CHAPTER 14

The multi-state Jolly-Seber model

William Kendall, USGS Colorado Cooperative Fish & Wildlife Research Unit

In Chapter 10 the multistate model was presented, conditioning on the first capture of an individual
and then tracking its fate and detections through time to estimate state-specific survival probabilities
and probabilities of transition among phenotypic states, locations, sub-populations, disease states,
etc; all of this while accounting for state-specific detection probabilities. In Chapter 12 Jolly-Seber
models were presented. Under the POPAN version of this model (Schwarz & Arnason 1996; Chapter
12.3.2), for each individual first detection probabilities are modeled as well as subsequent detections.
Part of modeling that first detection is to also model first entry probabilities, which could represent
births, immigration, or some other kind of first arrival. Other parameters estimated are total number
of individuals in the population during the study, period-specific abundances, and period-specific
numbers of new recruits. In this chapter we present how to implement a combination of these two
model structures, a multistate Jolly-Seber (MSJS) model (similar to Dupuis & Schwarz 2007).

14.1. Sampling protocol and model structure

The idea behind this model is illustrated in the diagram shown at the top of the next page. It represents
a system with two states, A and B, modeled over three time periods. N * individuals will enter the
system over those three time periods. Arrows between states represent survival and state transitions
and arrows pointing out of the system represent mortality (or permanent emigration from the system).
Individuals from this superpopulation recruit to state A or B with probability 7 or (1 — 1), respectively.
Those that will recruit to state A do so in sampling periods 1, 2, or 3 with probability penty, pents, and
penty, respectively, with a similar pattern for state B. For each state the pent’s sum to 1.0.

For the survival, transition, and detection processes, in addition to state and time dependence we
incorporate age (length of time since the individual has recruited to the system) in addition to time.
So individuals in state A who have been in the system for 2 sampling periods to date survive with
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probability , and given survival, remain in state A with probability QD?A( or transition to state B

with probability I{J?B(“). Individuals in state B survive with probability S?(’Z) and given survival, remain

in state B with probability 1,0?3(”) or transition to state A with probability gb?A(“). Finally, for those in
state A or B during sampling period f, which have been in the system for a sampling periods, the
probability of detection is p?(”) or pf(”), respectively. Full age and time structure for a parameter would
be overparameterized, but this general structure at least allows for restrictive models that incorporate
both effects (e.g., survival as a general function of time period and a linear function of time since arrival).
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Rather than having N™ as a parameter in the model (i.e., in the model likelihood), we instead condition
on those individuals 1" that are detected at least once during the study, with probability p*, which is a
function of all the model parameters listed above.

There are two principal contexts in which this model could be useful. The first is the case where time
periods represent seasons or years, and therefore the interpretations of the parameters are as stated,
where S denotes survival, pent denotes some kind of recruitment, and N represents annual abundance.
The second context is where data are collected across time periods within a season of interest (e.g., at
migratory stopover areas, at multiple sea turtle nesting beaches), so that N refers to the total number
of individuals that used the multiple sites in that season, 7 is the probability that, e.g., for that season a
sea turtle will deposit her first clutch of eggs at beach A; pent® refers to the probability an individual
that will deposit that first clutch during sampling period ¢, S?(a) is the probability that a female that
has deposited a clutch at beach A during sampling period ¢, and has deposited a previous clutches that
season, persists in the system to deposit another clutch during sampling period t + 1, and yD?B(”) is the
probability that next clutch will be deposited at beach B. This scenario is an extension of the within-
season sampling and modeling described in the multistate open robust design model (Chapter 16;
Kendall et al. 2019).

14.1.1. Data

The data structure for this model is identical to the multistate model of Chapter 10. For each of K
sampling periods detections are denoted by a state-specific code (e.g., A, B) and non-detections by a
‘0”. So, example detection histories for the 2-state, 3-period study might be ‘A0B’, “0BB’, etc. The model
structure for these two example histories is shown in the table at the top of the next page.

The expression for p” is based on summing the probabilities of being detected for the first time in
each time period. It gets complex quickly with more time periods and benefits from the use of matrix
multiplication. Below is the case for just two time periods:

p' = [r-pentipl + (A= mpentp? | + [n{pent{ (1 - pt)S{p14ps +v1p3) + pents py'}

+(1 - m){pent} (1 - p*)ST (1 ps + wi’p3) + pents p3 }|
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14.1.2. Estimation

Under this multinomial model we can use maximum likelihood to estimate most parameters of the
model. However, as with the Jolly-Seber model, there is confounding of parameters at the beginning
and end of the times series. Detection probabilities for time periods 1 and K cannot be estimated without
constraints. Estimation of detection probability relies on marked individuals and therefore parameter
pj for state s cannot be estimated. In addition, py is confounded with Si_; and ¢§_;. In addition, as
with the Jolly-Seber model, it’s assumed that unmarked and previously marked individuals have the
same capture probability.

14.1.3. Derived Parameters

There are anumber of derived parameters from MARK for the MSJS model, whose variance is developed
via the Delta method (Appendix B).

e Total abundance

The first is the total number of individuals that are in the system at some time during the study, N
The value is not of interest in many cases, especially for a multi-year study. However, this model
can be applied to an open multistate process within a season, such as sea turtles arriving at and
moving among various nesting beaches, where N” refers to the total number of nesters. Regardless,
the derivation of this estimator is

p

where 1" is the total number of individuals detected during the study.

e State-specific, period-specific abundance

Method 1

Like total abundance, when all states are observable abundance for each state s in sampling period
t can be derived by inflating the count based on detection probability,

With total abundance for period t derived from the sum over all M states

M
N, = > Ky,
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Method 2

An alternative approach is to derive period- and state-specific abundance from total abundance and
then the dynamics of the system thereafter. The general expression is in terms of matrix multiplication
(Kendall et al., in prep) but an example would be (ignoring age-dependence for simplicity):

A

fif 2 ——AAA A o [——B 2B~ —B
NE =K [7‘( pent, SRPRE (1 - 7'(){pent1 SPPPP 4 pent, H
This approach is useful where there are unobservable states, and therefore Method 1 is not an option.

e Phenology parameters

Three additional derived parameters are computed which are most meaningful for the case where
the data are collected within a given season. These are expected period of first ingress to the system,
expected period of last egress from the system, and expected time of residence in the system. To
explain the derivation of these parameters we’ll use the simple case of three sampling periods and
two states A and B.

Expected Ingress and Egress Periods

Expected period of arrival to the system (2) would be an average weighted by the probability of first
arrival, in either state:

a=1-(npentt +(1—m)penty) +2- (mpentsy + (1 —n)pents) +3- (npenty +(1— ) pents).

Expected departure period g (meaning, departure immediately after sampling period g) involves a
more complicated weighted average accounting for arrival and then departure — for example the case
of two time periods:

g=1-[npent}(1-5%) +(1~-mn)pent;(1-57)]
+2- [rn{pent ST (1" (1-57) + 917 (1= 52)) +penty (1-57)}
+ (1= m{pentyS? (Y7 (1= 83) + ¢ (1= 87)) +penty (1= 57)}].

e Expected Residence Time

There are two approaches to estimating the expected number of time periods an individual spends
in residence in the system (e.g., in either or both states).

Method 1

The first is easily derived once a and g are estimated, and is essentially the difference between the
two:
&+1)—a;

Method 2

The second is applicable only where persistence probability S f(a) is independent of state and time,
and only dependent on the number of periods since first arrival. As in Kendall et al. (2019) expected
residence time for a three-period study would be:

|[1x (1=5)] + [2x (51°) (1= 5| + [3x (") (5"
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14.2. Implementation of the MSJS model in MARK

To demonstrate implementation of the model we’ll use the example of a fish species that exist in two
different creeks (N and T). It’s suspected that there is some movement between creeks from year to year,
and interest is in annual abundance for each creek, as well was survival and movement. A sample of
the data (the complete encounter history data are contained in fish_stream.inp) over seven years is
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0T00000
0TT0000

T T T TG ST

In MARK, the MSJS model is listed with the other multistate models:

Select Data Type

" Live Recaptures (CJS) Title for this set of data:

-
doint Live and Dead Encounters | 3 4,1 <tate with Live Encounters — Pick One *
" Known Fates

" Closed Captures
" Robust Design

" Dead Recoveries

Mutti-state with Live Recaptures

Mutti-state with Live Recaptures with 2 Random Effects
Multi-state with Live Recaptures with 3 Random Effects
Multi-state Jolly-Seber

¢ Muti-state Recaptures only
" Jolly-Seber

" Pradel Models Including Robust Def

The specification screen for the MSJS model is identical to the MS model (chapter 10):

Title for this set of data:
|fish example - MSJ5

Encounter Histaries File Name: Click to Select File

Results File Name:

Encounter occasions: | 7 il Set Time Intervals Default Time Intervals Used
Attribute groups: | 1 ﬂ Enter Group Labels Default Group Labels Used
Individual covariates: | 0 jl Enter Ind. Cov. Names Default Ind. Cov. Mames Used

States: | 2 jl Enter State Names Default State Names Lsed
Mistures: | 2 :I

Enter labels and names to identify each state oK Cancel Default

1 |N— M creek
2 |T— T creek
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Looking at the PIM chart for this 2-state, 7-period analysis (below), you can see the various PIMs for
this model.
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...........

Consistent with the parameter description above there are two PIMs, one for each state, for survival
(S), detection (p), state transitions (i), and recruitment or ingress (pent). Notice also from the chart the
number of parameters in each PIM, given there are 7 sampling occasions. For p there are 7 columns, one
for each occasion. For S and i there are 6 columns, one for each time interval. For pent there are also 6
columns, although there are 7 pent’s, one for each time period. Because pent’s apply to each individual
in the superpopulation, which must enter the system some time during the study, the pent’s for each
state must sum to 1.0. Therefore there are 6 pent’s explicitly estimated, with the 7th not listed, computed
by subtracting the sum of the estimated parameters from 1. MARK permits you to choose either the
first or last pent by subtraction. More about that below. The final parameter r is a single parameter in
the case of two states (one flip of the coin to determine which state an individual will eventually recruit
to). With s > 2 states there would be s — 1 columns in the  PIM, and as in the case of pent, one would
be derived by subtraction.

You can see below that the PIMs for ¢, p, and S are triangular rather than a single row like the POPAN
model from Chapter 12 (because the POPAN model only permits time variation on parameters).
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This is to allow for age in the parameters. Unlike the PIMs of the multistate model from Chapter 10,
the rows of the PIM are not based on the time since first capture, but the time since entering the system.
This entry could be due to birth or immigration. For a within-year study for a migratory species, entry
could be due to arrival to the study area (e.g., to breed).

With this model, like with the multistate model, you can specify which state transition probabilities
(which have to add to 1.0) you compute by subtraction of the others from 1. At the top of the screen you
would select ‘PIM | Change PIM Definitions’, which will lead you to the screen:

Select the PIM to Obtain by Subtraction
Specify which PIM to obtain by subtraction

Strata N [Psi Nto N -

Strata T:: [Psi Tto T -

You can also designate whether the first or last pent for each state is computed by subtraction. After
making your choice(s) for which transitions to compute by subtraction, when you click on OK the screen
below will appear, and there you choose which pent will be computed by subtraction:

Select the pent to Obtain by Subtraction
Specify which value of pent to obtain by subtraction

pent: nent(0) already |

Before running a model make sure the link functions for each parameter are appropriate. There are
a number of options for most parameters (e.g., Sin, Logit). For those parameters whose values must
sum to < 1 you will need to use the ‘Mlogit’ link (see Chapters 10, 12, and 16). Below is an example set
of link functions for model ‘{S(c*.), p(c*.),psiTN(c*.), pent(c*t),pil}’ for the fish example. Since
Zle pentf] =1.0and Zle penttT = 1.0 there are separate Mlogit links for each set.

Specify Link Values x
Specify Parameter-Specific Link Function Values for {S(c*).plc” ) psiTN().pent(c"t).pi PIM}
1:5N: [Logt - 11:pent N: ’W‘
25T: [Logt - 12:pent N: ’W‘
Ip N: [Logi - 13pent T: ’W‘
4pT: [logt - 14:pent T: ’W‘
5:PsiNto T [Logt - 15;pent T: 'W‘
6:Psi Tto N [Logt - 16pent T [Miogt2) |
Tpent N: ,W‘ 17pent T: ,W‘
Bpent N: ’W‘ 18pent T: ’W‘
Gpent N: ’Wl 1990 [Logit -
10:pent N: ’m
A W Excd Default Beset Al Paste Help

Running model ‘{S(c*.), p(c*.),psiTN(c*.), pent(c*t),pi}, the real estimates of the model pa-
rameters for the fish example are shown at the top of the next page. In this case movement is rare from
creek T — N but apparently does not occur in creek N, and approximately 46% of individuals recruit
to creek N.

Chapter 14. The multi-state Jolly-Seber model
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Suckers 091422

Real Function Parameters of {S(c*.),p(c*.),psiTN(.),pent(c*t),pi PIM}
95% Confidence Interval

Parameter Estimate Standard Error Lower Upper

1:S N: 9.5384933 0.0197744 0.4995807 0.5769425
2:5 T: 9.5919121 0.0285067 0.5350840 09.6463845

3:p N: @.1685327 0.0125174 @.1454001 0.1945080

4:p T: 0.0730930 0.0087209 0.@577355 0.0921362
5:Psi NtoT 09.7392710E-08 0.5714360E-05 -0.1119275E-04 0.1120754E-04
6:Ps1 T to N 0.0085913 0.0039296 0.00345960 0.0209567
7:ipent N: 09.2516169 0.0132614 0.2265247 0.2784877
8:pent N: 0.2541529 9.0136108 0.2284089 0.2817390
9:pent N: 0.4207359E-23 0.9942147E-16 -0.1948661E-15 09.1948661E-15
10:pent N: @.1008937 0.0108616 ©.0815093 0.1242643
11:pent N: 9.1211070 0.0115416 0.1092439 0.1456094
12:pent N: 0.2464626 0.0128300 0.2221863 0.2724621
13:pent T: 0.5300078 0.0224516 0.4858833 0.5736680
14:pent T: 9.1600354E-22 0.0000000 0.1600354E-22 0.1600354E-22
15:pent T: 0.0126862 0.0226364 09.3718325E-03 0.3074117
16:pent T: 9.1303574 0.0180986 0.0987923 9.179142
17:pent T: 9.0311927 0.0170593 0.0105365 0.0887134
18:pent T: 0.1466542 0.0166067 09.1169975 09.1822765
19:pi 9.4629684 0.0271680 @.4103377 0.5164375

Output for derived parameters is below. The first section is the estimate of N”, the total number of
individuals in the system over 7 years. In this case we don’t associate any particular interpretation to
this number.

Estimates of Derived Parameters
Total Abundance Estimates of {S(c*.),p(c*.),psiTN(.),pent(c*t),pi PIM}
95% Confidence Interval
Grp. N*-hat Standard Error Lower Upper

1 22382.692 1199.3522 20181.374 24890.971
The next section of the derived output contains state-specific annual estimates of abundance using
method 1 described above, where N} = n; /p;.

Abundance Estimates of {S(c*.),p(c*.),psiTN(.),pent{c*t),pi PIM}
95% Confidence Interval

Grp. Str. Occ. Abundance Standard Error Lower Upper
1 N 1 267.01066 44,287717 195.73885 371.98267
1 N 2 2768.2721 236.73340 2341.1885 3273.0162
1 N 3 4157.7880 273.27642 3664 . 0090 4738.0883
1 N 4 2261.6913 204.92974 1897.3608 2703.8376
1 N 5 2276.8652 188.58891 1942.1674 2683.96860
1 N 6 2497.0962 207.45364 2128.1218 2944,3988
1 N 7 3909,9588 312.85931 3354.8522 4581.7793
1 T 1 1792.2352 263.65711 1350.4740 2394.0270
1 T 2 7422.5372 808.23490 6011.1782 9196.2520
1 T 3 4355.7440 617.15611 3317.4798 5758.9987
1 T 4 2708.5585 347.29814 2114.5003 3485.8964
1 T 5 3156.3779 489.69251 2457.9262 A4876.2783
1 T & 2227.1898 299,35621 1718.2858 2981.8564
1 T 7 3869.7892 485.69437 2378.5686 3981.2314

The section of the output that follows contains year-specific estimates of total abundance, summed
across states, with precision and confidence interval.

Chapter 14. The multi-state Jolly-Seber model
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Summed Abundance Estimates of {S(c*.),p(c*.),psiTN(.),pent(c*t),pi PIM}
95% Confidence Interval

Grp. Occ. Abundance Standard Error Lower Upper
1 1 2059,2459 266.86174 1604.5187 2658.7221
1 2 10182.889 835.60255 8685.3018 11971.354
1 3 8513.5320 666.64013 7319.3920 9941.0782
1 4 4969.6498 399.86870 4250, 8568 £823.8305
1 5 5433.2431 446.57164 4634,9588 6391.4444
1 6 4724.2860 359.99037 4076.0464 5491.2622
1 7 6979.7480 5085.36337 6067.1253 80853.4654

Following this, state- and year-specific estimates of abundance using method 2, where abundance is
derived from N and state dynamics, are included. In this case this method is not necessary, since fish
in each state are captured.

Abundance Estimates without TSA of {5(c*.),p(c*.),psiTN(.),pent(c*t),pi PIM}
95% Confidence Interval

Grp. Str. Occ. Abundance Standard Error Lower Upper
1 N 1 267.901049 19.831782 231.41773 309.399@0
1 N 2 2765.08420 205.36829 2396.4591 3203.9985
1 N 3 5019.7973 372.83599 4350.6532 5816.7012
1 N 4 1323.1853 98.277160 1146.8034 1533.2439
1 N 5 2343.7588 174.07827 2031.3334 2715.8356
1 N 6 2314.0910 171.87475 2085.6203 2681.4580
1 N 7 4082.2938 383.20469 3538.1199 4730.3669
1 T 1 1792.2375 213.83691 1423.1462 2266.7568
1 T 2 7832.1381 839.02422 5583.90477 8893.9925
1 T 3 4979.9577 594.17288 3954.3910 6298.4694
1 T 4 2585.7473 3@8.5128@ 20853.2415 3278.3591
1 T 5 3488.7066 416.24743 2770.2464 4412.3893
1 T 6 2011.1368 239.95448 1596.9656 2543.6126
1 T 7 2859.3713 341.15966 2270.5157 3616.4289

The following section contains total abundance by year, based on method 2.

Summed Abundance Estimates without TSA of {S(c*.),p(c*.),psiTN(.),pent(c*t),pi PIM}
95% Confidence Interval

Grp. Occ. Abundance Standard Error Lower Upper
1 1 2059.2480 214.65324 1683.2955 2528.9713
1 2 9797.1881 862.76879 8261.7491 11656.372
1 3 9999, 7550 699,83942 8731.5957 11481.729
1 4 3988.9326 323.30788 3330.4748 4682.8452
1 5 5832.4654 450,35737 5022.2454 6792.8271
1 <] 4325.2277 294.44171 3798.6778 4947 .6085
1 7 6941.6651 455, 26088 6113.1803 7901.7379

The final section of output (shown at the top of the next page) includes estimates for expected ingress
(arrival for within season model) period, expected egress (departure for within season model) period,
and expected residence time in the system for methods 1 and 2 listed above. Again, these parameters
could be of interest for a cross-year study, but are more likely to be of interest in examining phenology
and duration of study area use for a given season.
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Expected Ingress, Egress, and Residence Times 1&2 {S{c*.),p(c*.),psiTN(.),pent(c*t),pi PIM}
95% Confidence Interval

Grp. Estimate Standard Error Lower Upper
1 3.6450389 8.8628476 3.5218495 3.7682122
1 4.5608156 @.8535618 4,4558360 4.6649952
1 1.9149848 8.8637151 1.7981832 2.8398663
1 2.1383658 8.88431e5 1.9731172 2.3036143

14.3. Summary

The MSJS model in MARK should provide a flexible framework for modeling ingress, survival

, state

transitions, and abundance in a variety of contexts. This includes populations and metapopulations
monitored across years, and well as within-year arrival, use, state transitions, and departure for species

that use a study area seasonally.
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