CHAPTER 12

Jolly-Seber models in MARK

Carl James Schwarz, Simon Fraser University
A. Neil Arnason, University of Manitoba

The original Jolly-Seber (JS) model (Jolly, 1965; Seber, 1965) was primarily interested in estimating
abundance. Since then, the focus of many mark-recapture experiments changed to estimating survival
rates (but not abundance) using the Cormack-Jolly-Seber (CJS) models (Cormack, 1964; Jolly, 1965; Seber,
1965) particularly with the publication of Lebreton ef al. (1992). In previous chapters concerning analysis
of live encounter data, we have focussed exclusively on CJS models. In recent years, however, interest has
returned to estimating parameters related to abundance such as population growth (A;), recruitment
(f;), as well as abundance (N;).

Much of the theory about estimating population growth, recruitment, and abundance can be found
in Williams et al. (2002).

12.1. Protocol

The protocol for JS experiments is very similar to that of CJS experiments. In each of K sampling
occasions, animals are captured. Unmarked animals are tagged with individually identifiable tags
and released. Previous marked animals have their tag numbers read and are again released.” The key
difference between ]S and CJS experiments is the process by which unmarked animals are captured and
marked. In CJS experiments, no assumptions are made about how newly marked animals are obtained.
The subsequent process of recovering marked animals in CJS models is conditional upon the animal
being released alive at first encounter, and survival and catchability refer only to these marked animals.¥

In JS experiments, the process by which unmarked animals are newly captured to be marked and
released is crucial — the assumptions about this process allows the experimenter to estimate recruitment
and population sizes. In particular, it is assumed that unmarked animals in the population have the
same probability of capture as marked animals in the population, i.e., that newly captured unmarked
animals are a random sample of all unmarked animals in the population.

* One of the reasons for preferring estimation of population growth is that estimates of population growth are fairly robust
against heterogeneity in catchability (Schwarz, 2001), and tag loss (Rotella and Hines, 2005).
¥ Losses on capture are possible at every sampling occasion and are ignored in the discussion that follows.

¥ Of course, we hope that the survival of the marked subset of animals tells us something about the remaining unmarked animals
in the population at large.
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This assumption of equal catchability for marked and
unmarked animals is needed to estimate abundance
or recruitment or population growth and is required
for the Pradel, Link-Barker, POPAN, and Burnham JS
formulations in MARK...

Other assumptions about the experiment are similar to those for the CJS model:

¢ Animals retain their tags throughout the experiment.”
* Tags are read properly.
¢ Sampling is instantaneous.

* Survival probabilities are the same for all animals (marked and unmarked) between
each pair of sampling occasions (homogeneous survival).

¢ Catchablity is the same for all animals (marked and unmarked) at each sampling
occasion (homogeneous catchability). This is the most crucial assumption for JS
models.’

® The study area is constant. If the study area changes over time, then the population
size may change with the changing size of the study area.

There are generally two sources of non-closure in any particular study. Animals may leave the
population through death or permanently emigrate. Conversely, animals may enter the study area from
outside (immigration) or be recruited from within the study area (e.g. fish growing into the catchable
portion of the population). Specific tests for closure have been developed (e.g., Stanley and Burnham,
1999), but more often tests for closure are performed by fitting models with no apparent mortality
(¢ = 1), or no apparent recruitment (f = 0, A = ¢, or b = 0), or both and letting the AIC, indicate the
appropriate weight for such simpler models.

12.2. Data

The basic unit of analysis is the capture history, a sequence of 0’s and 1’s that indicates when a particular
animal was seen in the experiment. The JS models in MARK use the LLLLL capture history format. For
example, the history (‘011010”) indicates that an animal was captured for the first time at sampling
occasion 2, was seen again at sampling occasion 3, not seen at sampling occasion 4, seen at sampling
occasion 5, and not seen after sampling time 5.} Either individual or grouped capture histories may be
used.

In many papers, the list of capture histories is too long to publish, and so a series of summary statistics
are commonly used (Table 12.1; see also the reduced and full m-array descriptions in Chapter 5). For
example, the history (011010) would contribute a count of 1 to n,, ng, 15, u,, s, ms, Ry, R3, Ry, 15, 13,
and z3.

* Refer to Cowen and Schwarz (2006) for dealing with tag loss in JS experiments.
¥ Refer to Pledger and Efford (1998) for details on dealing with heterogeneity in JS models.
¥ Again losses on capture are ignored for now but are handled in the same way as elsewhere in MARK.
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Table 12.1: Summary statistics often used for |S experiments. Losses-on-capture are found as n; — R;.

Statistics Definition

n; Number of animals captured at occasion i, both marked and unmarked.
n; =m; +u;.

u; Number of unmarked animals captured at occasion i.

m; Number of previously marked animals captured at occasion i.

R; Number of animals released alive at occasion i, i.e., just after sampling
occasion i.

T Number of animals from R; that are subsequently captured after occasion
i.

z; Number of animals seen before i, seen after occasion i, but not seen at

occasion i.

While these summary statistics form the sufficient statistics for the Jolly-Seber probability model,
their use has fallen out of favor in place of the raw histories used by MARK for two reasons. First,

the use of individual covariates will require the individual capture history vectors (see Chapter 2, and
Chapter 11).

Second, it is difficult to compute goodness-of-fit statistics (i.e., the RELEASE suite of tests; Chapter 5)
from the summary statistics.” If only summary statistics are available, it is possible to work ‘backwards’
and create a set of histories that will reproduce these summary statistics that can be used with MARK
to fit various models. One problem in using these pseudo-histories is that goodness-of-fit tests are
nonsensical — the goodness-of-fit tests require the full capture history of each animal.

12.3. Multiple formulations of the same process

There are a number of formulations used in MARK to estimate abundance and related parameters, e.g.,
the POPAN; the Link-Barker and Pradel-recruitment; and the Burnham JS and Pradel-A formulations.
All of these models are slightly different parameterizations of the underlying population processes, and

all are (asymptotically) equivalent in that they should give the same estimates of abundance and related
parameters.

The two main differences among the various formulations are

1. the way in which they parameterize new entrants to the population

2. if estimation is conditional upon the animals actually seen in the study (refer to
Sanathanan 1972, 1977).

All of the formulations model the recapture of marked animals in the same way. In this section,
several of these models will be examined and contrasted.

* Indeed, if the summary statistics are used by themselves, the fully time-dependentJS models will be “perfect’ fit to the summary
statistics regardless if the model overall is a good fit.
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12.3.1. The Original Jolly-Seber formulation

In the original JS formulation of Jolly (1965) and Seber (1965), the population process can be modeled as
shown in Figure 12.1. The parameters p; and ¢, are similar, but not identical to those in the CJS models.
The parameter p; is the probability of capture of both unmarked and marked animals that are alive at
occasion i (the CJS models referred only to marked animals); the parameter ¢; refers to the survival
probabilities of both marked and unmarked animals between occasions i and i + 1 (the CJS models
referred only to marked animals).

Figure 12.1: Original process model for |S experiments. p; represents the probability of capture at occasion
i; @; represents the probability of an animal surviving between occasions i and i + 1; and M; and U,
represent the number of marked and unmarked animals alive at occasion i. Losses-on-capture are not
modeled here, but are easily included.
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The number of marked animals in the population just before occasion i + 1 is found as M;,; =
(M; + u;)p; where u; is the number of newly unmarked animals captured and subsequently marked.

The number of net new entrants to the population was defined as
Bi = U = ¢;(U; — uy).

The B; values refer to the net number of new entrants to the population between sampling occasions
i and 7 + 1. The reference to ‘net’ number of new entrants implies that animals that enter between two
sampling occasions but then die before being subject to capture at occasion i + 1 are excluded.” As in the
CJS models, the term survival refers to apparent survival — permanent emigration is indistinguishable
and treated the same as mortality. Similarly, the term births refers to any new animals that enter the
study population regardless if in situ natural births or immigration from outside the study area.

The likelihood function consists of three parts. The first part models losses-on-capture using a simple
binomial distribution as in the CJS models. The second part models the recapture of marked animals in
exactly the same way as in the CJS model. Finally, the third part models the number of unmarked animals
captured at occasion i as a binomial function of the number of unmarked animals in the population, i.e.,
u; is Bin(U;, p;)-

The estimates of p; and @; are found in exactly the same way as in the CJS models. The estimated
unmarked population sizes were estimated as U; = u;/p;. The estimated number of births was found by
substituting in the estimates in the previous definition and does not form part of the likelihood. Finally,
estimates of population size at each time point are found by adding the estimates of U; and M;.

* The term gross number of entrants would include these deaths prior to the next sampling occasion. Refer to Schwarz et al. (1993)
for details on the estimation of these gross births.
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12.3.2. POPAN formulation
Schwarz and Arnason (1996) adopted a slightly different parameterization, for a number of reasons:

® The parameters B; never directly entered into the likelihood function. The number
of entrants must be non-negative, but it was difficult to enforce B; > 0 and negative
estimates of births were often obtained.

* Because the B; did not appear in the likelihood, how could these be forced to be
equal across groups following the Lebreton et al. (1992) framework?

¢ How could death-only models (e.g., all B; known to be zero) or birth-only models
(all @;=1) or closed models be obtained by constraining the likelihood function.

In their parameterization, first implemented in the computer package POPAN and now a sub-module
of MARK, they postulated the existence of a super-population consisting of all animals that would ever
be born to the population, and parameters b; which represented the probability that an animal from
this hypothetical super-population would enter the population between occasion 7 and i + 1 as shown
in Figure 12.2.7

Figure 12.2: Process model for POPAN parameterization of |S experiments. p; represents the probability
of capture at occasion i; @; represents the probability of an animal surviving between occasions i and
i +1; and b; represents the probability that an animal from the super-population (N) would enter the
population between occasions i and i + 1 and survive to the next sampling occasion i + 1. Losses-on-
capture are assumed not to happened, but are easily included.
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Now the expected number of net new entrants is simply found as E[B;] = Nb,. If B, represents the
number of animals alive just prior to the first sampling occasion, then

N:B0+B1+B2+"‘+BK_1

In other words, the total number of animals that ever are present in the study population. The
parameters b; are referred to as PENT (Probability of Entrance) probabilities in MARK. Notice that
by+by+---+byg_; = 1;—this will have consequences later when the models are fitted using MARK. Even
though the number of new animals is not modeled in the process, modeling the entrance probabilities
and a super-population size is equivalent.

* The super-population approach was first described by Crosbie and Manly (1985) where distribution functions (e.g. a Weibull
distribution) was used to model survival time once an animal had entered the population. To our knowledge, there is no readily
available computer code for the Crosbie and Manly (1985) model.
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Under this parametrization,

E[N;] = Nb,
E[N,] = E[N;]p; + Nb,

The probability of any capture history can be expressed using these parameters. For example, Pr[(01010)]
is found as:

Pr[(01010)] = [by (1 —py) @1 + b1 ] paa (1= p3) @3pa [1— @a+ @u (1-ps)] .

As in the CJS models, the fate of the animal after the last capture is unknown — either it died, or it
survived and was not seen at occasion 5. In a symmetrical fashion, the fate of the animal before the first
time it is captured is also unknown. Either it was present in the population prior to sampling occasion
1 and wasn't seen at occasion 1 and survived to occasion 2, or it entered the study population between
sampling occasions 1 and 2 and survived to sampling occasion 2 where it was captured for the first
time. The likelihood function is again a multinomial function over all the observed capture histories.
Schwarz and Arnason (1996) showed that it could be factored into three parts:

£ = Pr (first capture) x Pr (subsequent recaptures) X Pr (loss on capture),

where the second and third components are identical to the CJS models. It turns out that similar to CJS
models, not all parameters are identifiable and only functions of parameters can be estimated in the fully
time-dependent model. The set of non-identifiable parameters is given in Table 12.2. In particular, the
final survival and catchability parameters are confounded (as in the CJS models), and symmetrically
the initial entrance and catchability are confounded. This impacts three other sets of parameters, in
particular N; and Ny cannot be cleanly estimated, nor can b; and by_;. If confounding takes place, the
estimated super-population number may be suspect, so some care must be taken in fitting appropriate
models. For example, models with equal catchability over sampling occasions make all parameters
identifiable.

This confounding implies that careful parameter counting may have to be done when fitting POPAN
models. The fully time-dependentmodel {p, ¢, b} has K parameters for catchability, (K—1) parameters
for survival, K parameters for the PENTs, and 1 parameter for the super-population size for a total of
3K parameters. However, not all are identifiable and the PENTs must sum to one. Only the products
byp, and @y _;pk can be estimated, and one of the PENTSs is not ‘free’ (as the sum must equal 1), leaving
(3K — 3) parameters that can be estimated for each group.

Furthermore, as indicated in Table 12.2 (top of the next page), the b; and by_; parameters are affected
(the estimates reflect the combination of parameters as listed in the table) which further affect N; and Ny.
While the latter parameter combinations are ‘estimable’, they seldom represent anything biologically
useful. The actual number of parameters reported by MARK in the results browser should be checked
carefully.

Once estimates of p, ¢, b,and N are obtained, the estimated number of births is obtained as B; = Nb,.
The estimated population sizes are obtained in an iterative fashion:
N 1= B0
Ny = N1y + By
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Table 12.2: Confounded parameters in the POPAN parameterization in the fully time-dependent model. In
order to resolve this confounding, the models must make assumptions about the initial (p;) and final (py)
catchabilities. For example, a model may assume that catchabilities are equal across all sampling occasions.

Function Interpretation

Px_1Px Final survival and catchability.

bopq Initial entrance and catchability.

of parameters but it may not be biologically meaningful.

by +by(1 - py)eq Entry between firstand second occasions cannotbe cleanly estimated
because initial entrance probability cannot be estimated. MARK
(and other programs) will report an estimate for this complicated
function of parameters but it may not be biologically meaningful.

bx_1/Px-1 Entry prior to last sampling occasion cannot be cleanly estimated
because final survival probability cannot be estimated. MARK (and
other programs) will report an estimate for this complicated function

If losses on capture occur, they are removed before the population size at occasion i is propagated to

occasion 7 + 1.

The likelihood does not contain any terms for B; or N; — these are derived parameters and standard

errors for these estimates are found using the Delta method (see Appendix 2).

12.3.3. Link-Barker and Pradel-recruitment formulations

The Link-Barker (2005) and Pradel-recruitment” (1996) formulations are conceptually the same and
the process model is shown in Figure 12.3. The parameters for survival (¢;) and catchability (p;) are
standard. The parameter f; is interpreted as a per capita recruitment probability , i.e., how many net new

animals per animal alive at occasion 7 enter the population between occasion i and i + 1?

Figure 12.3: Process model for Link-Barker and Pradel-recruitment parameterization of |S experiments. p;
represents the probability of capture at occasion i; ¢@; represents the probability of an animal surviving
between occasions i and i +1; and f; represents the net recruitment probability , i.e., the per capita number
of new animals that enter between occasions i and i + 1 and survive to the next sampling occasion i+ 1 per
animal alive at occasion i. Losses-on-capture are assumed not to have happened, but are easily included.
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* There are three different Pradel models and ‘-recruitment’ refers to the Pradel models parameterized using f; terms
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Unlike the POPAN formulation, the Link-Barker formulation conditions upon an animal being seen
somewhere in the experiment. This eliminates the necessity of estimating the super-population size,
but also means that abundance cannot be directly estimated. Any probability of a history must be
normalized by the probability of being a non-zero history.

For example, Pr[(01010)|animal seen] is proportional to:

Pr[(01010)|animal seen] o< [(1—p1); + f] /p1 X p2a (1= p3) @aps [1— @4 + @4 (1—ps)],

where the constant of proportionality is related to the probability of seeing an animal somewhere in
the experiment. As in the CJS models, the fate of the animal after the last capture is unknown — either
it died, or it survived and was not seen at occasion 5. In a symmetrical fashion, the fate of the animal
before the first time it is captured is also unknown — either it was present among animals seen in the
experiment at time 1, was not seen, and survived to time 2, or it entered between times 1 and 2. The
likelihood function is a multinomial function over all the observed capture histories conditional upon
an animal being seen somewhere in the experiment.

The implementation of the Link-Barker model differs from the Pradel-recruitment formulation in
a number of ways. First, Link-Barker partitioned the likelihood in a similar fashion to the POPAN
formulation which made it easier to implement in the Bayesian context of their paper. Second, Link-
Barker explicitly modeled the confounded parameters (but the MARK implementation leaves the
confounded parameters separate and it is the user’s responsibility to understand the confounding).
Third, losses on capture are handled differently between the two formulations and this affects the
interpretation of the recruitment parameters.

The Link-Barker model also differs from the POPAN formulation as there is no need to postulate the
existence of a super-population — the model is fit conditional upon the observed number of animals
in the experiment.” Section 12.3.5 outlines the equivalences between the Link-Barker parameters and
those of other formulations.

Asin the POPAN formulation, the fully time-dependent Link-Barker and Pradel-recruitment models
have a number of parameter confoundings as listed in Table 12.3.

Table 12.3: Confounded parameters in the Link-Barker parameterization in the fully time-dependent model.
In order to resolve this confounding, the models must make assumptions about the initial (p,) and final
(px) catchabilities. For example, a model may assume that catchabilities are equal across all sampling

occasions.
Function Interpretation
Px-1Pk Final survival and catchability
(p1 + f1)/pq Initial recruitment and survival
fx-1Pk Final recruitmentand catchability cannotbe cleanly estimated. MARK (and

other programs) will report an estimate for this complicated function of
parameters but it may not be biologically meaningful.

On the surface, the fully time-dependent model {p, ¢, f,} has K catchability parameters, K—1 survival

* The implementation of Schwarz and Arnason (1996) in the POPAN package also estimates parameters conditional upon being
seen, and then adds another step to estimate the super-population size.
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parameters, and K — 1 recruitment parameters for a total of (3K — 2) parameters. However, only the
product @ _,px and the ratio (f; /p;) canbe estimated, leaving a net of (3K —4) parameters. The estimate
for fi_, estimates are functions of other parameters as shown in Table 12.3.

The abundance at each sampling occasion and the absolute number of new entrants cannot be
estimated even as derived parameters because of the conditioning upon animals seen at least once
during the experiment.

12.3.4. Burnham JS and Pradel-A formulations

The final formulations to be considered in this chapter model new entrants to the population indirectly
by modeling the rate of population growth (1) between each interval where population growth is the
net effect of survival and recruitment. If ¢; is the decrease in the population per member alive at time i,
and f; is the increase in the population per member alive at time i, then the sum of their contributions
is the net population growth:

Ai =Niq/Ni=¢; + f;

. These formulations were developed by Burnham (1991) and Pradel (1996).

The key difference between the two parameterizations is that the Pradel-A approach is conditional
upon animals being seen during the study, while the Burnham JS formulation is not. Therefore, the
Burnham Jolly-Seber formulation also includes a parameter for the population size at the start of the
experiment. This enables the estimation of the population size at each subsequent time point.

However, in practice, it is often difficult to get the Burnham-JS model to convergence during the
numerical maximization of the likelihood. Although the implementation of this model has been
thoroughly checked and found to be correct, MARK has some difficulty obtaining numerical solutions
for the parameters because of the penalty constraints required to keep the parameters consistent with
each other.” For this reason, only the Pradel-A formulation will be discussed further in this section
(and treated in depth in Chapter 13). The process model is shown in Figure 12.4. The parameters for
survival (¢;) and catchability (p;) are standard. The parameter A, is interpreted as the ratio of successive
population abundances.

Figure 12.4: Process model for Burnham and Pradel-A parameterization of |S experiments. p; represents the
probability of capture at occasion i; @; represents the probability of an animal surviving between occasions
iand i + 1; and A; represents the rate of population change. The population size at time 1, Ny is used
by the Burnham formulation, but not by the Pradel-A formulation. Losses-on-capture are assumed not to
happened, but are easily included.
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* This convergence problem disappears for some models if simulated annealing is used for the numerical optimization. - J. Laake
& E.G. Cooch, pers. obs.
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Unlike the POPAN and Burnham formulations, the Pradel-A formulation conditions upon an animal
being seen somewhere in the experiment. This eliminates the necessity of estimating the population
sizes at any sampling occasion. But, the probability of a history must now be normalized by the
probability of being a non-zero history. For example, Pr[(01010)|animal seen] is proportional to:

Pr[(01010)|animal seen] o [Al - Pl(Pl] X Py (1= p3) 3ps [1 — sty (1- PS)] ,

where the constant of proportionality is related to the probability of seeing an animal somewhere in
the experiment.

As in the CJS models, the fate of the animal after the last capture is unknown — either it died, or it
survived and was not seen at occasion 5. In a symmetrical fashion, the fate of the animal before the first
time it is captured is also unknown — either it was present at the initial sampling occasion and not seen,
or was part of the population growth (over and above survival from the first sampling occasion). The
likelihood function is a multinomial function over all the observed capture histories conditional upon
an animal being seen somewhere in the experiment.

Section 12.3.5 outlines the equivalences between the Pradel-A parameters and those of other formu-
lations.

As in the POPAN formulation, the fully time-dependent Pradel-A formulation has a number of pa-
rameter confoundings as listed in Table 12.4. On the surface, the fully time-dependentmodel {p,, ¢,, A, }
has K catchability parameters, (K — 1) survival parameters, and (K — 1) growth parameters for a total
of 3K — 2 parameters. However, only the product ¢ _;px and the function A; — ¢p; can be estimated,
leaving a net of (3K — 4) parameters. Furthermore, the estimate for Ay_; estimates a function of other
parameters and may not be interpretable.

The abundance at each sampling occasion and the absolute number of new entrants cannot be
estimated even as derived parameters because of the conditioning upon animals seen at least once
during the experiment.

Table 12.4: Confounded parameters in the Pradel-A parameterization in the fully time-dependent model. In
order to resolve this confounding, the models must make assumptions about the initial (p1) and final (pg)
catchabilities. For example, a model may assume that catchabilities are equal across all sampling occasions.

Function Interpretation

Qx-1Px Final survival and catchability

A= @1pq Initial growth and survival

Ax_1Pk Final recruitmentand catchability cannotbe cleanly estimated. MARK (and

other programs) will report an estimate for this complicated function of
parameters but it may not be biologically meaningful.

Because population growth (1) is a function both of survival and recruitment (i.e., A; = ¢; + f;),
the modeler should be careful about fitting simpler models that restrict population growth but leave
survival time-dependent. For example the model { p; ¢, A.} would imply that recruitment varies in a
time dependent fashion to exactly balance changes in survival to keep population growth constant. This
may not be a sensible biological model.

Another potential problem with the Pradel-A model is that no constraints are imposed in MARK
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that population growth must exceed the estimated survival probability. Consequently (as seen in the
examples that follow), it is possible to get estimated survival probabilities of 80% while the estimated
population growth rate is only 70%. This logically cannot happen, and is often an indication that
recruitment did not occur in that interval — the illogical estimates are artifacts of the estimation process.
Under these circumstances, models that separate recruitment from population growth may be preferred.

12.3.5. Choosing among the formulations

All of the formulations use the same input file in the same format. Which JS formulation should be used
for a particular experiment? There are two considerations.

First, only certain of the formulations can be used in MARK if losses-on-capture occur in the
experiment.

Secondly, and more importantly, different formulations give you different types of information and
can be used to test different hypotheses. All of the formulations should give the same estimates of
survival and catchability, as all formulations estimate these from recaptures of previously marked
animals using a CJS likelihood component. Even though all the models give different types of estimates
for growth or recruitment or births, it is always possible to transform the estimates from one type to
another by simple transformation and the standard errors can be found using the Delta method.

The major equivalents are between NET births, recruitment, and population growth parameters.
Recruitment parameters are the net number of new animals that enter the population between occasions
i and i + 1 per animal present in the population at occasion i

_Bi_Nbi
fi= N TN

1 1
Population growth is the proportionate increase in abundance between occasions 7 and i + 1:

_ Nii4 _ N;p; + B;
"N N;

=i+ fi.

Actual estimates from fitted models may not follow these exact relationships for several reasons.

First, certain estimates (e.g., apparent survival) should be constrained to lie between 0 and 1. If an
estimated survival hits against this boundary, estimates of survival prior to and after this sampling
occasion will also be affected. If the identity link of MARK is used, estimates are allowed to fall outside
these ‘normal’ boundaries, and usually the exact relationships above then hold true among the estimates
as well.

Second, losses on capture complicate the equivalences among parameters. For example, Link and
Barker (2005) indicate that their f; should be interpreted as the number of new animals that enter
between occasions i and i + 1 per hypothetical animals alive at occasion i in the absence of losses
on capture, while the Pradel-recruitment f; is the number of new animals after losses on capture have
been taken into account.

Lastly, MARK does not impose constraints that estimated population growth parameters must be at
least as great as estimated survival probabilities. Consequently, it is possible (as seen in the examples)
that the estimated population growth rate is less than the estimated survival probability which would
imply a negative recruitment. In my opinion, formulations that model recruitment and survival as
separate processes are preferred in these case — the estimated population growth rate can always be
derived from these alternative models.

It cannot be emphasized too strongly, that all of the formulations require the same careful attention
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to study design — in particular the study area must remain a consistent size, and the probability of
capturing an unmarked individual must be the same as a marked individual at each sampling occasion.
A Cormack-Jolly-Seber experiment where marked animals are captured and released haphazardly,
should not be then analyzed using any of the formulations of the Jolly-Seber model discussed in this
chapter.

Table 12.5: Summary of criteria to choose among the different JS formulations

losses on estimates available for
formulation capture abundance net births  recruitment A
POPAN yes yes yes no no
Link-Barker yes no no yes yes
Pradel-recruitment no no no yes yes
Burnham JS yes yes yes no yes
Pradel-A yes no no no yes

e The implementation of Burnham’s JS model in MARK often does not converge, and is not
recommended (although convergence problems may be minimized for some models if simulated
annealing is used for the numerical optimization. - J. Laake & E. G. Cooch, pers. obs.)

o The standalone package of POPAN will estimate recruitment, and population growth as derived
parameters

12.3.6. Interesting tidbits

There have been a number of queries in the MARK forum (http://www.phidot.org/forum) about the
use of POPAN and other models to estimate abundance. This section will try to answer some of these
queries in more detail.

Deviance of 0 in POPAN

The following query was received in the MARK forum (http://www.phidot.org/forum, 2006-04-07)
which asked:

‘I read on one of the other posts that getting a deviance of zero was possible using the robust design
model because the saturated model hadn't been computed yet and some constants were left out for
faster computation. Is something along these lines at play in POPAN also because when I run a
particular set of data, I get a deviance of zero?’

The deviance of models is often computed as the negative of twice the difference in the log-likelihood
between the current model and a ‘saturated” model. The usual saturated model in CJS and other models
that condition upon an animal’s first capture, is to have a separate probability for each observed history,
ie, if @ is a capture history (e.g., ‘010011’) then the Pr(w) under the saturated model is found as

Pr(w) = :—’b’ where 7, is the number of animals with capture history w, and n,,, is the total number of

obs
animals observed.
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In such cases, the log-likelihood of the saturated model (ignoring constants) is then

an log (p,,) = anlog(nnw )

obs

However, this doesn’t work for models where abundance is estimated because you need to include
the animals with history (‘000000...."),1.e., those animals not observed. This can only be computed if the
population size is estimated which cannot be estimated under the saturated model. Hence a ‘deviance’
cannot be directly computed.

However, the likelihood can be portioned as shown earlier into components representing the proba-
bility of first capture, the probability of subsequent recapture given the animal has been captured, and
the probability of losses-on-capture given that an animal is captured. Schwarz and Arnason (1996) and
Link and Barker (2005) showed that the first component is essentially non-informative about the capture,
survival, and loss-on-capture rates.

This suggests that an approximate deviance could be computed using only the latter two components,
i.e., by conditioning upon animals that are seen at least once in the experiment. The difference between
the two likelihoods would be based only on the part representing animals seen at least once.

In practice, we would suggest that you compute a deviance based on conditioning on the observed
animals. The easiest way is to use the Link-Barker model (which doesn’t estimate abundance) but is
‘equivalent’ to the POPAN model. So if you fit a {p; ¢, b;} model in POPAN look at the deviance of the
{p; ¢; f;} model in Link-Barker formulation. This could be used to estimate a variance-inflation factor
to adjust reported standard errors.

12.4. Example 1 — estimating the number of spawning salmon

After spending several years at sea, coho salmon (Oncorhynchus kisutch) return to spawn in the Chase
River, British Columbia. The normal life cycle of coho salmon is to return at age 3 as adults to spawn
and die. But, some precocious males return earlier at age 2 to spawn and die. One question of interest
is if the distribution of salmon that return to spawn at different parts in the spawning period the same
for regular adult and precocious males?

As fish return to the Chase River, they are captured using electrofishing gear. If they are unmarked
they are given a unique tag number and released. If they were previously marked, the tag number is
read. The experiment took place over a 10 week period in 1989, but the data from weeks 1 and 2, and
weeks 9 and 10 were pooled and labeled as weeks 1.5 and 9.5. Approximately the same amount of effort
was expended in each week of sampling. More details of this experiment are found in Schwarz et al.
(1993).

The datafile is given in the chase_both. inp file, and a portion of it is reproduced in Figure 12.5 (top
of the next page). This study has two groups, the regular adult males and the precocious males (called
jacks). Notice that a separate capture history is used for each tagged fish — unfortunately, this implies
that the residual plots and deviance plots in MARK cannot be used to assess goodness of fit.
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Figure 12.5: Portion of the data for the Chase 1989 experiment

/* Estimating salmon numbers returning to spawn in Chase River 1989 */

/% These are the male salmon with two groups. */

/* Groupl = adults . group2=jacks */

/% Survey conducted over 10 weeks. Weeks 1 & 2 pooled. weeks 9 & 10 pooled */
11000000 -1 @ ; /* tagnum=1 */

10000000 0 1 ; /* tagnum=3 */
10000000 0 1 ; /* tagnum=4 */
10000000 0 1 ; /* tagnum=6 */
11000000 0 1 ; /* tagnum=8 */
10110000 0 1 ; /* tagnum=9 */
10000000 0 1 ; /* tagnum=10 */

10000000 1 @ ; /* tagnum=11 */
. additional histories follow ....

Summary statistics for this experiment are presented in Table 12.6.

Table 12.6: Summary statistics for the Chase 1989 experiment

statistics for adults statistics for jacks

t;, n; m; u; R, r; oz t;, n; m; u; R, r; oz
15 37 0 37 37 12 0 15 67 0 67 62 21 O
30 22 6 16 21 13 6 30 28 9 19 25 7 12
40 52 7 45 41 19 12 40 46 6 40 4 9 13
50 56 17 39 54 26 14 50 47 12 35 45 5 10
60 46 26 20 38 8 14 60 25 9 16 24 3 6
70 28 16 12 20 2 6 70 16 6 10 12 1 3
80 22 3 19 16 2 5 80 7 1 6 5 1 3
95 10 7 3 0 0 O 95 7 4 3 0 0 O

Because n; > R; for some sampling occasions, this indicates that some losses-on-capture occurred.
For example, there was one adult loss-on-capture in week 3; 11 adults lost in week 4, etc.

12.4.1. POPAN formulation

The POPAN super-population is a natural way to think of this experiment —a pool of fish is returning to
spawn. During each week, a certain fraction of these returning fish decide to enter the spawning areas.

Let us begin by fitting a model only to the regular adults (use the input file chase_adult.inp), i.e,,
to the first group. Later models will be fit to both groups (and will require the chase_both.inp file).
Launch MARK. Select the POPAN data type, enter the number of sampling occasions and the number
of attribute groups, as shown at the top of the next page.
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Enter Specifications for MARK Analysis

—Select Data Type
Title for this set of data:

|Chase 1989 - Aduits arly

" Recaptures anly

Fecoveries only
Bioth [Burnham]
K.nown Fates

Closed Captures I\\chromium\home\cschwarz\WindowsDocs\PetersenMonograph\C Yiew File |
BTO Ring Fecoveries

Encounter Histories File Marne: Click to Select File |

Robust Design Results File Mame:

Both [Barker] I\\chromium\home\cschwarz\WindowsDocs\PetersenMonograph\C
ulti-strata Recaptures only
Brownie et al. Recoveries
Jolly-Seber

Pradel Recruitrent Only

Pradel Survival and Seniority .
) Encounter occA ions:l o j Set Time Intervals DEfIU“ Time: Intervals Used
Pradel Survival and Lambda =

. . |
Pradel Survival and Recrutment Attribute gfups: I 1 j Enter Group Labels | D efault Group Labels Used

g — =i |

* POPAM Individual covari ates:lg_ j Enter Ind, Cov. Mames | Default Ind. Cov. Mames Used
VPA. Vil F-'opulatlon A= Strata:l 2 = Enter Strata Hames | Default Strata Mames Used
Multi-strata -- Live and Dead Enc. =l
Nest Survival Mintures: I 2 j

Occupancy Estimation

r
-
-
" Robust Design Occupancy Help | Cancel | a:% I
-
-

ia e B Bl Sie Tie Bl Tl Bl T i i 0 B

Open Robust Design Multiztrata
Clozed Fobust Design Multistrata

Don’t forget to set the intervals between sampling occasions. As weeks (1 and 2) were pooled and
labeled as week 1.5, the interval between the first and second sampling occasion is 1.5 weeks. Similarly
weeks (9 and 10) were pooled and so the last interval is also longer.

Set Time Intervals

Enter walues for time intervals not equal 1

15
o
o
o
sfi—

5

7fig

Start by fitting a fully-time dependent model {p, ¢, b,} (using an obvious notation extension from
CJS models). In this model there are 8 sampling occasions which give rise to 8 capture probabilities, 7
apparent survival probabilities, 8 probability of entry probabilities, and 1 super-population parameter.

Note that MARK does not allow the user to specify the parameter b, (the proportion of the population
available just before the first sampling occasion) and so only presents 7 PENT parameters in the PIM
and output corresponding to b, ..., b,."

* In the stand alone POPAN package, the user has access to all of the PENT’s.
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W Apparent Survival Parameter (Phi) Group 1... [l =] B3
Elo| &) 4] o] wlm)

[1 ]2

4

[+ J5 5

M Recapture Parameter {p) Group 1 of POPAN

B=| &4 4] 50| Bbla)|

I ENIEE

4

EEE

M Probability of Entry {pent) Group 1 of POPAN M [=1E3
Elw| & 4] %] =l

[1s ]17

4

EENERE

I Initial Population Size (N) Group 1 of P... [H[=] E3

Ba| & 4] Mo Blw)|

| 23

Note that unlike the CJS models, we assume a single set of survival and catchability parameters, regardless
of when previously captured. The super-population size has its own parameter.

Because by + by + -+ + byg_; = 1, a special link-function must be specified for the PENT parameters.
This is done using the ‘Parameter specific link function’ radio button:

Setup Numerical Estimation Run E

Title for Analyses IEhase 1989 - Adults anly

Mumerical E stimation O ptions:
™ ListData

 Link Furnction
 Sin

€ Logit

" Loglog
" ClLoglog
 Log

(| dentity

& Pam-5 pecific

Madsl Name [(pt}, phi). pentit]

Fix Parameters | Mo Fl:\i‘);ametem Fised

War. Estimation
" Hessian
& ZndPart

[~ MCMC Estimation

™ Provide initial parameter estimates

I Use Al Opt. Method

™ Profile Likelihood CI

™ Set digits in estimates

™ Set function evaluations

I Set number of parameters

¥ | Standardize [ndividual Covariates
FealPar. Estimates from | hdividual Covariates
) First Encounten Histary Covarniate Yaluss

& Mean Individual Covariate Y alues
) User-speciiied Covariate alues

Help | Cancel Run | 0K to Run I

The sin or logit or any of the other link functions can be used for the p and ¢ parameters. In order
to specify that a set of parameters must sum to 1, the Multinomial Logit link function (called Mlogit in
MARK) must be used. If there are several groups, each set of PENTs must independently sum to 1, so
MARK provides several sets of MLogit link functions. As there is only one group, the MLogit (1) link-
function is used for the PENTs. It is possible to specify that some of the PENTs are zero if, for example,

the experimenter knew that no new animals entered the study population during this interval.
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Also notice, that a log or identity link should be used for the super-population size as it is not restricted
to lie between 0 and 1:

Specify Link ¥Yalues

[

Specify Parameter-Specific Link Function Yalues for {FOPAN - plt), phi

o L)
"

21:pent [MLogif1) ]
2zpent [MLogifl] =]

1:Phi [5in - 11:p |5in -

2Phi [5in - 12p [5in -

P[5 Bp s |

4:Phi [5in - 14p [5in -

5:Phi [5in - 15 [5in -

E:Phi m E:pent Im

7:Phi m 7opent Im

8:p [5in = B:pent Fﬁzaiﬁ_iz]

3p [5in - 9:pent Fﬁzaiﬁ_iz]

10:p [5in = 0:pent Im
T Cancel | Crefault | Hesemlll Pazte | Help |

Now run MARK. If we look at the REAL estimates, we must keep in mind that not all parameters

are identifiable:

Feal Function Parameters of {p(t).

Chaze 1989 Adults Only

phi(t

Paranster Estinate Standard Error
1:FPhi 0.5717376 0.0977208
2:Phi 0.9999994 0.6125507E-03
3:Phi 0.7191576 0.1175738
4:Phi 1. 0000000 0.o0000000
5:Phi 0.7826687 0.4727436
6:Phi 0.2822160 0.2337353
“.F]ld‘. o SUU‘t .U:UU 1
D:r' n.ODDOD".I‘) n_n1')'31‘10
9.p 0.3751059 0.1375089

10:p 0.2346356 0.0392107

11:p 0.3697123 0.0623328

12:p 0.3077557 0.0556362

13:p 0.2146932 0.1361140

1l4:p 0.2651052 0.1474306

i1t o 0i302210 041174773

i — + e

17 :pent 0.5259542 0.0936811

18 :pent 0.1648277E-11 0.3260178E-12

19 :pent 0.1648277E-11 0.3260178E-12

20 :pent 0.0631742 0.0777153

21 :pent 0.1553686 0.0804563
e e - - A

23 311.75769 38375642

In particular, the final survival and catchability are confounded as in the CJS model. The initial
entrance and catchability parameters are also confounded (only the product byp; can be estimated)
— however, MARK does not report b, so the first PENT reported here refers to b; which cannot be
estimated separately (refer to Table 12.2). This non-identifiability can often be recognized by the large
standard errors for certain estimates, or by estimates tending to the value 1.0. Also notice, that because
the intervals are unequal size, the survival probabilities are given on a per week basis, so that the survival
probability for the initial 1.5 week interval is found as 0.57° = 0.43.
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The estimates of population size and net births are found under the derived parameter section:

Grp. Oco BE-hat Standard Error
+ + thF—fr oSk T
1 2 163.97026 29 BB5EBZ
1 3 0.5138632E-09 0.7960027E-10
1 4 0.5138632E-09 0.7960027E-10
1 5 19 695050 25.021000
1 & 48 437357 28.200096&
. Pbpalatiog Estinates of {E(E),
Grp. Qoo H-hat Standard Error
1 2 50650105 20302137
1 3 221 82033 26 . 690452
1 4 151 48921 21.665511
1 5 149 45921 21 6B65511
1 & 13041856 a0 . 203341
1 7 82 985839 44 25p052
1 a TR -1 el =T] 241 27249

Again, not all parameters are identifiable. The derived parameters also include estimates of gross births
— these are explained in more detail in Schwarz et al. (1993).

Goodness-of-fit can be assessed using the RELEASE suite as in CJS models (see Chapter 5 for details
on RELEASE). The results are shown below.

Summary of TEST 3 (Goodnes= of fit) Results

Group Compone

nt  C

hi-=quare df P-level Sufficient Data

3.5R2
3.5R3

o)
H
e e e e e e
w
0
=
3

Group 1 3.5m
Group 1 TEST 3

2652 1
oooo

.B0BS Hao
oooo Ho
7638 Tes
oooo Hao
5579 Ho
oooo Hao

oooo Ho
oooo Ho
BE73 Yes
oooo Ho
oooo Ho

oCoooDoooooooooo
o
o
@
o
OoORRFEORHOHOHRORD
o
o
w
=

o
=1
=1
=

MR O RRR OO R

Summary of TEST 2 (Goodness of fit) Results

nt

Group Compone:
1 2.Cc2
1 2.C3
1 2.c4
1 2.C5

1 2.Ch
Group 1 TEST 2

hi-square df P-level Sufficient Data
0.1942 1 0.6594 Ves
6.1651 0.0458 Tes
0.4521 1 0.5013 Tes
0.2399 1 0.6244 Tes
2.5951 1 0.1071 Hao
9.6463 3 0.1404

Goodne=s= of Fit Results (TEST 2 + TEST 3) by Group

Chi-square df P-level

10.5300 15 0.7851

There is some evidence of potential lack-of-fit as indicated by Test2 in component C3, but a detailed
investigation of that table shows it is not serious. Unfortunately, because individual capture histories
were used, residual plots are not useful.

Because of parameter confounding, itis important to count the actual number of estimable parameters.
On the surface there are 24 parameters composed of 8 capture parameters, 7 survival parameters, 8 PENT
parameters and 1 super-population parameter. However, the PENTs must sum to 1, and Table 12.2
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indicates that two parameters are lost to confounding which leaves a net of 21 actual identifiable
parameters. Check that the results browser shows 21 parameters for this model.

The original sampling experiment has approximately equal effort at all sampling occasions. Perhaps
a model with constant catchability over time is suitable, i.e., model {p. ¢, b,}. This model is specified
in the PIM in the usual fashion:

glw| & 2] ¥ m|e]

le Js fe Jo fJe [fas [Jo [Je

None of the other PIM’s need to be respecified. The model is run, and again the parameter specific
link functions must be specified for the PENTs (use the MLogit(1) link function) and for the super-
population size (use the log link function):

Specify Link Yalues

Specify P, ter-S pecific Link bk it el [hi[t], peEnt{E]}

1:Phi ISin l 11:pent IMLogit[‘I] l
2:Phi ISin l 12:pent IMLogit[‘I] l

- -
- -
- -
- -

3 [5n o] 13pent [MLogiT) =]
4:Phi Im 14:pent Im
5:Phi m 15:pent Im

E:Phi |Sin I BN | I %

a

Lef Ll

F:Phi ISin
8p m
S:pent Im
10:fent Im
Ok, Cancel Drefault | Feset All | FPaste | Help |

Now all parameters are identifiable (shown below):

| Chase 1989 Adults Only

Real Function Parameters of {p({*). phi(t ffE; QEE; B-hat Standard Error
Paramneter Estimate Standard Error i é i%b?ggggg ég:;;éég%

- 1 3 36773956 23491246
1:Ehi n.s843217 01007203 1 4 0.578637SE-04 00374800
2°Fhi 0.9264533 0.1759781 1 R et
3!Phi I 0.7973302 0.1328371 ! O 13e0ana
4:Ehd b. 2216908 p-13lz724 1 7 0.82883B3E-04  0.0233567

cohl . . Population Estimates of {p(*).
&:FPhi 0.2306517 0.1258056
7 Fhi 0.6180676 0.1405468
8p 0.3153771 0.0422789 Grp. Occ.  H-hat Standard Error
5’ pent 00449635 00506509

10 pent 03325057 0.0718152 ! 1o il hadrs 23.994334
11:pent 0.11076E5 0.0718261 ! R T T
12:Dent 0.1742893E-06  0.1128910E-03 1 1 Iid aoien 23 tiaim
13:pent 0.0279008 0.0411325 1 s renaged ER LIS
11 pent 0.1313499 0.0355726 1 e oaalite 15 seenet
15 pent 0.7436515E-06  0.7215834E-04 1 A T 12533058
16:H 331.39832 29.077189 1 b ilsnatas AR LELE

The results show 131 = 0.044, 52 = 0.33, etc. These are interpreted as 4.4% of adult returning salmon
return between weeks 1.5 and 3; about 33% of adult returning salmon return to spawn between weeks
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4 and 5, etc. The value of b, = 0.352 is obtained by subtraction (by = 1 — b, — by — --- — by_,). This is
interpreted as 35% of adults returning salmon has returned to spawn before sampling began in week
1.5.

The total number of salmon returning to spawn (the super-population) is estimated to be N =332
(SE=29) fish. The derived birth parameters are found as B =N b For example, B1 =N bl = (332 x
0.044) = 14.9. This is interpreted as about 15 adult fish returned to spawn between weeks 1.5 and 3.
By=N Eo = (332 % 0.352) = 117 fish are estimated to be present before the first sampling occasion.

The derived estimates of population size are found iteratively and must account for losses-on-capture
and the unequal time intervals (which affects the survival terms).

N, = By = 117.03.
N, = (N; = loss;)@1” + By = (117.03 - 0)0.584'° + 14.92 = 67.2.
Ny = (N, = l0ss,) @, + B, = (67.2 - 1)0.926" + 110.39 = 171.72

The number of identifiable parameters for this model is 16 composed of 1 capture parameters, 7
survival parameters, 8 PENT parameters and 1 super-population parameter less the restriction that the
PENTs must sum to 1. The number of parameters reported in the browser may have to be manually
adjusted to indicate the correct number of parameters.

Another sub-model can also be fit where the apparent survival probability (per unit time) is constant
over all intervals, i.e., model {p. ¢, b,}. Itis fit in the same fashion by adjusting the PIMs:

El@| &) 8] ¥|o| Bl
[+ T+ ]+ 1 1 ]

This model would have 10 parameters composed of 1 capture parameter, 1 survival parameter, 8
PENT parameters, and 1 super-population parameters with 1 restriction that the PENTs sum to 1.

The final results table (after making sure that the number of parameters is correct):

Il Results Browser: POPAN

| Ble=alk:w Bl guaskad 4|

todel AlCe Delta AlCe AlCe Wweight | Model Likelhood | Mo. Par. Deviance I
{POPEN - pl*), philt. pentit} fa45304  0.0000 0.85726 1.0008 16 0.0000)]
{POPEN - pf*), phil"), pertit) er EEE 013212 0154 10 0.0000]

et IEEET 0.01062 0.012 21 0.0000]

shows not much support for this final model. If model averaging is to be used, some care must be taken
as not all parameters are identifiable in all models. For example, most models with a p, structure, will
be unable to estimate abundance at the first (\N;) or last (Ny) sampling occasion; nor can recruitment
be estimated for the first (b;, or B;) or last (bg_; or Bg_;) interval.

Other models could be fit, e.g., an equal fraction of the super-population returns to spawn in each
week, but in this example is highly unlikely biologically and was not fit.
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Now let us return to the real question of interest — do jacks and adults have the same return pattern?
This is now a two group problem and is handled in a similar fashion to the ordinary CJS model.

Starta new project, using chase_both. inp, and this time specify two groups (regular adults and jacks)
rather than a single group. Also specify the names of the two groups.

Group Labels

q%ter the labels to identify each group

1 [&duits
2 Jacks]

Now each parameter can vary over sampling occasions (intervals) and/or groups. The full model fit
will be specified by a triplet of specifications.

In the previous example, a model with equal catchability over sampling occasions was tenable, but
adults and jacks may have different catchabilities. Survival probabilities varied by time, so perhaps start
with a fully time- and group-dependent model for ¢. Also start with a full group and time dependence
for the PENTs. This would correspond to model {p, ¢,.; b,.;} with the following PIMs.

e & 5] ¥|o] m(e

15 J15 J15 [J15 15 Ji5 15 J15

Bla| & 4| ¥|=| Bl
an [23 22 Ja3a J& |22 |22 | =

=

Elm| & 4] ¥|o| Ble

Tz T3 J4 5 Js 7

E(w| | 5] ¥ Bl

6 a3 [ Jnn ]2 [ T4

—

]

Bla| & 4] ¥|o| |
|_|_31 IEBERESERERE
o & 4] ¥ s s

EREE S [

The two PIMs for the super-population size of the adults and jacks (respectively) are not shown.

Request that MARK fit this model. As before, we must indicate to MARK that the PENTs sum to 1,
for each group using the parameter specific link functions.
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Setup Numerical Estimation Run

Title far Analyses IChase 1999 - Adults and Jacks

Model Name: [{p(g), phig™t), pent{a®t)

LI Ho P ters Fined
(Eiﬂ;iiunclwun “ar. Estimation

" Logit " Hessian

" Loglog & 2ndPart

" Cloglog

 Log [~ MCML Estimation

There are a total of 8 sampling occasions, 8 PENTs per group, but MARK only shows the last seven
(by for each group is implicitly assumed). Use the MLogit(1) link function for the first seven PENTs
(belonging to group 1) and the MLogit(2) link function for the last seven PENTs (belonging to group 2).
Notice that only 30 parameters are displayed per window, so the ‘More” button must be used to scroll
to the next page:

{Specify Link Yalues %]

Don’t forget to specify that the two super-population parameters should have the identity or log link

function.

Run the model and add it to the results browser. Then, run and fit the models {p, ¢, b,,;} and

(P}

| Specify Parameter-Specific Link Funchion Yalues for ipla). phila™). prtest
1:Phi m 11:Phi m 21:pent Im
2:Phi lm 12:Phi m 22:pent Im
3:Fhi m 13:Phi m M
4:Fhi Im 14:Phi Im W
B:Phi lm 15p m 25 pent Im
E:Fhi lm 16p Im 2B:pent Im
7:Phi lm 7:pent Im 27:pent Im
2:Phi lm B:pent Im 28 pent Im
3:Phi lm 3:pent Im 2% pent [Miogiz) =
10:Phi lm FO:pent Im n
[ o] Cancel | Default | Reset &l | Paste | Help ]

Specify Link ¥alues

Specify Parameter-Specific Link Function Yalues for {plg), philg™). pentig®™)

N Ildentity vl

* The option to ‘Initial — Copy 1 PIM to another PIM is helpful here.
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Count parameters carefully. All of the models have a simple structure for the p’s so there is no
problem with confounding. The model {p, ¢, b, } has 2 catchability parameters, 7 survival parameters,
16 PENTs, and 2 super-population sizes. However, each set of PENTs must sum to 1, leaving 25 free
parameters. The model {p, ¢, b;} has 2 catchability parameters, 7 survival parameters, 8 PENTs (but
these must sum to 1), and 2 super-population parameters for a total of 18 parameters. The model
{Pg @gut bgu} has 2 catchability parameters, 14 survival parameters, 18 PENTs (but each of the two
groups of PENTs must sum to 1), and 2 super-population sizes for a total of 32 parameters.

The final results window looks like (after adjusting for the number of parameters)

-

EEL] @2z &8 & Al @[3

todel AlCe Delta AlCc AlCc weight | Model Likelihood| Mo, Par. Deviance
{POPAN 2 aroups [{plal. philtl. pertig™]t 9334122 0.0000 0.95057 1.0000 25 0.0000
{POPAN 2 groups ({pla). philt]. pentltl 940.5470 71348 0.02683 0.0282 18 0.0000
{POPAM 2 groups [{plg]. philg™). pent(g™)} 940.8910 74788 0.02259 0.0238 32 0.0000

The final models of interest are a comparison between model {p, ¢, b,.;} and {p, ¢, b;} (why?). The
AAIC, shows very little support for the model where the jacks enter in the same distribution as the

adults. In particular, examine the estimates of the PENTs for the {p ¢ Pt b g*t} model:

10:pent 0.0333328 0.0457877
11:pent 03268064 0. 0685035
12:pent 0.1307572 0.0752736

13 pent 00011528 0. 0591666

14 :pent 00410032 0. 0386583
15:pent 01214374 00324185

16 Tent L 1719801k

17 pent U 6631933611 U 1043234E-11
18:pent D.2276932 0.0835763
19:pent 00362517 0. 0864785
20:pent 0.1635956E-09  0.0000000
21:pent 00056390 0. 0455758
22:pent 00368692 00266953
23:pent D.5456831E-06 0. 4850133E-03

Recall that even though there are 8 PENT parameters per group that MARK does not let you specify
the b, parameter in the PIMS — this value is obtained by subtraction from 1. Further manipulations can
be done by copying the real parameter values to an Excel spreadsheet:

|Output Rettieve PIM Design Run  Simulations Tests  Adjustments ‘Window  Help

> |

Specific Model Output v VI KeTialils

—  Table of Model Results Parameter Estimates Real Estimates 3 View real estimates, SEs, and Cls in Natepad

E Append Variance-Covariance Matrices  » Beta Estimates 3 Copy only real estimates to Clipboard

I Model Averaging 3 ‘fariance Components 3 Derived Estimates  » Copy only real eskimate to Excel

E Input Data Summary Residuals 3 Copy real estimates, SEs, and CIs to Clipboard

. Interactive Graphics Copy regl estimates, 5Es, and CIs to Excel

Bl |l |[ Bootstrap GOF R
You will find that about 34% (1 — 0.033 — 0.326 — ... — 0.000) of adults were in the stream prior to the
first sampling occasion, while about 69% (1 — 0.000 — 0.227 — 0.036 — ... — 0.000) of jacks were in the

stream prior to the first sampling occasion. So it appears that precocious males tend to return earlier
(for this stream and year) than regular adults.
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In this example, it is vitally important that catchability be approximately constant across all sampling
occasions so that a model with p, could be fit; any model where catchability varied across time (a p,
or p,,; model) would have the first PENT parameter hopelessly confounded with the first catchability
parameter and in many cases, makes it difficult if not impossible to do sensible model comparisons.
This again illustrates the need for careful study design with JS models.

begin sidebar

The multinomial logit link and the POPAN model

In situations where you want to constrain estimates from a set of 2 or more parameters to sum to 1,
you might use the multinomial logit link (MLogit), which was introduced in some detail in Chapter
10 with respect to multi-state models (where the transitions from a given stratum must logically sum
to 1.0).

While specifying the MLogit link in MARK is straightforward, you need to be somewhat careful.
Consider the following set of parameters in a PIM for the probability of entry (pent) in a POPAN
model:

61 62 63 64 65 66 67 68 69 70

The parameter-specific link would be selected in the ‘Setup Numerical Estimation Run’ window,
and the MLogit (1) link would be applied to parameters 61 — 70 to force these 10 estimates to sum to
< 1. But suppose that you wanted to force all of the 10 entry probabilities to be the same, and have the
sum of all 10 be < 1? You might be tempted to specify a PIM such as

61 61 61 61 61 61 61 61 61 61

(i.e., simply use the same index value for all the parameters in the PIM), but that would be incorrect.
Changing the PIM and selecting the MLogit link for parameter 61 would result in parameter 61 alone
summing to < 1 (i.e., just like a logit link), but would not force the sum of the 10 values of parameter
61 tosumto < 1.

To implement the proposed model, the PIM should not be changed from the top example (i.e., it
should maintain the indexing from 61 — 70), and the design matrix should be used to force the same
estimate for parameters 61 — 70:

Parameter Design Matrix
61 1
62
63
64
65
66
67
68
69
70

e e el e

Then the MLogit (1) link should be specified for the 10 parameters 61 — 70. The result is that now
all 10 parameters have the same value, and 10 times this value is le1.

Another example — suppose you wanted parameters 61 and 62 to be the same value, 63 to 66 the
same, 67 and 68 the same, and 69 and 70 the same, but the sum over all parameters to be < 1. Again
you would use the PIM

61 62 63 64 65 66 67 68 69 70

but again use the design matrix to implement the constraints. The following design matrix is one
example that would produce such a set of constraints.
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Parameter Design Matrix

61
62
63
64
65
66
67
68
69
70

0

el e
S © © © © O OO K =

O OO OO K Rk P P o
O O r P OO0 00

The key point with these examples is that the PIM cannot be used to constrain parameters if you
want the entire set of parameters to sum to < 1. Rather, the design matrix has to be used to make the
constraints, with each of the entries in the PIM given the same MLogit(x) link. Further examples of
the MLogit link are discussed in Chapter 10.

end sidebar

12.4.2. Link-Barker

and Pradel-recruitment formulations

The Link-Barker or Pradel-recruitment formulation can be conveniently obtained by switching data
types from any of the JS formulations. We will illustrate the use of the Link-Barker formulation; that for

the Pradel-recruitment is similar, but in this case cannot be used because of losses-on-capture.

Let us begin with a time dependent model for all parameters, i.e., {p; ¢; f;}. The number of groups
and sampling intervals would have been entered as seen in the POPAN formulation. The survival and
catchability PIMs mimic those for the POPAN formulation.

In the Link-Barker formulation, there are (K — 1) = 7 recruitment parameters with a standard PIM:

W Apparent Survival Parameter {Phi) Adults1 of Link-Barker Jolly-Seber

Ba| 4] 4] ¥ Biw|

|1 Jf2 J: s Jfs e |y

| | |1u R ER R EE

@l 4] 4] %] =@
g 9

Blm] & 8| %] E|m|

G EREEERERERE
adule at i+1 per adule at i (F) Adults1 of Link-Barker Jolly-Seber -- Parameter Index
Entry Box Row 1, Column 1

Because the population recruitment value is not limited to lie between 0 and 1 (for example, the
recruitment value could exceed 1), the ‘Parameter Specific Link’ functions should be specified when

models are run:*

* An undocumented feature of MARK is that it will use the log link for the recruitment parameter if you specify a logit or sin

link in the radio buttons.
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' [~ MCMC E stimation ¥ ea
e 1 se

C .
I- O Pairn-S pesific I Help | Cant

m

Any of the link functions can be used for the catchability and survival parameters (although the logit
and sin link are most common), but either the log or the identity link function should be used for the
population recruitment parameters. There are no restrictions that the recruitment parameters sum to 1
over experiment so the Mlogit link should not be used.

Specify Link ¥Yalues
Specify Parameter-S pecific Link Function Yalues for {LINK-BAR

1:Phi [5i - 11:p [5in - 21:f ILDg vl

ZPhi [5in = 12p [5in = 22f -
IFhi [5in - 13:p [5in -
4:Fhi m 14:p [5in -
SFhi [5i - 15:p [5in -
E:Phi [5i - Bf [Log -
7:Fhi m 7 lm
&P |5in - 8f |Lag -
3P |5in - 3 Lag -
1P [5in - POF [ og -

[T | Cancel | Defaultl HesetAIII Paste | Help |

Run the model and append it to the browser.

As in the POPAN formulation, both the fully time-dependent Link-Barker and Pradel-recruitment
formulations suffer from confounding. If you examine the § parameter estimates, and the estimated SE
(below), there are several clues that confounding has taken place:

Chase 1989 — Adult=s (Group 1)
FARM-SFECIFIC Link Function Parameters of {LINH

Paramster Beta Standard Error
1:Fhi 0.2941125 0.4008748

2:Fhi 63.626154 0.2371159E-07
3:FPhi 0.8990273 0.5629100

4:Fhi 29.911114 0.3114257E-07
5:Fhi 50.8183% 0.0000000
6:Fhi -1.2029741 0.8224589
7:FPhi 36.399168 0.0000000
g:p 2.2179782 371.53733
9:p -0.5156723 0.5868032
10:p —1.1910425 0.2189992
11:p —0.5259468 0.2662951
12:p —0.8037093 0.2600251
13:p -1.6006708 0.2852519
14:p -1.0678417 0.7797062
15:p -1.9459115% 0.7559225
16:£ 0.3?32???E—03" 34.850271
17:£ 1.0326275 0.4617279
18:£ -12 670864 719.29324
19:f —-21.666706 3987 8326
20: £ -1.8117237 1.1636719
21:f —1.3234832 0.6606008
22:f -18.040081 ’- 873.338%
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As in the POPAN formulation, survival in the last interval and catchability at the last sampling
occasion are confounded. The corresponding ff parameters are very large on the logitscale with standard
errors that are either zero or very large. Similarly, p; cannot be estimated and its  standard error is very
large.

Finally, because the first and last catchabilities cannot be estimated, neither can ‘population size’
(despite population size not being explicitly in the model) and so the recruitment parameter (the f;
values) based on occasion 1 (f;) or terminating with occasion K (fx_;) cannot be estimated either. We
notice that the standard errors for these recruitment parameters are nonsensical.

ﬂ Cha=e 1989 - Adults (Group 1) only
Real Function Paransters of {LINK-BARKDER p(t), phi{t}), lambda{t)}

95 Confidence Interwval

Faramster Eztinate Standard Error Lower Upper

1:Phi 0.5730026 0.0980823 0.3795162 0.7464613

2:Phi I 1.0000000 0.3293066E-18 1.0000000 1.0000000

3:Phi 0.7107496 0.1157256 0.4491078 0.8810416

4 :Phi 1.0000000 0.4325081E-18 1.0000000 1.0000000

5 Phi 1.0000000 0.o00oo0n 1.0000000 1.0000000

6:Phi 0.2309466 0.1460771 0.0565193 0.6008590

— wielsninilasion - - - = i

9p 0.3738648 0.1373647 0.1585%841 0. 6535005

10:p 0.2330725 0.0391460 0.1651661 0.3182547

11 p 0.3714627 0.0621741 0.2596314 0.4989979

12:p 0.3092326 0. 0555434 0.2119254 0.4270102

13 p 0. 1678879 0.0398501 0.1034223 0. 2608458

14 p 0. 2558137 0.1484351 0.0693920 0.6131049

17 f 2. 8084353 1.2967330 0.2668385 5. 3500321

18:f 0.3141329E-05 0.00225595 0.4362674E-16 0.9999956
19 f 0.3892862E-09 0.1552408E-05 —0.3042331E-05 0.3043110E-05

20 f 01633723 0.1901117 0.0126231 0.7489145

21:f 0. 2662118 0.1758597 0.0585004 0.6793057
-

The user must be very careful to count parameters carefully and to see if MARK has detected the
correct number of parameters. There are 8 sampling occasions. The fully time-dependent model has,
on the surface, 8 capture parameters, 7 survival parameters, and 7 recruitment parameters for a total of
22 parameters. However, as shown in Table 12.3, there are two parameters lost to confounding which
gives a total of 20 parameters that can be estimated. The number of parameters reported in the results
browser may have to be modified manually.

As in the POPAN formulation, models where constraints are placed on the initial and final catchabil-
ities can resolve this confounding. Because roughly the same effort was used in all sampling occasions,
the model {p,, ¢;, f;} seems appropriate.

Adjust the PIM for the recapture probabilities to be constant over time, re-run the model (don't forget
to use the ‘Parameter Specific Link’ function option),” and append the results to the browser. Let’s
look at the parameter estimates (top of the next page). The number of parameters that can be estimated
isnow 15 being composed of 1 capture parameter, 7 survival parameters, and 7 recruitment parameters.

If you compare the estimates of p and ¢ between the Link-Barker formulation and the POPAN
formulation they are identical (except for rounding errors). Note that because of unequal time intervals,
estimates of ¢; are on a per-unit basis. The actual survival in the first and last interval must be obtained
by raising the reported ¢’s to the 15" power (corresponding to the 1.5 week interval).

* CAUTION: When we ran this model with the logit link for the ¢’s, one ¢ converged to a value of 1; we would recommend that
the sin link be used.
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Cha=ze 1989 — Adults {(Group 1) only

Real Function Parameters of {LINE-BARKER pi#®), phi(t), f{t) — indiv =in link}
95% Confidence Interwval
Farameter Eztimate Standard Error Lower Tpper
1:Phi 0.5833992 0.1006706 0.3834096 0.7592529
2:Phi 0.9279969 0.1765803 0.0676519 0.9995634
3:Phi 0.7970321 0.1330251 0.4393349 0.9515419
4:Phi 0.9221987 0.1316963 0.2450770 0.9976947
5:Phi 0.5800559 0.1375482 0.3135128 0.8068629
6:Phi 0.3308433 0.1259074 0.1395454 0.6011657
7 :Phi 0.6190726 0.13959812 0.3367479 0.8387623
8 p 0.3137171 0.0420822 0.2375970 0.4013852
9 f E.2521580 0.2045257 0.0386820 0.7385912
10:f .6441301 0.5502536 0.5656329 2.7226273
11:f 0.2114983 0.1593520 0.0395904 0.6357435
121 0.2728460E-07 0.6223856E-04 0.3789270E-18 0.9994913
13:f 0.0571923 0.0884807 0.0024271 0.6013896
14 f 0.4270444 0.1464334 0.1874095 0.7066338
15 f 0.1160248E-04 0.0108513 0.1611365E-15 0.9999988

The PENTs from POPAN and the f’s from the Link-Barker are not directly comparable. However, the

following equivalents are noted:

(AP =0.252'° = 0.127 =

B1170PAN

14.92

B3N 110.39
NPOPAN ™ 67.20
BN 3677
 NPOPAN 17172

Similarly, estimates of population growth are also equivalent:

(Y +(917)'° = 0.583" +0.252'° = 0.571 =

FLB 4 oL = 1,644+ 0.928 = 2.57 =

A

NPOPAN

NPOPAN ~ 117.034

GPOPAN

2

67.20

3

N]POPAN

N;OPAN

117.03

=0.574

If you examine the results browser (after any changes for the actual number of parameters that are

estimated):

@]

| BlE| o) 22| 4] 4

AlCe Delta AlCe AlCc Weight || Model Likelihood | Mo, Par. Deviance
1204.4444 0.00a0 0.98036 1.0000 15 169.0603
{LINK-BARKER p(). phil*]. flt] - indiv sin link} 12128183 8.3739 0.071430 n.msz2 g 1863137
iLINK-BARKER p{t). philt). f(t1} 12153206 10.9362 0.004714 0.0042 20 166.0108

you will also see that the AAIC, values between these two models matches very closely with the
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difference in the POPAN formulation. The differences in AAIC, between the two formulation are
artifacts of the different number of parameters estimated and the small sample correction applied to
the AIC. If the actual AIC values from the two formulations are compared, the difference in AIC are
nearly identical because the two formulations are simply re-parameterizations of the same models for
modeling the marked animals and only differ in estimating the super-population size.

As Sanathanan (1972, 1977) showed, the conditional approach of Link and Barker (2005) is asymp-
totically equivalent to the full likelihood approach of Schwarz and Arnason (1996). For example, in
the table shown below, the log-likelihood and AIC (before small sample corrections are applied) were
extracted from the model outputs. The differences in the log-likelihoods and the AIC among the models
in different formulations are nearly the same.

POPAN formulation Link-Barker formulation
Model -2xlogl #parms AIC Model -2xlogl #parms  AIC
{r., ¢, b} 489.94 16 521.94 | {p., ¢, f;} 1176.74 15 1206.74
{p.,p., b} 507.25 10 52725 | {p.,p., f;} 1193.99 9 1211.99
P, i, b} 486.80 21 528.80 | {p;, ¢;, fi} 1173.69 20 1213.69

The two group case can be fit in a similar fashion as seen in the POPAN example. However, it
is not clear exactly which models should be compared because the f; parameters in the Link-Barker
formulation depend both upon the NET number of new births, but also upon the population size at
occasion i which depends upon the pattern of previous births and survival probabilities. Consequently,
even if the same birth pattern occurred between the two groups, differences in survival probabilities
could result in differences in patterns of the f’s. Fortunately, it appears the survival probabilities are
roughly constant between groups, so a comparison of models {p, ¢, f,.;} vs {p, ¢, f;} is a valid test of
the hypothesis of equal return patterns for adults and jacks.

Fitting these two models to the two groups is left as an exercise for the reader.

12.4.3. Burnham Jolly-Seber and Pradel-A formulations

The Burnham model

The Burnham JS model does not model entrants directly, but rather parameterizes changes in population
size using population growth. In the case of the spawning salmon, this would correspond to the increase
in the number of spawning salmon at occasion 7 + 1 relative to occasion i.

The Burnham JS model is selected using the Jolly-Seber radio button. The same data file as for POPAN
can be used. Again let us start with fitting a model just to the adults over 8 sampling occasions with
unequal sampling intervals (see the screen shots in section 12.4.1 for details). Again, start by fitting the
fully time-dependent model (PIM structure shown at the top of the next page).

As in POPAN (and all JS formulations) there are (K — 1) = 7 survival parameters, K = 8 capture
probabilities. In the Burnham model, there is a single initial population size parameter per group and
(K —1) = 7 population growth parameters.
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Bm| & &, ¥ m(m)
|1 |2 |3 |+« s & ]7

M Capture Probability {p) Group 1 of Jolly-Seber Lambda -- Burnham
| & 4] ¥o| |
IS |9 K EEE N G

M Population Size Rate of Change {Lambda) Group 1 of Jolly-Seber Lambda -- Burnham
s & 5] ¥|o| B(m

18 17 20

EIEER

IERE

B Initial Population Size {N) Group 1 of Jolly-Seber Lambda -- Burnham

Bla| &] 4] ¥ b6

23

We were unable to get the Burnham Jolly-Seber model to converge for any of the models considered
in this chapter. The MARK help files state that

“This model can be difficult to get numerical convergence of the parameter estimates. Although this
model has been thoroughly checked, and found to be correct, the program has difficulty obtaining nu-
merical solutions for the parameters because of the penalty constraints required to keep the parameters

consistent with each other.”

+
Bummer. .. "

The Pradel-A model

The Pradel-A formulation (considered in much more detail in Chapter 13) can be conveniently obtained
by switching data types from any of the JS formulations (or can be entered directly from the initial
screen of MARK as discussed in Chapter 12). The number of groups and sampling intervals would
have been entered as seen in the POPAN formulation. Let us begin by modeling only the adult salmon.

| Program MARK Interface - p_t phi_t lambda_t [D:\Huanimark\Popan
File Delete Order Output Retrieve RGN Design Run Simulations  Tests  Adjus

Open Parameter Index Matrix
Parameter Index Chart
Change Data Tvpe

Change PIM Definition

* ...dude. C. Schwarz has clearly spent too much time on the ‘wet coast’ — E. G. Cooch, pers. obs.

¥ As noted earlier, this convergence problem disappears for some models if simulated annealing is used for the numerical
optimization. —J. Laake & E. G. Cooch, pers. obs.
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Select new data type gl

Live Recaptures [CIS)

Fradel Survival and Se

Jally-5eber Lambda - Burnharm

riarity

Fradel Survival and Lambda |

FOPAN
Link-Barker Jally-Seber

Help

Fradel Survival and Recruitment

Cancel

Begin by fitting a fully time-dependent model. The PIMs for survival and catchability mimic those

seen in earlier sections; the PIM for the population growth parameter has (K — 1) = 7 entries:

I Apparent Survival Parameter (Phi) Adults of Pradel Survival and Lambda

B 4] 4] ¥o| G|
[T+ Jz J3 J4 |5 J& |7

Bo| & 4] ¥[o| Bl

Il Recapture Parameter (p) Adults of Pradel Survival and Lambda

Bla| 4| 4| ¥o| bl

IEIEN RN R

HPopulation Size Rate of Change {Lambda) Adults of Pradel Survival and Lambda

| 15

||1s |1? |18 J13 Jzo Ja a2

Because the population growth parameter is not constrained on the interval [0, 1] (i.e., the growth
rate could exceed 1), the ‘Parameter Specific Link’ option should be selected:”

Setup Mumerical Estimation Run b

. Tit!e for [Chase 1989 - Adulks only - Pradel Lambda m

Model Name &:ftl, philt], lambdalt]}]

Fix Parameters | Mo Parameters Fived

r— Lirk Function——

i Si
" i “War. Eztimation
= Logit .
™~ Hessian
" Loglog
" Cloglog & ZndPart
" Log —
™ |dentity [~ MCMC Estimation
i~ Absolute
* Pam-Specific Help

MHumerical E stimation O ptions:

[~ List Data

[~ Provide initial parameter e

[~ Use Al Opt. Method

[~ Profile Likelihood Cl

[~ Set digits in estimates

[~ Set function evaluations

[~ Set number of parameters

v | Staridardize rdividual Coy
Real Par. Estimates from | ndividual Cof
= First Encournter, Histarny Goyariz
% Mean Individual Covariate al

| User-specified Coyariate Yalue

OF. ta Hunl

Cancel Hunl

* A hidden feature of MARK is that it will use the log link for the growth parameter if you specify a logit or sin link in the radio

buttons.
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Any of the link functions can be used for the catchability and survival parameters (although the logit
and sin link are most common), but either the log or the identity link function should be used for the
population growth parameters (this is discussed in detail in Chapter 13). There are no restrictions that
the growth parameters sum to 1 over experiment so the Mlogit link should not be used. Because there
are more than 20 parameters, we need to press the ‘More’ button to specify the link function for the two
remaining A values.

Specify Link ¥Yalues
Specity Parameter-5pecific Link Function Yalues far {p(t], philt), lambdalt]}

1:Phi [5im - e fsin =]
2P S =] 12p [5in 7]
Pk [5in = 13p m
4:Phi m 14:p m
E:Phi [sin = 16:Lambda m
7.Fhi m 17:Lambda m
gp [5in - 18:Lambda m %
3p [s5in - 19:Lambda m
10:p [5in - 20:Lambda -

Specify Link ¥Yalues
e p— | FLnction Yalues for {plt), philt], lambda(t)}
21:Lambda || ag

I j‘

22:Lambda -

Run the model and append it to the browser.

Asin the POPAN formulation, the fully time-dependent Pradel-A formulation suffers from confound-
ing. If you examine the parameter estimates,

Chase 1989 — Adult= only - Pradel L4
SIN Link Function Parameters of {p(t).
Paranster Beta Standard Erroz|
1:Phi 0.1489727 0.2001108
2:Phi 1.5708030 1.244£909
3:FPhi 0.4566342 0.2760231
4 :FPhi 1.5707948 1.2177449
5 :FPhi 0.6248334 1.207591%8
£:Phi I 0.0750629 1.0102702
7 :Phi —0.0363473 0.00oo0o0o
8:p —0. 3956357 222.99293
9:p —0. 2574645 0.2845365
10:p —0.5821609 0.1860761
11:p —0.2786746 0.1834005
12:p —0.3900425 0.1223032
13:p —0.6174397 0.3359732
14:p -1.0361815 0.2510108
15:p —0. 2552837 0.oo0oooon
16 :Lambda —0.475184¢6 223.19723
17 :Lambda 1.3852116 0.4381791
18:Lambda —0.2710648 0.3930451
19:Lambda —0.0194197 0.20201148
20:Lambda —0.0422955 0.6444539
21:Lambda 0.9034860 1.0964706
22 :Lambda + -1 5696863 0.00oo0o00
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there are several clues that confounding has taken place. The standard errors for some parameters are
enormous or the standard error are zero. Survival in the last interval and catchability at the last sampling
occasion are confounded. Similarly, A, is confounded with p;.

Consequently, not all of the real parameter estimates are usable:

Cha=ze 1989 - Adult= only - Pradel 14
Real Function Parameters of {p(t). phi/
Paranster Estimate Standard Erroz
1:Phi 0.5742111 0.0989472
2:Phi 1.0000000 0.4141439E-05
3:Phi 0.7204648 0.1238711
4:Phi I 1.0000000 0.9443671E-0¢
5:Phi 0.7924811 0.4897150
£:Phi 0.5374962 0.5037127
7 :Phi . b
g:p e e e e o e
9:p 0.3726853 0.1375789
10:p 0.2250849 0.0777125
11:p 0.3624592 0.0881625
12:p 0.3098861 0.0565587
13:p 0.2105253 0.1369701
14:p 0.0697675 0.0639462
15:p - ca-r- -
16 Lambda P -
17 :Lambda 3.9956711 1.7508194
18 :Lambda 0.7625671 0.2997233
19 : Lambda 0.9807677 0.1981267
20:Lambda 0.9585865 0.6177647
21:Lambda 2.4681924 2.7063005
22 :Lambda - i -

The user must be very careful to count parameters carefully and to see if MARK has detected the
correct number of parameters. There are 8 sampling occasions. The fully time-dependent model has,
on the surface, 8 capture parameters, 7 survival parameters, and 7 growth parameters for a total of 22
parameters. However, there are two parameters lost to confounding which gives a total of 20 parameters
that can be estimated. The number of parameters reported in the results browser may have to be
modified manually.

As in the POPAN formulation, models where constraints are placed on the initial and final catchabil-
ities can resolve this confounding. Because roughly the same effort was used in all sampling occasions,
the model {p_, ¢;, A;} seems appropriate. Adjust the PIM for the recapture probabilities to be constant
over time, re-run the model (don't forget to use the ‘Parameter Specific link functions or let MARK
automatically use the log link for the A parameters).

Specify Parameter-5 pecific Link Funchgn Yalues far {n™) ghilt] lambdalt)t

T:Phi 55 T1:Lambda || og

2ZFhi [5in 12ZLambda || og -

ZPhi 5 13:Lambda || og

AL

4:Phi [5in T4Lambda || og

S:Phi [5in 15:Lambda -

E:Phi [5in

FPhi 5

JLLLLLL

20 [Sin

SLambda

?
(=]
{/=]

B

10:Lambda [Lag
T |

1

D efault | HesetAIIl Paste | Help |

[y
i1}
=
]
o
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This gives the final estimates:

| Cha=e 1989 - Adult= only — Pradel Lani
Feal Function Parameters of {pi{*). phiit)
Parameter E=ztimate Standsard Error
1:Phi 0.5927220 0.1035234
2:Phi 0.9458309 0.18559415
3:Phi 0.8060015 0.1339392
4 :Phi 1.0000000 0.5549465E-06
5:Phi 0.5814686 0.1347157
6 :FPhi 0.2866269 0.1147553
7 :Phi 0.8592311 0.2203514
8. p 0.2841406 0.0397731
9 Lambda 0.6810920 0.1085847
10:Lambda 2.6302703 0.5865236
11:Lambda 1.1418285 0.1343586
12 :Lanbda 0.8602454 0.1113947
13:Lambda 0.6768354 0.1320030
14 :Lambda 0.8865846 0.2281068
15 : Lambda 0.6158796 0.1298563
T

The number of parameters that can be estimated is now 15 being composed of 1 capture parameter,
7 survival parameters, and 7 A parameters.

Note that because of unequal time intervals, estimates of ¢; are on a per-unit basis. The actual
survival in the first and last interval must be obtained by raising the reported ¢’s to the 15" power
(corresponding to the 1.5 week interval).

Compare the estimates from the Pradel-A formulation to those from the POPAN or Link-Barker
formulation. Estimates of survival are similar at sampling occasions 1,2, and 3 differing only by roundoff
€erTor.

However, the estimate of ¢ at sampling occasion 4 differs considerably among the models. Indeed,
the Pradel-A formulation is not even consistent as A, = 0.86 < @, = 1.0! The POPAN formulation
estimated that there was no recruitment between sampling occasion 4 and 5 (it was constrained so that
estimates of recruitment cannot be negative); the Link-Barker model also estimated the recruitment
parameter to be O (it is also constrained so that it cannot be negative). However, there are no constraints
in the Pradel-A model that A must be at least as great as survival.

The estimates of A also don’t appear to be consistent with the results from POPAN when estimates of
population size are compared. However, this discrepancy is explained by the different ways in which
losses-on-capture are incorporated into the estimates of population size and growth between the two
formulations.

The model {p. . A,} can also be fit and the results appended to the results browser. The estimates
from this model are:

| Cha=se 1989 - Adults only — Pradel Lamb
Real Function Parameters of {p(%*). phi(*)
Parameter Estimate Standard Error

1:Fhi 0.7139171 0.0404565
2:p 0.2979816 0.0435415
3:Lambda 0.7209730 0.1028197
4:Lanbda 2.3847961 0.4978027
& :Lambda 1.1183694 0.1788025
£ Lanbda 0.7287425 0.1076054
7 :Lanbda I 0.7852352 0.1201662
8:Lanbda 1.2179330 0.2103186
9:Lambda 0.5872715 0.0644242
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12.5. Example 2 — Muir’s (1957) female capsid data 12-35

Again, the estimates are not internally consistent as the population growth rate estimates sometimes fall
below the common survival probability . These would indications that there was little or no recruitment
in these intervals.

The results browser

il BE=a(wx B@E s 22| &) 8

taodel AlCe Delta AlIC: AlCc Weight | Model Likelihood| Mo, Par. Deviance
{p["). philt), lambdat]} 1179.3052 0.0000 083171 1.0000 15 139.3552
{p["). phil*. lambdalt]} 1184.4159 51107 0.06925 0.0777 ] 157.9112
11855627 E.2575 003303 0.0438 20 133.8098
T

tells the same story as in the other formulations — strong support for the model with constant catchability
and time varying survival and population growth.

The two group models can also be fit in similar fashion as in the other formulations. However, there
is again the question of which models comparisons are a sensible choice. Because the A values are
population growth on a per capita basis and include both survival and recruitment, models with group-
and time-dependence in A may not be indicative of changes in recruitment between the two groups.

12.5. Example 2 — Muir’s (1957) female capsid data

This second example uses the Muir (1957) data on a population of female black-kneed capsid (Blephari-
dopterus angulatus) that was originally analyzed by Jolly (1963)" and Seber (1965).

According to the British Wildlife Trust website' a black-kneed capsid is a green insect about 15 mm
long that lives on orchard trees (particular apples and limes). It is a predatory insect that is beneficial to
orchard owners as it feeds on red spider mites which cause damage to fruit trees. It apparently makes a
‘squawk’ by rubbing the tip of its beaks against its thorax and will stab people with its beak if handled.

Thirteen successive samples at alternating 3- and 4-day intervals were taken. The population is open
as deaths/emigration and births /immigration can occur.

The raw history data is located in the file capsid.inp. A portion of the histories appears below:

0000000000001 47;
0000000000010 36;
0000000000011 12;
0000000000100 30;
0000000000101 8;

There is only one group (females) and the individual histories have been grouped.*

* The data was subsequently reanalyzed in Jolly (1965)

" http://waw.wildlifetrusts.org

we suspect that it was impossible to attach individually numbered tags to these small insects and some sort of batch marking
scheme (e.g., color dots) was used. This batch marking scheme would enable the history of each insect to be followed, but
individuals with the same history cannot be separately identified
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The summary statistics are:

Occasion  t;

1 0 54 0 54 54 24 0
2 3 144 10 134 143 83 14
3 7 166 39 127 166 71 58
4 10 203 56 147 202 71 73
5 14 18 54 132 18 76 90
6 17 197 66 131 196 92 100
7 21 231 97 134 230 102 95
8 24 164 75 89 164 95 122
9 28 161 101 60 160 69 116
10 31 122 80 42 122 55 105
11 35 118 74 44 117 44 86
12 38 118 70 48 118 35 60
13 42 142 95 47 142 0 0

There are a few losses on capture at some of the sampling occasions where n; # R;.

The data are input into MARK in the usual fashion. The time intervals are set to three and four day
intervals in the usual fashion:

Title for this set of data:

|Female Capsid - POPAN

Encounter Histories File Mame: Click to Select File I

I\'\chmmium\home\cschwarz\WindowsDDcs\Eapsid\capsicUS.inp Wiew File |

Results File Mame:

I “hehromiumshomehcechwarz' \WindowsD ocs\Capsidheapand) S DBF

ncounter occasig s:l 13 ﬁ [EEetTimelntewals | Time Intervals Set
Attribute grou |1~ Enter Group Labels Default Group Labels Used

ndividual covariates: [ ﬂ Enter Ind. Cov. Mames | Default Ind. Cav. Hames Used
Strata: [ 2 ﬂ Erter Strata Hames | Default Strata Hames Uzed
Mixtures:l 2 ::I

Help I Cancel | Ok,
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Set Time Intervals

Erter values for time intervals not equal 1

1 ng_
2|4_ 12FJ,|_
e
i
JEm
ofi—
dem
ofi
o[
‘ID|4_

12.5.1. POPAN formulation

We begin by fitting the fully time-dependent model {p, ¢, b,} in the usual fashion using PIMs:

@|ﬁ| ﬂ il N;&|m| l*_én|l5|

|1 |2 |3 |4 |5 |s |? |e |9 |1D |11 |12
@|ﬁi| M il 3&|m| l‘a|l!||

[12 14 5 J1e J17 18 |13 Ja |z 2z |3 |z |=
B & 4 ¥ Bm

||2s |2? |28 |29 |3u |31 |32 |33 |34 |35 |3s |3?

M Initial Population Size {N) Group 1 of POPAN

Bla| & 4] ¥o| b

The model is run, again selecting the ‘parameter-specific link’ functions:

; - Mumerical Estimation Dptions:
Title for .
Title for [Femals Capsid - POPAN I List Data
Madel Mame [njt), philt], pentt] [~ Provide initial parameter es
ze Al Opt. Metho
[~ Use Al Opt. Method
. : Frofile Likelihood C
Fix P n Mo Parameters Fyed r
- B alan.ma Sl F[:% [~ Set digits in estimates
- Link Function [~ Set function evaluations
= Sin L [~ Setrumber of parameters
i Logit (\iar. EStI!‘ﬂatan ¥ Standardize [ndividual Cow
™ Loglog Hessian Feal Par. Estimates from [hdividual Cow,
@ (Hlasllen * 2ndPart = First Encaurter History Coyaric
" Log o 1 tean Individual Coyariate Wal
€ Identity I™ MCMC E stimation (= User-specified Covariate alue
e b L
(& Parm-Specific Help | Cancel Run| DK to Fun |
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and specifying the Mlogit (1) link-function for the PENT parameters, and the log link-function for the
super-population size (N).

Specify Link Yalues E3
Specify Parameter-Specific Link Functian ' alues for {p(t). philt). pent(t)}
TPhillogt  +| MWPhLogt  ~] 2pflogt ]
ZPhi m 12:Phi m 22p m
3:F'hilm 13:plm 23:plm
4:F'hilm 'I-'-i:plm 24:plm
SPhillogt =] 15p[logt =] Zpflage =]
E:Phi Im 1E:p Im 2E:pent Im
7-Phi Im 17:p Im 27:pent Im
8Fhillogt  v| 18pflogt  +] 28 pent [MLogil] ~]
5:Phi Im 19:p Im 29:pent Im
10:Fhi m 20:p m 30:pent Im
ok | Cancel | Default | Resetad | Paste | Help | More | %
[ %]
———iaer -5 pecific Link Function Walues for {p(t). philt), pent(t)}
21:pent Im
32 pent Im
J3pent Im
3d:pent Im
35:pent Im
3E:pent Im
38N m
I
ak | Cancel | D efault | Reszet All | Pazte | Help | Previous |

The resulting model output is:

Ml Results Browser: POPAN

NEEEEEEEEE R
todel AlCe Delta AlCe AlCc Weight | Model Likelihood| Mo. Par. Deviance
48587.3189 0.0aaa 1.00000 1.0000 a0 0.0000

There are a total of 36 parameters (13 capture probabilities; 12 survival probabilities; 13 entry probabili-
ties, * and 1 super-population size; less 2 confounded parameters at the start and end of the experiment

* Don't forget that MARK will show only the later 12 PENTSs in the PIM and output because it never allows you to do anything
with the b, parameter.
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and less 1 restriction that the PENTs must sum to 1). The results browser only shows 30 parameters
because some of the estimated PENTS, p’s and ¢’s are estimated to be 0 or 1.

Female Capsid — POPAN
Feal Function Parameters of {pit). phi(f

Paramseter Eztimate Standard Error

1:Phi 0.8759658 0.0465782

2:Phi + 0.99939211 0.0012121

3:Phi 0.9848373 0.0352664

4:Phi I 0.8964579 0.0270228

5 :Phi 0.8a37811 0.0315407

6 FPhi 0.9340079 0.0222983

7 :Phi 0.8608085 0.0238331

8:Phi 0.9999158 0.0000000

9:Phi 0.8986399 0.0305926

10:Phi 0.96059593 0.0333374

11:Fhi 0.92832424 0.0507824

12:FPhi 0.7380753 0.0261399

13:p + 1.0000000 0.0000000

14 p 0.2089550 0.0288577

15 p 0.2412468 0.0325530

le:p 0.1605427 0.0204321

17 p 0.2279459 0.0305639

18 p 0.2366837 0.0317329

19:p 0.3117792 0.0347702

20 p 0.2721393 0.0245714

21 p 0.2672511 0.0244000

22 p 0.2556812 0.0340349

23 p 0.2445398 0.0366121

24 p 0.2466021 0.0361598

25 p + 0.99953937 0.2690778E-03

26 pent 0.3212350 0.0412185

27 pent + 0.3690163E-12 0.5151544E-13

28 pent 0.2987720 0.0555976

29 pent + 0.3690163E-12 0.5151544E-13

30: pent 0.1327342 0.0447622

31:pent 0.0532585 0.0379329

32 pent 0.0643018 0.0218833

33 pent +D.3690163E—12 0.5151544E-13

34 pent 0.0200259 0.0170383

35 pent 0.0372219 0.0196549

36 pent 0.0458797 0.0162436

37 pent + 0.5333631E-11 0.3349635E-08

KL 2032 . 3055 77 751562

The number of parameters in the results browser should be reset to 36 in the usual fashion.

Because of the differing time intervals, the estimated survival rates (¢’s) are the survival probabilities
per day. They also differ from the estimates found in Jolly (1965) because they are also constrained to lie
between 0 and 1. For example, Jolly (1965) estimated that the survival probability between the second
and third sampling occasion was 1.015.

The estimated population sizes (shown at the top of the next page) are found in the derived parameters
(accessed using ‘Output | Specific Model Output | Parameter Estimates | Derived Estimates’).
Because of confounding and non-identifiability at the start and the end of the experiment in the fully
time-dependent model, some estimates cannot be used.

* This may be clearer if the § estimates table is also examined.
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Grp. Oocc. B-hat Standard Error
- - il tintet
1 3 607.19604 12509334
1 4 0.7499538E-09 0.1006871E-09
1 5 269.75648 90 . 067270
1 3 108.23747 76.909351
1 7 130.68098 43.889423
1 g 0.7499538E-09 0.1006871E-09
1 9 40 . 698819 34 610264
1 1n 75 64p247 39 965283
1 11 93.241473 33.179645
FPopulation Estimates of {p(t).
Grp. Oco. H-hat Standard Error
L L pul PN RN R Y u) . LT ]
1 2 68914354 83.094564
1 3 688 09163 83.139594
1 4 1264 4599 140 BB165
1 g 815.98298 98.463291
1 3 B832.33436 10129087
1 7 740 .90849 75 248160
1 8 602 53272 43 239669
1 k| E602.42989 42 391208
1 10 477 .15631 54.867008
1 11 482 53987 64 003556
1 12 478 50392 61 863016
4 e e 1 44 [l aiuEnia] 44 s e R R

Gross Population Estimates of {pit

Model with constant p and /or constant ¢ per day may also be tenable and are fit in the usual way using
the PIMs. Models with constant b’s don’t really have any sensible biological interpretation and should
not be fit. A model for the emergence curve may be more sensible and this could result in predictions
about the number of new entrants over time that has an early peak and tends to tail off over time. The
number of parameters estimated by MARK should be checked and adjusted.

The final results table is:

Bl Results Browser: POPAN

NEEEFEEEEEEEE

todel AlCe Delta &lCc AlCe Weight | Model Likelhood | Mo. Par. Deviance I
{p(). philt] pent(t]} 4885.3623 0.0000 0.93924 1.0000 26 D.DEIDEIl
{p(t). philt). pent{t)} 4899.7316 14.3693 0.00076 0.0008 36 D.DDDD"

{p(t]. phil*]. pentt]}

ha)
o

4318.0136 326913 0.00000 0.0000 15 U.DDDD"
50307102 145.3473 0.00000 0.0000 26 D.DEIDEI"
1l

It appears that virtually all support lies on the model {p,, ¢,, b, }. Because the capture probabilities are
constant over time, there is no longer any problem with confounding or non-identifiability at the start
or end of the experiment.
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The final estimates of the basic parameters and the derived parameters are:

Feal Function Paramsters of {pi{#*), phit]
Faramster Eztimate Standard Error
1:Phi 0.8A59472 0.0446034
2:Phi 0.99995992 0.1192227E-03
3:Phi 0.9392834 0.0254753
4 Phi 0.8934778 0.0202990
5 Phi 0.8956639 0.0249028
6:Phi 0.9594416 0.0187148
7 :Phi 0.8503712 0.0180554
8 FPhi 0.9997195 0.0000000
9 Phi 0.8953121 0.0188997
10:FPhi 0.9556066 0.0232709
11:Phi 0.9533796 0.0303663
12:Phi 0.99995994 0.1128867E-03
13 p 0.2517871 0.0103360
14:pent 0.2425867 0.0208929
15 pent 0.3197505E-11 0.0o0oo0oo
16:pent 0.1531475 0.0266547
17 pent 0.1220156 0.0280397
18 pent 0.1183510 0.0281414
19 pent 0.1003467 0.0292821
20:pent 0.0465839 0.0195714
21 pent 0.1570017E-06 0.6592920E-04
22 pent 0.0153315 0.01459972
23 pent 0.0350747 0.0161199
24 pent 0.0383922 0.0169404
25 pent 0.0217577 0.0167637
26N 2014 5912 60 532767
Grp. Ucc. B-hat Standard Error
1 1 488 73722 43307200
1 2 0.6441985E-08 0.0000000
1 3 308.54501 55 178680
1 4 245.82374 S56. 941222
1 5 238.44074 56 . 685513
1 6 202 . 16764 59 8540812
1 7 93 852150 39113762
1 g 0.3163099E-03 0.1328281
1 9 30.888278 30.180443
1 10 70 664776 32.448409
1 11 77.348430 34 059597
1 12 43835065 34.093976
Population Estimates of {p(%*),
Grp. Deooc. H-hat Standard Error
1 1 214.38783 30.097406
1 2 627.94845 40.703996
1 3 626.94640 40.704221
1 4 828 08666 57 .929862
1 g 772.91542 54495706
1 3] 793.07278 54.416236
1 7 873.34802 57.400075
1 8 630.284598 29 287469
1 El 629 57830 13.944050
1 10 481 .99858 38.455100
1 11 472 60577 39.367002
1 12 48p.02212 40.529796
1 13 529.85603 40 558755

The estimated super-population size is interpreted as the total number of capsids ever present in the
experiment and does not represent the number present at any particular point in time. The population
seems to peak atabout sampling occasion 4, and then gradually tapers off because of deaths/emigration
and fewer new insects entering the population of interest.
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12.5.2. Link-Barker and Pradel-recruitment formulations

Both the Link-Barker and Pradel-recruitment parameterize new entrants to the population using the
f; parameter representing the numbers of new recruits in the interval per member of the population
alive at time i. Because this dataset includes losses-on-capture, the Pradel-recruitment model cannot
be used, and the Link-Barker formulation will be used. Don't forget to set the alternating 3- and 4-day
time intervals.

The fully time-dependent model {p, ¢, f,} is fit using PIMs in the usual fashion:

Blo| & 4 %o BB
|1 |2 o]+ ]s Je J7 Je8 Je Juw [un |1z
Il Recapture Parameter {p) Group 1 of Link-Barker Jolly-Seber
Ew| &) 8| ¥ o] |

13 14 R ERERNEREREE R EEEE
Blo| & 4] ¥o| BB

2 o7 ENIEREREREERERERERERE

This model is run in the usual fashion.

Setup Numerical Estimation Run I
_ Tit!e far [Femals Capsid - Link-B arker #JT'Z:CSLE:W&“D” Distlves
Madel Hame [{n[t), philt], it} [ Provide initial parameter es
[~ Use Al Opt. Methad
Fix Parameters | No Parameters Fixed I~ Prafile Likelhood CI
- - [~ Set digits in estimates
Link Function [~ Set function evaluations

= Sin o [~ Set number of parameters
= Logit (\iar. Estlmatlon ¥ Standardize Individual o
i~ Loglog Hessian Feal Par. Estimates from [ndividual Loy
 Cloglog f* 2ndPart € First Encounten Histan Covarie
" Log o %' Mean [ndividual Cowariate Wal
 Identity I~ MCME Estimation £ User-spesified Covariate alue
(+ Pam-Specific Help |  CancelFun| OF. ta Fiun |

The recruitment parameter should have a log link-function specified as this parameter can exceed 1.

Specify Link Yalues
Specify Parameter-S pecific Link Function % alues far {p(t). philt). fE)
1:Phi{Logit vl T'I:F‘hiILDgit vl 213P|Logit -
2:Phi [ agit vl TZ:F‘hiILDgit vl 223P|Logit -
FPhi[Lagit -l 13p ILDgit vl 23p ILogit -
4:Phi Logit vl 143P|Lugil vl 243P|Lugil -
5:Phi [ agit vl 15:p ILDg't vl 25:p [Lagit -
———
EePhi | ogit 'l 16:p ILDgit vl Eif[Log -
TPhi [ agit vl 173P|Logit vl 7:F||_Ug -
&Phi[Lagit vl 18p ILDgit vl :f ILog -
3:Phi || ogit vl 193P|Lngit vl ?I:FILDg -
10:Phi [ agit vl 203P|Logit vl D:fILog -
OF, | Cancel | Drefault | Reset Al | Paste | Hel tdare | q
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Specify Link Yalues

[r—r—TETEY=ter- pecific Link Function Yalues for {p(t). philt).
N =]
2 3]
33 m
|
35 m
S rra—
< rra—r|

o
-~

Cancel | Default | Reset Al | Pazte | Help | E 1

The results table is:

Ml Results Browser: Link-Barker Jolly-Seber

NEEECTEEEEEETEE

todel AlCe Delta &1Cc AlCc Weight | Model Likelhood | Mo. Par. Deviance
10EEE. 1657 0.0000 1.00000 1.0000 4] ThE.2253

There are 35 parameters (13 capture probabilities; 12 survival probabilities; 12 recruitment proba-
bilities; less 1 non-identifiable parameter at the end of the sampling chain where ¢,p;5 can only be
estimated; and less 1 non-identifiable parameter at the start of the sampling chain.) If the number of
parameters in the results table differs, it should be changed in the usual fashion.

The estimates from this model are shown at the top of the next page. The estimated survival probabil-
ities and recruitment parameters are on a per day basis. The estimates of p and ¢ are comparable to the
POPAN estimates except for some minor differences at the start of the sampling chain. These are artifacts
of the different confounding at the start of the sampling chain between the two formulations. The
estimated recruitment parameters indicate the number of new recruits per member of the population.
Estimates of the actual population size are not available.

Simpler models for p and ¢ can be fit in the usual fashion. It may be actually biologically sensible
to fit a model with constant f over time as this is the recruitment per existing member. Even if the
population is declining over time, perhaps the recruitment is constant over time.

The results table for these models is:

i BlEl=la v BE| of == & 2
Model AlCe Delta AlC: AlCe Weight | Model Likelihood| Mo, Par. Deviance
{pI"), philt, fik 10657.4228 0.0000 095752 1.0000 5 s
{plt). philt. {1} 10666.1657 57429 0.01248 0.0126 3| 7Ee.2293
o). phir*), ik 106831907 257679 000000 0.0000 DIEEEE
i 107830638 125.6311 0.00000 0.0000 R
B 10c0s.05z1]  14e6093 0.00000 0.0000 15] 9391373

Virtually all support again lies with the model with constant catchability {p. ¢, f;}. Because capture
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Real Function Parameters of {p(t).
Paramn=ster Estinate Standard Err

1:Phi 1.00o00000 0.oo0oo00o0

2:Phi 0.9830163 0.0259774

3:Fhi 0.9562097 0.0394007

4:Fhi 0.9035631 0.0277166

5 :Phi 0.8838988 0.0319599

6:Phi 0.9339469 0.0223125

7:Fhi 0.8616350 0.0255083

8:Fhi 0.9976477 0.022930¢6

9:Fhi 0.9003750 0.0355637
10:FPhi 0.96098594 0.0333523
11:Phi 0.9235196 0.0512547
i HEREEEE L Looonon
14:p 0.1az21002 0.0056901
15:p 0.2241029 0.0371545
16:p 0.2123710 0.0337424
17:p 0.1977410 0.0306743
18:p 0.2365201 0.0317549
19:p 0.3116825 0.0347872
20:p 0.2714373 0.0259713
21l:p 0.2689865 0.0305414
22:p 0.2556698 0.0340466
23:p 0.2444797 0.0366274
24:p 0.2570973 0.0431501
271 0.2533830 0.o000ooao
28:f 0.7462776 0.12895573
29:f 0.7508969 0.0936962
30:-f 0.5802783 0.1278921
3l:f 0.4000752 0.1197371
3201 0.5603289 0.0761922
330t 0.0648895 1. 6747656
34:f 0.4088284 0.1210313
360 f 0.6304078 0.0917065
3601 0.5477003 0.1062975
37t 0.3357953 0.1732492

probabilities were constant over time, all parameters are now estimable.

The final estimates are:

[ Female Cap=id - Link-Barker

Eeal Function Parameters of {pi{#*), ph

Paramnster Estimate Standard Error

1:FPhi 1.0000000 0.1128761E-04
2:Phi 0.9727813 0.0207076
3:Phi 0.9401501 0.0285802
4:Phi 0.8934947 0.02032122
5:Phi 0.8957113 0.0249229
6:Phi 0.9594949 0.0187335
7 :Phi 0.8502892 0.0208828
8 :Phi 0+9999810 0.0000000
3 :Phi 042952598 0.0238415
10:Fhi 0.9556793 0.0232962
11:Fhi 0.9535965 0.0304135
12:Fhi 0.9999999 0.2860069E-04

13:p 0.2512138 0.0105578
14:f 1.2010867 0.0924535
15:f 0.7083365 0.0831203
16:f 0.7377478 0.0654526
17:£ 0.7378570 0.0477018
18:f 0.6751899 0.0600519
19:f 0.7101521 0.0579573
20:f 0.4743710 0.0711472
21:f 0.0486908 1.7038972
22:f 0.3648598 0.1219773
231 0.6180099 0.0748742
24:f 0.5460166 0.0851689
25 f 0.5476497 0.1116569
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The estimates of p and ¢ are comparable to those from the POPANformulation except at the start of
the sampling chain. This may be an artifact of convergence to a local minimum by MARK. The estimates
of recruitment can be matched to that from POPAN. For example,

FLB = 054765, BYOPAN = 43.83, and NFPPAN = 486.02.

Now

By "N 4383

_ _ (FLB\4 _ 4
NPOPAN 18602 0.090 = (f3")* = 0.548" = 0.090
12

12.5.3. Burnham Jolly-Seber and Pradel-A formulations

The Burnham-Jolly-Seber and the Pradel-A formulations parameterize new recruits to the population
indirectly by estimating population growth (1) representing the population size at time i + 1 relative
to the population size at time i. The growth process is the net effect of both survival and recruitment.

The data are entered in the usual fashion — don’t forget to set the alternating 3- and 4-day intervals.

The Burnham-Jolly-Seber formulation again has difficulty in convergence for this example and so is
not run against this data.

The fully time-dependent Pradel-A model {p, ¢, A,} is fit using PIMs in the usual fashion:

@|ﬂ|ﬁ|m %|m| la|ﬂ|
[ Tz T2 T4 J5 J]6 J7 J& 9 Jw Ju Je
@|ﬁi|ﬁ|i| §1%|l.7.|| %|E|

13 |14 |15 |1s |1? |18 |19 |2u |21 |22 |23 |24 |25

Il Population Size Rate of Change {Lambda) Group 1 of Pradel Survival and Lambda

| Bl &% o] wlel

: 26 27 EIENERERERERERER ERE

This model is run in the usual fashion.

Setup Mumerical Estimation Run
. - Mumerical E stimation O ptians:
Title: for . P
i |Female Capsid - Pradel Lambda [ List Data
todel Hame [pit], phit], lambda(t] [~ Provide initial parameter es
[~ Use k. Opt. Method
Fist P aramaters I Mo Parameters Fised I~ Profile Likelihood CI

[~ Set digits in estimates

- Link Function—— [T Set function evaluations

= Sin L I~ Set number of parameters

= Logit (\iar. Estl!'natlon ¥ | Gtandardize ndividual Cor

" Loglog Hessian Feal Par. Estimates fom [ndividual Cov
' [Clssleg & 2ndPart ! First Encounter Histom Cowvariz

" Log — % Iean [ndividual Covariate i/al

£ Identity I™ MCMC Estimation | Wserspecified Covariate ¥alue

Pl )

&+ Pam-Specific Help | Cancel Fun| OF ta Fun |

[
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The population growth parameter should have a log link-function specified as this parameter can exceed
the value of 1.

specify Link ¥alues
Speciy Parameter-5pecific Link Function Yalues far {p(t]. philt). lambdalt]}
1:Phif| agit - 11:Phi [Lagit

4

A
A

12:Phi [Lagit

[
o o
= =
A

NNNNNNNNN

A

13:p [Lagit
4Phi[ gt = 14:0 || it
5:Phi [ ogit 15:p [Logit
B:Phi | ogit - 16:p [ Lagit

7:Fhi Lagit 17.p Lagit

A

8:Phi | agit 18P [Lagit

4
4

3:Phi [ ogit 13p | agit

LLLLLLLL

10:Phi [Logi 20p [ agit

Specify Link ¥Yalues
Specity Parameter-5pecific Link Funetiogyales tor ol obiltl Laobdalt}
21:p [Lagit - 31:Lambda | og

22:p | agit 32:Lambda | og

A

23p [Lagit 33:Lambda | ag

4

24 [Lagi 34 Lambda | og
25 | ogit - 35:Lambda [ og

26:Lambda | ag 36:Lambda | ag
27:Lambda [ ag 3V:Lambda [ ag

NN

28:Lambda | ag

23:Lambda | og

(NN VNN

30:Lambda | aq

The results table is:

Ml Results Browser: Pradel Survival and Lambda

NEEEEEEEEEEE
Madel AlCe Delta AlCs AlCs Weight | Model Likelihood | Mo. Par. Deviance

105434100 0.0000 1.00000 1.0000 33 7396157

There are 35 parameters (13 capture probabilities; 12 survival probabilities; 12 growth rates; less 1 non-
identifiable parameter at the end of the sampling chain where ¢,p5 can only be estimated; and less 1
non-identifiable parameter at the start of the sampling chain.) If the number of parameters in the results
table differs, it should be changed in the usual fashion.
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The estimates from this model are:

Paraneter Estinate Standard Error
1:FPhi 0.8622702 0.0475434
2:Fhi 0.9999994 0.1468950E-03
3:Fhi 0.9637049 0.0349087
4:Fhi 0.9035631 0.0277154
5:Fhi 0.8838963 0.0319597
£ :FPhi 0.9339488 0.0223132
7:Fhi 0.8630991 0.0259921
&:Fhi 0.9968961 0.0242281
9:FPhi 0.9001734 0.0360752

10:Fhi I 0.9609885 0.0333552
11:FPhi 0.9235251 0.0512570
e - " Syt

14:p 0.2888521 0.0857385
15:p 0.2326688 0.0332320
16:p 0.2123706 0.0337403
17:p 0.1977443 0.0306722
18:p 0.2365221 0.0317525
1%:p 0.3116810 0.0347862
20:p 0.2625937 0.0311958
21:p 0.2729863 0.0324555
22:p 0.2556655 0.0340469
23:p 0.2444797 0. 0366279
24:p 0.2570829 0.0431528
o FEEVEETYT PR
27 :Lanbda 1.0952552 0.0833055
28 :Lanbda 1.1023949 0.0713553
29:Lanbda 0.9965351 0.0509409
30 :Lanbda 0.9608886 0.0594949
31:Lanbda 0.9716717 0.0377260
32 :Lanbda 0.9450045 0.0445205
33 :Lanbda 0.9857956 0.0341077
34 :Lanbda 0.9323707 0. 0460851
3% :Lanbda 1.0027807 0.0421602
36 :Lanbda 0.9839781 0. 0645604

The estimated survival probabilities and growth rates are on a per day basis. The estimates of p and ¢
are comparable to the POPAN estimates except for some minor differences at the start of the sampling
chain. These are artifacts of the different confounding at the start of the sampling chain between the
two formulations. The estimated growth parameters indicate ratio of the estimated population size at
successive sampling intervals on a per unit time basis. Estimates of the actual population size are not
available directly, but as illustrated in previous examples can be derived if needed.

Simpler models for p and ¢ can be fit in the usual fashion. It may be actually biologically sensible to fit
a model with constant A over time if the population is roughly constant over time. Because the growth
rate includes both survival and recruitment, models where growth is constant over time, but survival is
not, are not usually fit as it is difficult to believe that changes in recruitment will exactly balance changes
in survival to keep the population at a constant level. The results table for these simpler models is:

Bl Results Browser: Pradel Survival and Lambda

AEEETEEEEEEEEY
todel AlCe Delta AlCs AlCe Weight | Model Likelihood| Mo. Par. Deviance
10637.3658 0.0000 0.99386 1.0000 25 750.0546
{p(t). philt), lambdaft)k 10647 5518 101860 0.00&10 0.0081 i} 7396157
{pltl, phil*). lambda(t} 10657 6359 20.2701 0.00004 0.0000 25 770.3246
{p(*], phil*], lambdaft)} 10674.0857 3E.6339 0.00000 0.0000 14 805.2009

Virtually all support again lies with the model with constant catchability {p. ¢, A,}. Because capture
rates were constant over time, all parameters are now estimable.
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The final estimates are:

Parameter E=ztimate Standard Error
1:Phi 0.8651740 0. 0445676
2:Phi 0.9993729 0.0000000
37FPhi 0.9384308 0.0253764
4-"Fhi 0.8932861 0.0202472
5:Phi 0.8954453 0.0248346
6:Phi 0.3591061 0.0186605
7:Phi 0.8500244 0.0208551
8 :Phi 0.9999927 0.7759302E-03
9:Phi 0.8947431 0.0238164

10:FPhi 0.9554366 0.0231951
11:Fhi 0.8525612 0.0302881
12:Phi 0.9993997 0.7881691E-04
13:p 0.2533691 0.0105643
14 :Lambda 1.3830550 0. 0698444
15 :Lambda 1. 0451863 0.0241858
16 : Lanbda 1.0717819 0.0299564
17 :Lambda 0.9835025 0.0204745
18:Lambda 1.0093050 0.0276135
19:Lambda 1.0248589 0.0198782
20:Lambda 0.9043622 0.0240825
21:Lanbda 0.9893406 0.0162655
22 :Lambda 0.9204955 0. 0258054
23:Lambda 0.9949499 0.0237861
24 :Lambda 1.0095378 0.0321254
25 :Lambda 1.0213978 0.0171985

The estimates of p and ¢ are comparable to those from the POPAN formulation. There are only a
few sampling occasions where the estimates of population growth are inconsistent with estimates of
survival, but the differences are minor.

The estimates of population can be matched to that from POPAN . For example, ALy = 1.0219978,
N{PPAN = 486.02, and NXPAN = 529.86.

Now

NEOPAN 559 86

G POPAN =
N 486.02

=1.09

= (AP1)* = 1.0219978* = 1.09

12.6. Final words

While many researchers think of population numbers and recruitment in terms of actual animals
entering populations, the JS model can be extended in a number of ways:

* Manske and Schwarz (2000) used a Jolly-Seber model to estimate stream residence times of
salmon. This extended the work of Schaub et al. (2001) who used mark-recapture methods to
estimate stop-over times of migrating birds. In both methods, the population is transient with
new animals arriving and departing on regular basis and the average time at the sampling
location is of interest. The key difference between the two approaches is that the methods
of Schaub et al. (2001) assume that the day the animal is marked is the first day of residence
while Manske and Schwarz (2000) did not make this assumption.

¢ Schwarz and Arnason (2000) and Manske et al. (2002) showed how to use the POPAN
parametrization to estimate age-specific breeding proportions, i.e., what fraction of animals
enter the breeding population at each age.
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While current implementations of the JS model allow for multiple groups (e.g., males and females),
animals are not allowed to change groups during the experiment. The Cormack-Jolly-Seber (CJS) model
has been extended to a multi-state version where animals are allowed to change states during the
experiment (e.g., geographical movement) and this is discussed in detail in Chapter 10. Recently, Dupuis
and Schwarz (2007) have extended the Jolly-Seber model to allow multiple states. In their example, they
modeled a fish population that spawned at various locations around a lake and moved among spawning
location during the multiple years of the study. Estimates of abundance at each spawning location and
recruitment to spawning locations were obtained.

This stratified Jolly-Seber model can also be used to model stratified closed populations and the
Jolly-Seber age-structured model.

The examples in this chapter did not use covariates. System-wide covariates that affect all animals at
a particular time point (e.g., temperature) are easily implemented using design matrices. One particular
area that requires further work is the use of individual covariates. Individual covariates take two forms
— those that vary among individuals, but are fixed for the individual for the study, and individual
time-varying covariates. There are two major difficulties. First, even if the covariates are fixed for each
animal for the entire study, the value of the covariate is unknown if the animal is not seen. Second, if
the individual covariates can change values during the experiment, the value of the covariate is also
unknown when an animal is not recaptured after being captured for the first time.

McDonald and Amstrup (2001) used a Horvitz-Thompson type estimator to incorporate individual
fixed covariates and were able to estimate population sizes. However, this approach does not have a
likelihood basis and so multi-group methods where restrictions on parameters are placed across groups
are not easily implemented. Bonner and Schwarz (2006) recently developed methods for the CJS model
for individual time-varying covariates, but this has not been extended to JS models. Stay tuned for
developments over the next few years.
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