
CHAPTER 14

The multi-state Jolly-Seber model

William Kendall, USGS Colorado Cooperative Fish & Wildlife Research Unit

In Chapter 10 the multistate model was presented, conditioning on the first capture of an individual

and then tracking its fate and detections through time to estimate state-specific survival probabilities

and probabilities of transition among phenotypic states, locations, sub-populations, disease states,

etc; all of this while accounting for state-specific detection probabilities. In Chapter 12 Jolly-Seber

models were presented. Under the POPAN version of this model (Schwarz & Arnason 1996; Chapter

12.3.2), for each individual first detection probabilities are modeled as well as subsequent detections.

Part of modeling that first detection is to also model first entry probabilities, which could represent

births, immigration, or some other kind of first arrival. Other parameters estimated are total number

of individuals in the population during the study, period-specific abundances, and period-specific

numbers of new recruits. In this chapter we present how to implement a combination of these two

model structures, a multistate Jolly-Seber (MSJS) model (similar to Dupuis & Schwarz 2007).

14.1. Sampling protocol and model structure

The idea behind this model is illustrated in the diagram shown at the top of the next page. It represents

a system with two states, A and B, modeled over three time periods. # ∗ individuals will enter the

system over those three time periods. Arrows between states represent survival and state transitions

and arrows pointing out of the system represent mortality (or permanent emigration from the system).

Individuals from this superpopulation recruit to state A or B with probability � or (1−�), respectively.

Those that will recruit to state A do so in sampling periods 1, 2, or 3 with probability ?4=CA1 , ?4=CA2 , and

?4=C
A

3 , respectively, with a similar pattern for state B. For each state the pent’s sum to 1.0.

For the survival, transition, and detection processes, in addition to state and time dependence we

incorporate age (length of time since the individual has recruited to the system) in addition to time.

So individuals in state A who have been in the system for a sampling periods to date survive with

probability (
A(0)
C , and given survival, remain in state A with probability #

AA(0)
C or transition to state B

with probability#
AB(0)

8
. Individuals in state B survive with probability (

B(0)
C and given survival, remain

in state B with probability #
BB(0)
C or transition to state A with probability #

BA(0)
C . Finally, for those in

state A or B during sampling period t, which have been in the system for a sampling periods, the

probability of detection is ?
A(0)
C or ?

B(0)
C , respectively. Full age and time structure for a parameter would

be overparameterized, but this general structure at least allows for restrictive models that incorporate

both effects (e.g., survival as a general function of time period and a linear function of time since arrival).
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Rather than having# ∗ as a parameter in the model (i.e., in the model likelihood),we instead condition

on those individuals =∗ that are detected at least once during the study, with probability ?∗, which is a

function of all the model parameters listed above.

There are two principal contexts in which this model could be useful. The first is the case where time

periods represent seasons or years, and therefore the interpretations of the parameters are as stated,

where ( denotes survival, pent denotes some kind of recruitment, and # represents annual abundance.

The second context is where data are collected across time periods within a season of interest (e.g., at

migratory stopover areas, at multiple sea turtle nesting beaches), so that # ∗ refers to the total number

of individuals that used the multiple sites in that season, � is the probability that, e.g., for that season a

sea turtle will deposit her first clutch of eggs at beach A; ?4=CAC refers to the probability an individual

that will deposit that first clutch during sampling period C, (
A(0)
C is the probability that a female that

has deposited a clutch at beach A during sampling period C, and has deposited 0 previous clutches that

season, persists in the system to deposit another clutch during sampling period C + 1, and #
AB(0)
C is the

probability that next clutch will be deposited at beach B. This scenario is an extension of the within-

season sampling and modeling described in the multistate open robust design model (Chapter 16;

Kendall et al. 2019).

14.1.1. Data

The data structure for this model is identical to the multistate model of Chapter 10. For each of  

sampling periods detections are denoted by a state-specific code (e.g., A, B) and non-detections by a

‘0’. So, example detection histories for the 2-state, 3-period study might be ‘A0B’, ‘0BB’, etc. The model

structure for these two example histories is shown in the table at the top of the next page.

The expression for ?∗ is based on summing the probabilities of being detected for the first time in

each time period. It gets complex quickly with more time periods and benefits from the use of matrix

multiplication. Below is the case for just two time periods:

?∗ =
[
� · ?4=C�1 ?

�
1 + (1 − �)?4=C�1 ?

�
1

]
+
[
�
{
?4=C�1 (1 − ?�1 )(

�
1 (#

��
1 ?�2 + #

��
1 ?�2 ) + ?4=C

�
2 ?

�
2

}

+ (1 − �)
{
?4=C�1 (1 − ?�)(�1 (#

��
1 ?�2 + #

��
1 ?�2 ) + ?4=C

�
2 ?

�
2

}]
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14.1.2. Estimation

Under this multinomial model we can use maximum likelihood to estimate most parameters of the

model. However, as with the Jolly-Seber model, there is confounding of parameters at the beginning

and end of the times series. Detection probabilities for time periods 1 and K cannot be estimated without

constraints. Estimation of detection probability relies on marked individuals and therefore parameter

?
B
1 for state B cannot be estimated. In addition, ?B is confounded with (B −1 and #

AB
 −1. In addition, as

with the Jolly-Seber model, it’s assumed that unmarked and previously marked individuals have the

same capture probability.

14.1.3. Derived Parameters

There are a numberofderivedparameters from MARK for the MSJS model,whose variance is developed

via the Delta method (Appendix B).

• Total abundance

The first is the total number of individuals that are in the system at some time during the study, # ∗.

The value is not of interest in many cases, especially for a multi-year study. However, this model

can be applied to an open multistate process within a season, such as sea turtles arriving at and

moving among various nesting beaches, where # ∗ refers to the total number of nesters. Regardless,

the derivation of this estimator is

#̂ ∗
=

=
∗

?̂
∗ ,

where =∗ is the total number of individuals detected during the study.

• State-specific, period-specific abundance

Method 1

Like total abundance, when all states are observable abundance for each state B in sampling period

C can be derived by inflating the count based on detection probability,

#̂ B
C =

=BC

?̂
B
C

,

With total abundance for period C derived from the sum over all " states

#̂C =

"∑

B=1

#̂ B
C .
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Method 2

An alternative approach is to derive period- and state-specific abundance from total abundance and

then the dynamics of the system thereafter. The general expression is in terms ofmatrix multiplication

(Kendall et al., in prep) but an example would be (ignoring age-dependence for simplicity):

#̂B

2 = #̂ ∗
[
�̂�?4=CA1 (̂

A

1 #̂
AB

1 + (1 − �̂)
{
�?4=CB1 (̂

B

1 #̂
BB

1 + �?4=CB2
}]
.

This approach is useful where there are unobservable states, and therefore Method 1 is not an option.

• Phenology parameters

Three additional derived parameters are computed which are most meaningful for the case where

the data are collected within a given season. These are expected period of first ingress to the system,

expected period of last egress from the system, and expected time of residence in the system. To

explain the derivation of these parameters we’ll use the simple case of three sampling periods and

two states A and B.

Expected Ingress and Egress Periods

Expected period of arrival to the system (a) would be an average weighted by the probability of first

arrival, in either state:

0 = 1 ·
(
� ?4=C

A

1 + (1 − �) ?4=C
B

1

)
+ 2 ·

(
� ?4=C

A

2 + (1 − �) ?4=C
B

2

)
+ 3 ·

(
� ?4=C

A

3 + (1 − �) ?4=C
B

3

)
.

Expected departure period g (meaning, departure immediately after sampling period g) involves a

more complicated weighted average accounting for arrival and then departure – for example the case

of two time periods:

6 = 1 ·
[
� ?4=CA1

(
1 − (A

1

)
+ (1 − �) ?4=CB1

(
1 − (B
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) ]

+ 2 ·
[
�
{
?4=C

A

1 (
A

1

(
#

AA

1

(
1 − (

�
2

)
+ #

AB

1

(
1 − (

B

2

) )
+ ?4=C

A

2

(
1 − (

A

2

)}

+ (1 − �)
{
?4=CB1 (

B

1

(
#

BA

1

(
1 − (A

2

)
+ #

BB

1

(
1 − (B

2

) )
+ ?4=CB2

(
1 − (B

2

)}]
.

• Expected Residence Time

There are two approaches to estimating the expected number of time periods an individual spends

in residence in the system (e.g., in either or both states).

Method 1

The first is easily derived once 0 and 6 are estimated, and is essentially the difference between the

two:

(68 + 1) − 08 .

Method 2

The second is applicable only where persistence probability (
B(0)
C is independent of state and time,

and only dependent on the number of periods since first arrival. As in Kendall et al. (2019) expected

residence time for a three-period study would be:

[
1 ×

(
1 − (

·(0)
8

) ]
+
[
2 ×

(
(
·(0)
8

) (
1 − (

·(1)
8

) ]
+
[
3 ×

(
(
·(0)
8

) (
(
·(1)
8

) ]

.
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14.2. Implementation of the MSJS model in MARK

To demonstrate implementation of the model we’ll use the example of a fish species that exist in two

different creeks (N and T). It’s suspected that there is some movement between creeks from year to year,

and interest is in annual abundance for each creek, as well was survival and movement. A sample of

the data (the complete encounter history data are contained in fish_stream.inp) over seven years is

0T00000 1;

0T00N00 1;

0T00000 1;

0T0T000 1;

0N00000 1;

0T00000 1;

0T00000 1;

0TT0000 1;

In MARK, the MSJS model is listed with the other multistate models:

The specification screen for the MSJS model is identical to the MS model (chapter 10):

Chapter 14. The multi-state Jolly-Seber model
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Looking at the PIM chart for this 2-state, 7-period analysis (below), you can see the various PIMs for

this model.

Consistent with the parameter description above there are two PIMs, one for each state, for survival

((), detection (?), state transitions (#), and recruitment or ingress (?4=C). Notice also from the chart the

number of parameters in each PIM, given there are 7 sampling occasions. For p there are 7 columns, one

for each occasion. For ( and # there are 6 columns, one for each time interval. For ?4=C there are also 6

columns, although there are 7 pent’s, one for each time period. Because ?4=C’s apply to each individual

in the superpopulation, which must enter the system some time during the study, the pent’s for each

state must sum to 1.0. Therefore there are 6 pent’s explicitly estimated, with the 7th not listed, computed

by subtracting the sum of the estimated parameters from 1. MARK permits you to choose either the

first or last pent by subtraction. More about that below. The final parameter � is a single parameter in

the case of two states (one flip of the coin to determine which state an individual will eventually recruit

to). With B > 2 states there would be B − 1 columns in the � PIM, and as in the case of pent, one would

be derived by subtraction.

You can see below that the PIMs for#, ?, and ( are triangular rather than a single row like the POPAN

model from Chapter 12 (because the POPAN model only permits time variation on parameters).

Chapter 14. The multi-state Jolly-Seber model
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This is to allow for age in the parameters. Unlike the PIMs of the multistate model from Chapter 10,

the rows of the PIM are not based on the time since first capture, but the time since entering the system.

This entry could be due to birth or immigration. For a within-year study for a migratory species, entry

could be due to arrival to the study area (e.g., to breed).

With this model, like with the multistate model, you can specify which state transition probabilities

(which have to add to 1.0) you compute by subtraction of the others from 1. At the top of the screen you

would select ‘PIM | Change PIM Definitions’, which will lead you to the screen:

You can also designate whether the first or last pent for each state is computed by subtraction. After

making your choice(s) for which transitions to compute by subtraction, when you click on OK the screen

below will appear, and there you choose which pent will be computed by subtraction:

Before running a model make sure the link functions for each parameter are appropriate. There are

a number of options for most parameters (e.g., Sin, Logit). For those parameters whose values must

sum to ≤ 1 you will need to use the ‘Mlogit’ link (see Chapters 10, 12, and 16). Below is an example set

of link functions for model ‘{S(c*.), p(c*.),psiTN(c*.), pent(c*t),pi}’ for the fish example. Since∑ 
C=1 ?4=C

#
C = 1.0 and

∑ 
C=1 ?4=C

)
C = 1.0 there are separate Mlogit links for each set.

Running model ‘{S(c*.), p(c*.),psiTN(c*.), pent(c*t),pi}’, the real estimates of the model pa-

rameters for the fish example are shown at the top of the next page. In this case movement is rare from

creek T → N but apparently does not occur in creek N, and approximately 46% of individuals recruit

to creek N.

Chapter 14. The multi-state Jolly-Seber model
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Output for derived parameters is below. The first section is the estimate of # ∗, the total number of

individuals in the system over 7 years. In this case we don’t associate any particular interpretation to

this number.

The next section of the derived output contains state-specific annual estimates of abundance using

method 1 described above, where #̂ B
C = =BC /?̂

B
C .

The section of the output that follows contains year-specific estimates of total abundance, summed

across states, with precision and confidence interval.
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Following this, state- and year-specific estimates of abundance using method 2, where abundance is

derived from # ∗ and state dynamics, are included. In this case this method is not necessary, since fish

in each state are captured.

The following section contains total abundance by year, based on method 2.

The final section of output (shown at the top of the next page) includes estimates for expected ingress

(arrival for within season model) period, expected egress (departure for within season model) period,

and expected residence time in the system for methods 1 and 2 listed above. Again, these parameters

could be of interest for a cross-year study, but are more likely to be of interest in examining phenology

and duration of study area use for a given season.

Chapter 14. The multi-state Jolly-Seber model
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14.3. Summary

The MSJS model in MARK should provide a flexible framework for modeling ingress, survival, state

transitions, and abundance in a variety of contexts. This includes populations and metapopulations

monitored across years, and well as within-year arrival, use, state transitions, and departure for species

that use a study area seasonally.
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