encounter history ‘0100’ is
(
1 − ?1

)
(the probability of not being captured at the first

occasion), times the sum of (1) the probability the individual was correctly identified and not seen

again (?2(1 − 23)(1− 24), or (2) the individual was misidentified and therefore unable to be seen again

?2(1 − ).

When misidentification occurs, the constraint that #̂ ≥ "C+1 no longer holds. It is possible that

enough animals are misidentified such that the number detected is greater than the number that actually

exist in the population. Second, this increase in the numbers of animals supposedly encountered causes

the estimated probability of detection to be smaller than it should be. The effect of these two factors is

to cause the estimated abundance #̂ to be too high.

To account for these problems, the sum 5̂0 +"C+1 must be adjusted for mis-identification error, ̂:

#̂ = ̂
(
5̂0 +"C+1

)
.

Therefore, in these models where misidentification is possible MARK presents 5̂0 in the real param-

eter output and #̂ in the derived parameter output as it is a function of more than one parameter.

15.8.1. Joint heterogeneity and misidentification models

Both the simple and complex heterogeneity models are available for the misidentification closed

capture models (i.e., they are available data types). However, incorporation of both misidentification

and heterogeneity typically leads to inconclusive results, in that misidentification is somewhat (almost

totally) confounded with heterogeneity. Intuitively, misidentification is detected by too many animals

only appearing once in the encounter histories. Thus, a large amount of individual heterogeneity may

appear as misidentification, and vice versa, misidentification may appear as individual heterogeneity.

So, you can build models with both heterogeneity and misidentification, but there is a very good

chance you won’t be able to do much with the results.
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Claudendo dicta: The issue of ‘misidentification’ in the broad sense has been largely ‘solved’ in an

important, albeit non-trivial paper by Bill Link and colleagues (Link et al. 2010). The methods described

in this paper are not at present implemented in MARK. Until then, the misidentification methods as

available in MARK (as described above) might be helpful, if the level of misdentification rate is low.

15.9. Goodness-of-fit

In general, testing model fit in the closed-population capture-recapture models remains an unresolved

issue, even more so than in other capture-recapture model types. A central component of the problem

stems from the fact that there often is no unique way to compute a saturated model. If one was only

concerned about time variation in capture probability, then goodness-of-fit is fairly straightforward.

When individual heterogeneity is added into the problem there is an infinite set of possible models for

heterogeneity. Thus, no unique goodness-of-fit exists.

In past, several tests of model assumptions have been developed for the closed-population capture-

recapture models (Otis et al. 1978: 50-67, White et al. 1982: 77-79). The seven tests examine the fit of

specific model forms relative to other specific models or vague alternatives (i.e., the model fails to

fit for unspecified reasons). These tests are available in MARK through CAPTURE by selecting the

‘Appropriate’ check box in the CAPTURE window. The tests were developed largely as a means of

model selection in the absence of another method. Now that MARK employs AIC2 as a selection

criterion and that it has been shown the model averaged estimates of # have better properties than

single-model estimates (Stanley & Burnham 1998), the tests of Otis et al. (1978) have fallen out of use.

Typically, estimating over- dispersion (2) from the observed number of individuals associated with

each possible encounter history is complicated by the large number of encounter histories with very low

expected frequencies, especially when the average encounter probability is low. Commonly, an estimate

of overdispersion is based on Pearson’s "2 lack-of-fit statistic.

Recently, David Fletcher (Fletcher 2012) and colleagues (Afroz et al. 2020) have proposed a new

approach which appears to work very well, at least for models (with or without heterogeneity), based

on the Huggins conditional likelihood:

2̂ =
2̂G
Ā
,where Ā =

1

�

�∑

8=1

H8
�̂8
.

Here, 2̂G is the estimatorofoverdispersion basedon the Pearson"2 statistic (i.e., the Pearson"2 statistic

divided by the degrees of freedom, where �? is included in the parameter count for the random effects

models because it is an estimated parameter – D. J. Fletcher,University of Otago,personal communication),

H8 and �8 are the observed and expected number of individuals with encounter history 8, and� = 2C −1

is the number of observable histories over C occasions. One of the problems with using Pearson’s statistic

for sparse data is that the 8th term involves dividing by �8 , which will often be very small. The new

estimator makes an allowance for this because the 8th term in the denominator also involves dividing by

�̂8 . Simulations suggest that this new estimator also performs better than those based on the deviance.

White & Cooch (2017) showed that the Fletcher 2̂ showed very good potential to detect individual

heterogeneity, which would generally be of some importance in the context of abundance estimation.

There are a couple of issues which you need to take into account in applying this approach. First, losses

on capture or ‘dots’ in the encounter history will create encounter histories that are not considered in

the total number of possible encounter histories. That is, the total number of possible encounter histories

is based on no missing data. Second, parameter values that cause a reduction in the total number of

encounter histories will bias the 2̂ estimate. Examples of such reductions are an occasion with ? = 0, or
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transition probabilities fixed to 0 or 1 in the multi-state data types.

For application of the Fletcher 2̂ to other data types (e.g., open Cormack-Jolly-Seber models, multi-

state models...), see Chapter 5.

15.10. Model averaging and closed models

Model averaging is particularly important in the closed models because selecting a single model tends

to be especially problematic when a parameter, in this case# , is in the multinomial coefficient. Typically,

abundance would be the only parameter for which we’re interested in a model averaged estimate. The

basic concepts and mechanics of model averaging were introduced in earlier chapters.

To compute a model averaged estimate forabundance, select ‘Output | Model Averaging’ then either

‘Real’ or ‘Derived’ from the menu. Select the appropriate parameter by checking the box from the PIM

window that opens. Here, it will be especially important to note the check box in the lower left-hand

corner of the model averaging window (highlighted in the red oval, below).

The highlighted ‘check box’ selects whether model averaging is performed across multiple data types.

It is legitimate to model average across data types that are based on the same likelihood, but not across

those based on different likelihoods.

What do we mean by ‘different likelihoods’? Well, if you look back at the figure at the top of p. 4 in

this chapter, you’ll see that closed population abundance models are broadly dichotomized based on

whether ‘ 50, is included in the likelihood’ (referred to as ‘full likelihood’ models), or not (referred to

as ‘conditional likelihood’ or ‘Huggins’ models). Also recall that within either the full or conditional

likelihood models, there are 2 discrete classes of models, depending on whether or not heterogeneity

in encounter probability is being modeled using a finite mixture approach. In a moment, we’ll discuss

why this is important.

First, why is it not legitimate to average over models with different likelihoods? Recall that model

averaging is based on an average of parameters over a candidate model set, where the conditional

estimates from each individual model are weighted by normalized AIC weights. Also recall that the

AIC is calculated as the sum of −2 ln(L) + 2 parameters. If the underlying models have different

likelihoods, then it would clearly not be correct to model average parameters based on AIC weights

normalized over those models.

However, while it is not possible to model average between different models based on conditional

or unconditional likelihoods, there are two fairly simply approaches which allow you to accommodate

the additional problem of averaging over models with and without finite mixtures. The approaches are

based on the simple observation that all models are in fact mixture models – but, simply, some of those

models have only a single mixture group. These models are, in fact, entirely equivalent conceptually to

standard models without mixtures.

We demonstrate model averaging by considering analysis of some simulated data (contained in
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N_avg.inp): true # = 2,000, 9 sampling occasions. We’ll begin by assuming no heterogeneity in ?

or 2, and will use the ‘Full likelihood p and c’ data type (i.e., 50 is included in the likelihood) for

our analysis of these data.

To start, we’ll fit 2 simple models: { 50 , ?C = 2C} and { 50 , ?C = 2C + I}, where the latter model allows for

an additive constant I between the two encounter types (recall that this model is equivalent to "(1C),

specifying both a ‘behavior’ effect, and a ‘time’ effect). The DM for the more general of our 2 candidate

models, { 50 , ?C = 2C + I} is shown below:

For DM corresponding to the simpler, nested model { 50 , ?C = 2C} – we simply delete the column in

the DM corresponding to the ‘encounter type’ (encgrp).

Here are the model fit results for these 2 models:

If we stopped here, and model averaged abundance, our model averaged estimate (based on these 2

models) would be ¯̂# = 1,996.97, with an unconditional ŜE = 2.40.

Let’s re-analyze these data using a model which assumes heterogeneity in encounter probability,

using a finite mixture approach. Our purpose here is to consider model averaging over models with

and without mixtures (in other words, based on different data types). In order to do this, we need to

build the mixture models within the same ‘MARK project’ (since we can only average across models

within a given results browser). To do this, we’re going to tell MARK that we want to ‘change the

data type’ within our current analysis, from ‘Full likelihood p and c’ to something else (a mixture

model).
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We do this by selecting ‘PIM | Change Data Type’:

MARK will then present all the available data types which are consistent with your data, letting you

select the one you want to change to. Here, we select ‘Full likelihood heterogeneity pi, p and c’:

Once we’ve selected the new data type, MARK will ask you how many finite mixtures you want to

model. We’ll accept the default of 2 mixture groups. MARK will then drop you back into the browser –

the only indication that the underlying data type has been changed is that the title of the results browser

now says ‘Full likelihood heterogeneity pi, p, and c’.

The PIM chart (below) is another indication that the underlying data type has changed:
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We see (above) that the default model now has the mixture parameter, �, with full time dependence

for both encounter parameters, ? and 2.

Here, we’ll fit model { 50 ,�, ?�,C = 2�,C + I� , ?�,C = 2�,C + I�} to the data (i.e., {?C = 2C + I}, but

separately within each of the 2 mixture groups). The DM for this model is shown below:

If we fit this model to the data, and add the results to the browser (below), we see that this new

‘heterogeneity model’ gets roughly 84% of the support in the data among our 3 candidate models:
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But, our interest here concerns model averaging. If at this point, having just fit the heterogeneity

model, { 50 ,�, ?�,C = 2�,C + I� , ?�,C = 2�,C + I�}, we run through the (by now) familiar mechanics of

model averaging for # , we would see only one model reported in the model averaging output (shown

at the top of the next page).

Why only one model, and not all three? Simple – at present there is only one model in the browser

based on the ‘currently active’ data type (i.e., full likelihood with 2 finite mixtures). MARK knows

that the other 2 models in the current model set were constructed using the a different data type (‘full

likelihood without mixtures’), and thus doesn’t try to average over them. Alternatively, if you select (by

right-clicking and retrieving) eitherof the other two models we constructed using the ‘Full likelihood

p and c’ data type (i.e., { 50 , ?C = 2C} or { 50 , ?C = 2C + I}), and then model average, the model averaging

will be based on these 2 models only (since they share a common data type).

Note: Not only is MARK ‘smart enough’ to recognize which models in the browser are based on the

same data type, but it is also smart enough to re-calculate AIC weights during the averaging to include

only those models with the common (active) likelihood structure. So, the model averaged estimated

is correctly reported as ¯̂# = 1,996.97, with an unconditional ŜE = 2.40 (identical to what we reported

earlier for these 2 models, before we changed the data type).

Back to the problem at hand. Remember at the outset of this section we alerted you to the default (se-

lected) option in the model averaging procedure in MARK, to ‘only select models for the current

data type’ (as circled in red, below).

This is the option which ‘tells MARK’ to average only over models of the current data type.

However, our apparent inability to model average over the complete model set represented in the

browser seems unfortunate, since we might imagine a full candidate model set with and without

heterogeneity models, over which we’d like to derive a model averaged estimate for abundance, #̂ .

What can we do?

We suggested earlier that there are 2 related approaches you can adopt to average over all 3 models

– both of which are based on the same assumption. For either approach, the key conceptual step

is to realize that any model constructed using the ‘Full likelihood p and c’ data type is simply
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a heterogeneity model constructed using the ‘Full likelihood heterogeneity pi, p, and c’ data

type, with one important constraint – fixing � = 1. (Similarly, any model constructed using ‘Huggins p

and c’ is simply a ‘Huggins heterogeneity p and c’ model, again after fixing � = 1).

If you think about it for a moment, this should make sense – the ‘Full likelihood p and c’ data

type is simply a heterogeneity model with only one mixture group (i.e., where � = 1). So, you could,

if you wanted to, force the ‘Full likelihood heterogeneity pi, p, and c’ data type to fit models

for the ‘Full likelihood p and c’ data type, simply by fixing the mixture parameter � to 1. We’ll

consider this approach in a moment.

The quickest approach to handling model averaging in this case is to ‘tell MARK’ to ignore the fact

that, structurally, there are two different data types in the browser. We can do this here because, in fact,

the ‘Full likelihood p and c’ data type is simply a full likelihood heterogeneity model where � is

fixed to 1. In other words, although the models represent two different data types, they have the same

underlying likelihood structure. In fact, one data type is equivalent to the other, subject to a particular

constraint on one of the parameters (i.e., fixing � = 1).

So, we run through the mechanics of model averaging, except that this time, we ‘turn off’ the option

to restrict averaging to only models of the current data type, by unchecking the appropriate check-box,

as shown below:

Now,when you uncheck this option,MARK will respond with the following rather ominous warning

message when you try to average over models:

In this instance, we’ll assume our underlying logic is correct, and so we can proceed with the final

steps of model averaging abundance # .

Here are the estimates:
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We see that now, MARK averages over all 3 of the models in the browser – the model averaged

estimate for abundance is ¯̂# = 1,998.10, with an unconditional ŜE = 2.80

However, are these estimates correct? Did we in fact ‘know what we were doing’ when we overrode

MARK’s warning about averaging over data types? Was our underlying logic that in fact these models

have the same underlying likelihood structure correct? We can prove to ourselves that ‘we got things

right’ (and confirm that MARK has given us the correct estimates using the preceding approach) by

(i) reconstructing the model set using the same data type for all three models, and (ii) manually fixing

� = 1 for two of them. While this is easy enough in principle, in practice this approach will require some

thought, since you’re going to need to think through carefully which columns in the ‘Full likelihood

heterogeneity pi, p, and c’ data type DM you need to keep, or modify, when you are reducing the

number of heterogeneity groups to 1 (i.e., single mixture group).

To start, have another look at the DM for model { 50 ,�, ?�,C = 2�,C + I� , ?�,C = 2�,C + I�}, shown on

p. 40. Notice that there is a column for ‘hetgrp’, to account for the 2 mixture groups in this model. If

we want to force this model to be equivalent to a model without heterogeneity, without switching the

underlying data type, we need to do 2 things: (1) delete the ‘hetgrp’ column from the DM, and (2) fix

� = 1 before starting the numerical estimation run.

Go ahead and delete the ‘hetgrp’ column from the DM. What is the model represented by this DM?

If you look closely, and think about it a bit, you’ll realize that without the ‘hetgrp’ column, you’re left

with model {?C = 2C + I}. Go ahead and run this model – call it ‘f0,pi=1,p(t)=c(t)+z’ (we’ll use ‘pi=1’

in the model name to indicate we built this model using only a single mixture group). Remember to fix

� = 1 before starting the numerical estimation.

When finished, add the results to the browser:

The deviances for model ‘f0,pi=1,p(t)=c(t)+z’ and model ‘f0,p(t)=c(t)+z’ are identical (meaning,

they are the same model!).

Next, how would we build model {?C = 2C}, using the heterogeneity model approach? Simple – in

addition to deleting the ‘hetgrp’ column, we now also delete the ‘encgrp’ column (leaving only ’pi’,

’incpt’, the time columns (’t1’ → ’t9’), and N). Go ahead and delete the ‘encgrp’ column, fix � = 1, and

add the results to the browser (call this model ‘pi=1,p(t)=c(t)’).

Again, we see that fits for model ‘f0,pi=1,p(t)=c(t)’ and model ‘f0,p(t)=c(t)’ are identical

(meaning, once again, that they are the same model!).

OK, now for the big moment. We’ve proven to ourselves that we can build models for the ‘Full
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likelihood p and c’data type using the‘Full likelihood heterogeneity pi, p, and c’data type,

simply by fixing � = 1, and making appropriate modifications to the DM (paying particular attention

to terms involving the ‘heterogeneity group’ column). So, in fact, we could have built all 3 candidate

models ({?C = 2C}, {?C = 2C + I} and {�, ?�,C = 2�,C + I� , ?�,C = 2�,C + I�}), using the ‘Full likelihood

heterogeneity pi, p, and c’ data type – meaning, a single common data type. Meaning, we can

model average overall 3models without overriding the default option in MARK that prevents averaging

over models built using different data types.

Go ahead and delete models ‘p(t)=c(t)+z’ and ‘p(t)=c(t)’ from the browser, leaving only those

models built using the ‘Full likelihood heterogeneity pi, p, and c’ data type (i.e., all 3 models

in the browser are based on the same underlying data type).

Go ahead and derive a model averaged estimate for ¯̂# , based on these 3 models – without unchecking

the ‘Only select models for the current data type’ (since these models are all of the same data

type):

Using this approach, the model averaged estimate for abundance is ¯̂# = 1,998.10, with an uncondi-

tional ŜE = 2.80, which are identical to the estimates we derived earlier.

Given the preceding, there is a fair argument to be made that you should only use the ‘heterogeneity

pi, p, and c’ data types (for either the full or conditional likelihoods), since it allows you to model

average over all the candidate models. However, keeping track of ‘encounter groups’ and ‘heterogeneity

groups’ does require more work to get things right. As long as you understandwhatyou’re doing,simply

forcing MARK to average over both data types is decidedly quicker. But, remember – you can only

average over models with a common likelihood structure: full likelihood (with and without mixtures),

or Huggins’ conditional likelihood (with and without mixtures).

On the other hand, the situation is mechanically much simpler if you (are willing to) assume the

heterogeneity among individuals is continuous logit normal – in other words, use the ‘Huggins’ p

and c with Random Effects’ data type. In that case, you would simply apply the constraint �? = 0

(analogous to using the � = 1 constraint for the finite mixture models approach just described, above).

In this way, you could build an entire symmetrical model set, where each model has a version where

‘heterogeneity is turned off’ (i.e., by fixing �? = 0), along with the same model where heterogeneity is

‘left turned on’ (i.e., by not fixing �?). We can demonstrate this by fitting models {?(C) = 2(C), �? > 0},
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{?(C) = 2(C), �? = 0}, {?(C) = 2(C) + I, �? > 0}, and {?(C) = G(C) + I, �? = 0}. For the second and fourth

models, respectively, we fix �? = 0.

The results of fitting these four models to the encounter data in N_avg.inp are below:

We see that models {?(C) = 2(C), �? > 0} and {?(C) = 2(C) + I, �? > 0} have most of the support in the

data, with the simpler model (without an additive effect of recapture) having twice as much support as

the next best model. The results clearly support the hypothesis that there is heterogeneity in the capture

probability among individuals in the sample.

Model averaging estimates of # is straightforward, since all of our candidate models are clearly of

the same data type. We simply need to remember that for the Huggins conditional likelihood, # is

estimated as a derived parameter. So, we need to select ‘Output | Model Averaging | Derived’. The

resulting estimate is ¯̂# = 1998.795, with an unconditional SE of (̂� = 2.640, both very close to the model

averaged estimates derived using the finite mixture approach (above). But, arguably with a fair bit less

‘work’ involved in building the models.

So,shouldyou conclude thatyou shouldroutinely use the‘Huggins’ p and c with Random Effects’

data type? While there are clear advantage in adopting this approach, there are at least a couple of

reasons why you might not want to. First, you might not ‘believe’ that individual heterogeneity in

capture probability is continuous logit normal distributed. Second, and of much more practical consid-

eration, the ‘Huggins’ p and c with Random Effects’ models, which are based on Gauss-Hermite

quadrature to numerically integrate out the random effect, are much more time consuming to run. A

model set which might take a minute or so to run in its entirety using finite mixtures to model the

heterogeneity might take many more minutes (sometimes, many, many more) to complete.

15.10.1. Estimating CI for model averaged abundance estimates

The usual (simplest) approach to estimating the confidence interval for a given parameter makes use

of asymptotic variances, covariances – typically, these can be generated from the information matrix

for models with maximum likelihood estimates (this is discussed elsewhere). However, there is a basic

problem with applying this ‘classical’ approach to estimates of abundance – specifically, the classical

approach requires asymptotic normality of point estimates #̂ , and this assumption is frequently not

met for any number of reasons.

An alternative approach is to focus on the number of animals that are not caught ( 50), where 50 =

(# −"C+1) (this relation was introduced earlier in this chapter). On the assumption that this quantity

follows a log-normal distribution (which has been generally confirmed by various authors), then lower

and upper CI interval bounds for #̂ are given by‗

[
"C+1 +

(
5̂0/�

)
, "C+1 +

(
5̂0 × �

) ]
,

where

‗ There is a typographical error in the equation for � in the Williams, Nichols & Conroy book (p. 304, section 14.2.4). The version
presented here is correct.
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5̂0 = #̂ −"C+1 and � = exp

{
1.96

[
ln

(
1 +

v̂ar( ¯̂#)

5̂ 2
0

)]1/2}
.

Note that since #̂ = "C+1 + 5̂0, then v̂ar(#̂) is exactly the same as the variance of 5̂0, because "C+1 is

a known constant.

As such,

v̂ar(#̂)

5̂ 2
0

=
v̂ar( 5̂0)

5̂ 2
0

= ĈV( 5̂0)
2.

Commonly in these kinds of calculations, the square of the CV (coefficient of variation) of 50 is

embedded in the formula.

It is important to note that the lower bound of this confidence interval cannot be smaller than

"C+1, but the upper bound frequently is larger than the upper bounds computed with the information

matrix under the assumption of normality. This is the approach used by MARK to derive the CI for #̂

(regardless of whether # is a derived or real parameter).

Now, how do we handle the calculation of the CI for the model averaged estimate of abundance, ¯̂#?

From Buckland et al. (1997), the estimated unconditional (i.e., model averaged) variance v̂ar( ¯̂�),

calculated over models
{
"1 , "2, . . . , "'

}
is given as

v̂ar
( ¯̂�

)
=

'∑

8=1

F8

(
v̂ar

(
�̂8

�� "8

)
+

(
�̂8 −

¯̂�
)2

)
, where ¯̂� =

'∑

8=1

F8 �̂8 .

Here, the F8 are the Akaike weights (Δ8) scaled to sum to 1. The subscript 8 refers to the 8Cℎ model.

The value ¯̂� is a weighted average of the estimated parameter � over ' models (8 = 1, 2, . . . , ').

This estimator of the unconditional variance is clearly the sum of 2 components: (i) the conditional

sampling variance v̂ar(�̂8 |"8) (i.e., conditional on model "8), and (ii) a term for the variation in the

estimates across the ' models, (�̂8 −
¯̂�)2. The sum of these terms is then merely weighted by the Akaike

weights F8 .

Thus, the unconditional standard error would be given as

ŜE
( ¯̂�

)
=

√
v̂ar

( ¯̂�
)
.

OK – given all this, back to the original question – how do you estimate the confidence interval for

model averaged abundance estimates?

We’ll demonstrate the mechanics by means of a worked example. Suppose you fit 3 different full

likelihood models ({?C = 2C , 50}, {?· , 2· , 50}, {?· = 2· , 50}) to some closed capture data (bbsample.inp -

8 capture occasions), where "C+1 = 43.
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Here is a tabulation of the relevant results of fitting these models to the data:

model QAIC2 F8 #̂ v̂ar(#̂)

{?· = 2· , 50} 115.364 0.676 53.604 25.737

{?· , 2· , 50} 117.201 0.270 50.867 43.398

{?C = 2C , 50} 120.395 0.055 53.117 24.257

Now, we first need to calculate the unconditional variance of #̂ . Since our model averaged estimate

of �̂ is given as

¯̂� =

'∑

8=1

F8 �̂8 ,

then ¯̂# is given as

¯̂# =

'∑

8=1

F8#̂8

= (0.676 × 53.604) + (0.270 × 50.867) + (0.055 × 53.117)

= 52.839,

and

v̂ar
( ¯̂#

)
=

'∑

8=1

F8

(
v̂ar

(
#̂8

�� "8

)
+

(
#̂8 −

¯̂#
)2

)

= 0.676
[
25.737 +

(
53.604 − 52.839

)2]
+ 0.270

[
43.398 +

(
50.867 − 52.839

)2
]

+ 0.055
[
24.257 +

(
53.117 − 52.839

)2
]

=
(
17.794 + 12.751 + 1.329

)
= 31.867.

In fact, MARK (correctly) handles the calculation of the unconditional variance for you – you would

simply need to take the reported unconditional SE and square it to get the unconditional variance. But

you need to calculate the CI by hand.

To do so, we first calculate

� = exp

{
1.96

[
ln

(
1 +

v̂ar
( ¯̂#

)

5̂ 2
0

)]1/2}
.

Since "C+1 = 43 for this data set, and since ¯̂# = 52.839, then

¯̂
50 =

¯̂# −"C+1

= (52.839 − 43)

= 9.839,
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and thus

� = exp

{
1.96

[
ln

(
1 +

v̂ar
( ¯̂#

)

5̂ 2
0

)]1/2}

= exp

{
1.96

[
ln

(
1 +

31.867

(9.839)2

)]1/2}
= 2.845.

Last step. Now that we have a value for �, we can derive the 95% CI as

[
43 +

(
9.839/2.845

)
, 43 +

(
9.839 × 2.845

)]
= [46.458, 70.992].

OK, this seems like a lot of work,but in this particular example, it was necessary. If we had simply used

the ‘automatic’ model averaging in MARK, the CI reported by MARK for ¯̂# is [41.775, 63.905]. There

is clearly a fundamental problem with this CI, since the lower bound is less than "C+1 (41.775 < 43).

Clearly, this makes no sense whatsoever. In contrast, the CI we derived ‘by hand’ does not bound "C+1.

Not only was the reported lower-limit of the CI too low, but the upper limit was as well.

Now, in the preceding example, there was an obvious ‘problem’ with the simple model-averaged CI

for ¯̂# reported by MARK. However, even if the lower bound of the reported CI is ≥ "C+1, don’t take

this as evidence that the reported CI is correct.

For example, consider fitting models { 50 , ?(·) = 2(·)} and { 50 , ?(·), 2(·)} to the ‘Carothers A’ data set

(found in the \examples subdirectory created when you installed MARK).

Here is a tabulation of the relevant results of fitting these models to the data:

model QAIC2 F8 #̂ v̂ar(#̂)

{ 50 , ?(·) = 2(·)} −99.7370 0.63460 368.128 212.944

{ 50 , ?(·), 2(·)} −98.6330 0.36540 392.480 1234.986

If we had used the model averaging option in MARK, the model averaged estimate is ¯̂# = 377.027,

and the reported 95% CI is [324.292, 429.761]. For this data set, "C+1 = 283, so, in one sense at least,

the reported CI for the model average abundance estimate seems reasonable, since the lower limit of the

CI is greater than "C+1 (i.e., 324.292 > 283). How does the reported CI compare with the one derived

using the calculations presented above?

Again, we start by first deriving an estimate of the variance of the model averaged abundance:

v̂ar
( ¯̂#

)
=

'∑

8=1

F8

(
v̂ar

(
#̂8

�� "8

)
+

(
#̂8 −

¯̂#
)2

)

= 0.63460
(
212.944 +

(
368.128 − 377.027

)2
)

+ 0.36540
(
1234.986 +

(
392.480 − 377.027

)2
)

= 723.910.

Note that if we were to fit these models in MARK, the unconditional SE for the model averaged

abundance would be reported as 26.9045. If we square this value, we get (26.9045)2 = 723.901.
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Again, the unconditional SE – and thus the variance – reported by MARK is correct (i.e., you do

not need to calculate the SE – or variance – by hand. We are simply demonstrating the underlying

calculations).

However, the CI as reported by MARK is not correct – this, you need to do by hand.

As in the first example, we first calculate

� = exp

{
1.96

[
ln

(
1 +

v̂ar
( ¯̂#

)

5̂ 2
0

)]1/2}
.

Since "C+1 = 283 for this data set, and since ¯̂# = 377.027, then

5̂0 =
¯̂# −"C+1

= (377.027 − 283) = 94.027.

Thus,

� = exp

{
1.96

[
ln

(
1 +

723.910

(94.027)2

)]1/2}

= 1.733.

Final step. Now that we have a value for �, we can construct the 95% CI around the model averaged

estimate ¯̂# = 377.027 as

[
283 +

(
94.027/1.733

)
, 283 +

(
94.027 × 1.744

)]
=⇒

[
337.26, 445.94

]
.

Recall that if we had used the model averaging option in MARK, the reported model averaged 95%

CI was [324.292, 429.758]. Again, these reported lower- and upper-limits of the CI are both different

than the ones we just calculated ‘by hand’.

The general recommendation, then, is to calculate the 95% CI for the model averaged abundance ‘by

hand’, using the procedure outlined above.

begin sidebar

Profile confidence intervals – careful!

In chapter 1, we introduced the profile likelihood approach to constructing confidence intervals.

Typically, to construct a CI based on the profile likelihood, you take the value of the log likelihood

at the maximum (−16.30 in the example, shown in the figure at the top of the next page), add 1.92

to it (preserving the sign), and look to see where the line corresponding to this sum (−18.22 =

−[16.30 + 1.92]) intersects with the profile of the log likelihood function. The two intersection points

of this line and the profile correspond to the upper- and lower-bounds of the CI.

For closed population abundance estimators, there is need to be cautious in using profile likelihoods

to generate CI, having to do with the fact that abundance estimates are not [0, 1] bounded parameters.

The maximum bound (if in fact one exists) is determined by the likelihood. There are situations for

some closed models where the upper bound of the likelihood profile → ∞.
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Forexample,take the likelihood formodels { 50, ?(C) = 2(C)} (i.e.,model"C) andmodel { 50, ?(·), 2)(·)}

(i.e., model "1), fit to some data. The likelihood profiles for both models are shown below:
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We see that the likelihood profile for model { 50 , ?(C) = 2(C)} rises to the MLE (vertical dotted line),

and then falls, such that the horizontal dashed line corresponding to the MLE−1.92 intersects the

likelihood at 2 points (which represent the two bounds of the 95% CI). On the other hand, for model

{ 50 , ?(·), 2)(·)} the likelihood rises, but then never falls to <2 units from the MLE – and, as such, there

is no upper bound for the profile likelihood!

end sidebar

15.11. Parameter estimability in closed models

It is important to examine the real parameter results to see if ?C = 1.0 and #̂ = "C+1. This would indicate

that the model you constructed was not estimable. Be careful – incorrectly built models may appear very

good in terms of AIC2 . If you don’t know what "C+1 is for a particular data set, it can be found in the

full model output labeled as ‘M(t+1)’.

In addition, it has been noted several times that a constraint must be placed on ?C in order to properly

estimate # . It is straightforward to demonstrate that an estimate of ?C is necessary to get an estimate of

# . We’ve already done it once. We’ll do it again here to make sure you don’t forget.
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Consider the following estimator of # from a C = 3 occasion capture-recapture study,

#̂ =
"C+1

1 −
[ (

1 − ?̂1

) (
1 − ?̂2

) (
1 − ?̂3

) ] .

Now if ?̂3 = 1, then the denominator in the estimator above equals 1. Thus, the estimate of #̂ = "C+1.

Let’s consider the estimability of the ?’s, now that we know we need ?̂C to get #̂ . The first ? is estimable

because we have information in the subsequent capture occasions about the proportion of marked and

unmarked animals captured. This goes for each ? until we get to ?C . On the last occasion, there are no

future occasions from which to pull information. Thus, we must place a constraint of ?C . The constraint

can be in the form of modeling ?C as a function of previous ?’s or as a function of the recaptures, or by

constraining estimates to be functions of one or more covariates. Recall that constraining parameters as

linear function of a covariate can often ‘solve’ identifiability issues.

15.12. Other applications

Closed population capture-recapture models have been used for other applications beyond estimating

the number of individuals in a population. There is a natural extension to estimating the number of

species in an area. In this case,encounterhistories representdetections of species rather than individuals.

Heterogeneity in detection probability among species is virtually guaranteed.

Closed capture-recapture models and modifications thereof are widely used in human demography.

There they are typically referred to as multiple list sampling. Several lists containing people from a

population of interest, for example drug users in a city, act as sampling occasions. Individuals are

matched across lists to estimate abundance.

The closed population capture-recapture models underpin the secondary sampling periods in a

robust design (Kendall et al. 1997; see Chapter 16). It is therefore essential to understand the closed

captures models in order to fully understand the robust design

15.13. Summary

Despite a seemingly simple goal, estimating abundance can be quite difficult. The closed capture-

recapture models contain numerous, subtle complications. MARK offers a framework for a variety

of models addressing different assumptions, compares models and most importantly model averages

estimated abundance.

An additional advantage of MARK is the ability to combine data from multiple study sites. It is too

often argued in the ecological literature that capture-recapture is not useful because the sample size at

any one trapping grid is too small. Through the use of groups, MARK allows data from multiple grids

to be used to jointly estimate detection probability. While this may bias the estimate of # somewhat

for each individual grid, it remains a better solution than using minimum number known alive as an

index. Moreover, MARK handles all of the covariances among the # ’s estimated from common data.
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Addendum 1 – testing equality of estimated abundance between

groups

In section 15.2.1, we noted that because MARK reports #̂ as a derived parameter (this is true whether

you use models based on either the full or conditional likelihoods), comparing abundance estimates

between (say) two groups is not as simple as building a model where you set #1 = #2. Remember, you

can only apply constraints to parameters that are included in the likelihood. Since abundance # isn’t

in the likelihood, you can’t build models that explicitly constrain # .

However, we also recall that #̂ = 5̂0 +"C+1, and since "C+1 is a constant, then #̂ ∝ 5̂0. So we might

wonder if constraining 5̂0 (which is in the likelihood for the full likelihood models) be equivalent to

constraining #̂? As noted in section 15.2.1, the answer is ‘no’, conceptually, since it makes little logical

sense to ask ‘is the number never caught ( 50) is the same in the 2 locations?’, which is exactly what you’d

be asking if you set (say) 5̂0,grp 1 = 5̂0,grp 2 in the design matrix.

However, we can in fact address the question of comparing abundance estimates, by making use

of the Markov Chain Monte Carlo (MCMC) capabilities in MARK. If we were using a specialized

MCMC application, like JAGS, or BUGS, we could simply create a derived parameter as a function of

other parameters in the model (which could be either real, or derived), and then analyze the posterior

samples for this derived parameter (this ability to explicitly code functions of parameters is one of the

real conveniences of using MCMC, typically in but not confined to a Bayesian framework).

The MCMC capabilities in MARK (which are discussed in much more detail than we show here

in Appendix E) do not allow the explicit construction of a user-specified derived parameter. However,

we can accomplish the same thing, albeit in a slightly more ‘brute-force’ way, but simply (i) taking the

individual sample chains from the MCMC simulations, (ii) deriving the function of these parameters

over the chains – in this case, calculating the difference between the derived estimates of abundance,

and (iii) evaluating this difference as the posterior distribution for the difference (which it is). In fact,

this is equivalent to what JAGS or BUGS does, except that instead of calculating the difference in the

derived abundance estimates at each step of the sampler, we simply do it post hoc – after the samplers

are finished.

More specifically for our problem:

1. We’ll first fit a closed population abundance estimation model – we’ll use the Huggins

conditional likelihood – to simulated data where there are 2 groups (with true #1 = 100

and #2 = 108. So, the true difference in abundance between the two is 8).

2. We’ll then re-run this approximating model, using the MCMC capabilities in MARK. The

MCMC.BIN file that will get created will have the posterior estimates for the two derived

parameters (being, estimated abundance), for each group (i.e., #̂1, #̂2), which are referred

to in MCMC.BIN as ‘derived1’ and ‘derived2’, respectively.

3. We will import the MCMC.BIN into a statistical program (for this demonstration, we’ll use R),

and ‘post-process’ the data in MCMC.BIN, creating a derived variable we might call ‘diff’,

which is the difference between derived1 and derived2, the derived abundance estimates

for the two groups. [So, in fact, ‘diff’ is a derived variable of two other derived variables.]

4. Finally, we’ll look at the distribution of this derived ‘diff’ variable, and if it doesn’t bound

0, you might safely conclude there is a real difference in estimated abundance between the

two groups.

OK, let’s see how this is done. For this demonstration, we’ll consider 3 separate datasets, all simulated

under the same generating model, {? = 2}, using a Huggins conditional likelihood: diff_highp.inp,
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diff_medp.inp, and diff_lowp.inp. These 3 simulated datasets differ from each other only in terms of

the underlying detection probabilities (high, medium, and low). Each consists of 2 groups (where true

abundance for group 1 was 100, and true abundance for group 2 was 108), 5 sample occasions. To add

a bit of uncertainty to the simulated data, we set the encounter probability for group 2 to be somewhat

lower than for group 1: for diff_highp.inp, ?1 = 0.6, ?2 = 0.5; for diff_medp.inp, ?1 = 0.4, ?2 = 0.3;

and for diff_lowp.inp, ?1 = 0.2, ?2 = 0.1).

For any of the 3 simulated data sets (we’ll compare results from all 3 later), we first fit model {grp, ? =

2} (i.e., the generating model) to the data. For purposes of demonstrating the steps, we’ll consider

diff_highp.inp. We’ll use a logit link (for reasons discussed in Appendix E). At this point, building

and fitting this simple model should be straightforward. Here is the results browser after fitting this

model to the data:

and the derived estimates for the two groups:

We see that the derived estimates are both quite close to the true values used in simulating the data.

The arithmetic difference between the two derived estimates is 7.14. The question might be – ‘is this

difference larger than 0, such that we could conclude that there is a difference between the 2 groups?’. We

observe that both derived estimates are reported with estimates of the uncertainty for each parameter,

and as such, we could try applying some post hoc statistical approach to comparing them (any standard

biometry text is likely to have at least one approach to estimating the significance of a difference of two

values, where each value has an associated uncertainty). We might also consider an approach which

explicitly accommodates covariance between the estimates – one such approach, based on the ‘Delta

method’, is discussed at length in Appendix B.

Here, though, we will simply apply some post hoc processing of MCMC samples to directly address

the question of whether or not the uncertainty of the difference between the two derived estimates of

abundance bounds 0. To start, we simply re-run the same model we just ran, but only after we first check

the ‘MCMC Estimation’ box in the ‘Setup Numerical Estimation Run’ window:
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Once you click the ‘OK to Run’ button,MARK will respond with a window (below) where you specify

the MCMC parameters that will specify aspects of the numerical estimation (see Appendix E for a

complete discussion of these parameters):

What is generally important is that we want a sufficient number of samples (at all stages) to ensure

that the samplers have converged on the stationary joint distribution. For this example we’ve used 4,000

‘tuning’ samples, 6,000 ‘burn in’ samples, and 100,000 samples from the posterior distribution. We’ve

also specified only a single chain, with no convergence diagnostics. We click the ‘OK’ button, and let

it run (for this problem, the estimation run is very fast – this will not always be the case for MCMC

analysis!).

Once finished, MARK will output the results to the editor. If you scroll down to the bottom of

the output listing, you’ll see various macro values that can be used for post-processing of the chains

for each parameter. These macro values are copied into SAS or R programs that are provided in the

MARK helpfile. We’ll demonstrate the mechanics using R.

For our simulated data, fit using model {grp, ? = 2}, the R macro values are:

ncovs <- 2; # Number of beta estimates

nmeans <- 0; # Number of mean estimates

ndesigns <- 0; # Number of design matrix estimates

nsigmas <- 0; # Number of sigma estimates

nrhos <- 0; # Number of rho estimates

nlogit <- 2; # Number of real estimates

nderived <- 2; # Number of derived estimates

filename <- "C:\\USERS\\USER\\DESKTOP\\MCMC.BIN"; # path to MCMC.BIN file

So, all we do is copy this into the appropriate section at the top of the R script provided in the MARK

helpfile. The script is fairly lengthy, so we won’t reproduce it in full here. Instead we’ll focus on the

additional steps you’ll need to execute in order to derive an estimate of the variance for the product of

the first 3 survival estimates.
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First, copy the macro variables (above) into the R script, and execute it ‘as is’. This will create an

MCMC ‘object’, called ‘mcmcdata’, that is compatible with one of several R packages (e.g., coda). This

object contains each of the individual Markov chains, for each parameter.

Normally, what you’d do at this point is use some package, like coda, to post-process the chains, and

generate various descriptive statistics and associated graphics. However, what we want to do here is

estimate the difference between the two derived estimates of abundance. To do this, we will (i) extract

the chains for the derived abundance estimates, which are labeled ‘derived1’ and ‘derived2’ from the

mcmcdata object, (ii) calculate the difference between the two, and (iii) generate various descriptive

statistics for this difference.

While there are any number of ways you might do this in R, the following works well enough. The

first thing we do is convert the MCMC ‘object’ (mcmcdata) to a dataframe. We’ll call this new dataframe

‘chaindata’:

chaindata <- as.data.frame(mcmcdata);

Next, we’ll add a column to this new dataframe for the difference (‘derived2’-‘derived1’), and label

this new column ‘diff’. Note, in the dataframe, these parameters are referred to (by their column names,

which are explicitly set by the preceding R script) as ‘derived1’ and ‘derived2’, respectively:

chaindata$diff <- chaindata$derived2-chaindata$derived1;

All that’s left is to look at the summary statistics for this difference. The following snippet of R code

will probably suffice (here, we use the 95% HPD – highest posterior density – to evaluate whether or

not the posterior distribution includes 0 – see Appendix E for discussion of HPD.) You need to revert

chaindata back to an MCMC object, using the as.mcmc command to do so, however.):

cat("basic summary stats of diff in derived abundance estimates \nn")

print(summary(chaindata$diff));

cat("variance of difference...\n")

print(var(chaindata$diff));

hold <- as.mcmc(chaindata$diff)

hpd <- HPDinterval(hold,prob=0.95)

print(hpd)

hist(chaindata$diff,xlab = expression(paste(diff((derived[1] - derived[2])))),

main="Posterior density of difference in abundance estimates")

abline(v=hpd[1],col="blue")

abline(v=hpd[2],col="blue")

Here are the resulting summary statistics for diff_highp.inp (your results might differ, slightly –

MCMC is a ‘Monte Carlo’ procedure, and each run will yield a slightly different chain):

basic summary stats of diff in derived abundance estimates

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.887 6.481 7.113 7.201 7.827 13.017

variance of difference...

[1] 1.042797
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95% HPD on difference...

lower upper

var1 5.320796 9.247095

So, the mean difference between our two abundance estimates is 7.2, with a 95% credibility interval

(based on the HPD) of [5.321, 9.247], that does not bound 0. The posterior distribution and the 95%

cutoffs based on the HPD (vertical blue lines) is shown in the following histogram generated by the

preceding code:

Posterior density of difference in abundance estimates
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Based on the summary results, it might be quite reasonable to conclude that there the difference in

population sizes between the two groups is significantly greater than 0.

On the otherhand,ifwe repeatallof these steps,but insteadanalyze the encounterdata indiff_lowp.inp

instead (where the encounter probabilities are much lower),

basic summary stats of diff in derived abundance estimates

Min. 1st Qu. Median Mean 3rd Qu. Max.

-56.905 -5.198 7.315 10.701 22.800 219.939

variance of difference...

[1] 541.7442

95% HPD on difference...

lower upper

var1 -28.41012 58.57325

we observe that even though the median/mean difference is similar to the value from our first analysis,

the estimated variance is much larger (541.7 vs 1.04). This is reflected in the much wider credibility

interval (again based on the HPD) of [−28.41, 58.57]. This interval clearly bounds 0 (as shown in the

histogram shown at the top of this page), so here, we would not be comfortable concluding there is a

real difference in population size between the two groups.

For completeness, let’s also consider the results using the simulated data in diff_medp.inp, where

the encounter probabilities were ‘intermediate’ between the two data sets we’ve just considered. Here,

the variance of the estimate difference is 24.7, with a 95% credible interval based on the HPD of

[−0.205, 18.959].

Comparing the credible intervals among the 3 data sets re-emphasizes a critical point – precision of

our estimates increases with increasing detection probability. The ‘big law’ for abundance estimation

Chapter 15. Closed population capture-recapture models



Addendum 1 – comparing abundance estimates 15 - 59

Posterior density of difference in abundance estimates
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(and ‘mark-reencounter’-type analyses in general) is that you should do your best to increase detection

probabilities as much as you can.

Quick aside here – the simulation capabilities in MARK (Appendix A) are extremely helpful in

planning your study – should you mark more new individuals, or should you work harder to detect

the individuals you have already marked? In this example, it is clear that you would need to have fairly

high encounter probabilities in order to detect (based on some criterion – say, with 95% probability) a

true difference in abundance as small as was simulated in the encounter data.

So there you go...using MCMC in MARK to assess the difference in abundance estimates between

two groups. In fact, the MCMC approach in MARK has a lot of value added beyond this particular

application (for example, calculating the variance of a product of parameters – see Addendum to

Appendix E). Its fairly easy to use it to generate mean/variances of all sorts of functions of derived

parameters. As noted earlier, the only difference between what MARK does, and what (say) JAGS or

OpenBUGS does it that the latter calculates the derived values at each step of the chain, whereas with

MARK, you post-process the chain. The former (i.e., what JAGS or OpenBUGS does, for instance) is

computationally more convenient, but the latter approach (that MARK uses) yields identical results.

model averaging?

One final point – the preceding steps were applied to a single model (being, model {grp, 2 = ?}).

Typically, you will (and should) have more than one model to fit to the encounter data. In the context

of model averaging abundance estimates (and by extension, model averaging the derived differences

in abundance estimates), the simplest approach‗ would be to:

1. derive MCMC estimate of the difference in abundance, for each model in the candidate

model set. You could then model average these differences (using normalized AIC weights)

in the usual fashion. This is straightforward.

2. then, using Buckland’s expression for the unconditional variance from Chapter 4 (and

as illustrated here in this chapter – section 15.10.1) derive a model averaged estimate for

the variance of the difference between estimates of abundance, and then construct the

appropriate unconditional CI for that (again, as discussed in section 15.10.1).

‗ meaning...without resorting to ‘fancy’ things like reversible jump MCMC and related technologies (which are unlikely to be
implemented in MARK – and are not easy to implement even in more general ‘languages’ like JAGS or OpenBUGS).
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Addendum 2 – heterogeneity modeling for other data types

Heterogeneity is a common, verging on ubiquitous issue, regrdless of the data type, or type of analysis

you’re working with. When individual animals do not behave identically with the same exact detection

or survival probability, extra-binomial variation or overdispersion occurs. Each animal has its own

parameter value, leading to parameter heterogeneity. The extra-binomial variation causes standard

errors of parameter estimates to be too small, i.e., too precise, because this extra variation is not

recognized in the model.

Two approaches are available in MARK for some data types to model individual heterogeneity. While

there are no perfect solutions to handling heterogeneity in general, use of discrete- and continuous-

mixture models has proven to be a robustapproach in many cases. In bothcases,more than≥ 5 occasions

are required to be able to detect and account for individual heterogeneity in any reasonable way. That

is, the animal (or plot for occupancy) must be observed multiple times to be able to detect and estimate

the heterogeneity.

Finite-mixture models

Pledger (2000) and Pledger et al. (2003) proposed using finite-mixture models to model heterogeneity.

This approach has been implemented for the ‘encounter probability’ parameter in MARK for a variety

of data types, and for both ‘encounter’ and ‘survival’, or ‘survival’ only for others:

data type parameter(s) with mixture option chapter(s)

closed captures ?, 2 15

robust design ?, 2 16

Cormack-Jolly-Seber !, ? 3 → 8

Pradel ? 13

robust-design Pradel ? –

Link-Barker ? 12

Seber dead recovery ( 8

occupancy (single season) ? 22

occupancy (multi-season) ? 23

Continuous-mixture models

The second method of modeling individual heterogeneity is to add a normally-distributed random

error with standard deviation � to the logit value of the parameter, then numerically integrate out this

random error. The first data type in MARK that did this was the logit-normal mark-resight estimator

(McClintock & White 2009, McClintock et al. 2009, Chapter 18). Gimenez & Choquet (2010) proposed

the same approach for Cormack-Jolly-Seber models. Because of the relative simplicity and ‘biological

realism’ of the approach, it has been incorporated with a number of MARK data types.

Because the random effect is numerically integrated out of the model using Gaussian-Hermite

quadrature (this chapter,Gimenez & Choquet 2010,White & Cooch 2017), the computer time to run these

models is significantly greater than the corresponding model without the random effect. The default
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in MARK is to integrate over 101 nodes, so roughly 101 times the computing time is needed compared

to the data type that does not include the random effect. Further, for data types that have multiple

random effects, such as the Cormack-Jolly-Seber or Link-Barker, the integration loops are nested. So for

the Cormack-Jolly-Seber data type with random effects being estimated for both ! and ?, the CPU time

will be approximately (101 × 101) = 10,201 times longer than a normal Cormack-Jolly-Seber model.

The number of nodes for Gaussian-Hermite quadrature canbe set in the ‘File | Preferences’ dialog

window. The minimum value allowed is 15, and the max 505. For 505 nodes, the weights are zero for

at least 15 nodes in each tail, so more nodes doesn’t actually improve precision in the tails. The default

(101) tends to work very well for most purposes.

A nice feature of this approach is that the estimate of the � parameter modeling the individual

heterogeneity is available. Thus, you can get some idea of how much individual heterogeneity is

provided around the mean value on the logit scale. Further, the � parameter can be set to zero to

evaluate the impact of individual heterogeneity. In all cases, fixing the � parameter to zero will give

exactly the same likelihood value as the model not including the random effect(s).

Data types in MARK where the individual random effects methodology has been implemented are

shown in the following:

data type parameter(s) with Gauss-Hermite option chapter(s)

mark-resight logit ? 19

closed abundance, Huggins ?, 2 15

robust design, Huggins !, ? 3 → 8

Cormack-Jolly-Seber !, ? 3 → 8

multi-state (, ?,# 10

robust-design Pradel ? –

Link-Barker !, ?, 5 12

Burnham live-dead (, �, ?, A∗ 10

Seber dead recovery (, A∗ 9

occupancy ? 22

known-fate († 17

density ? 21

(∗) Parameters marked with a (∗) can have a random effect specified mainly for simulation
purposes. Because these parameters are only observed once in the probability of an encounter
history, the random effect � is not identifiable.

(†) S in the ‘known fate’ data type can be modeled with the saturated model in MARK. That is,
you can create the saturated model and hence not be able to estimate the �( parameter because
you have made it not identifiable.
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