
APPENDIX D

Variance components and random effects

models in MARK . . .

Kenneth P. Burnham, USGS Colorado Cooperative Fish & Wildlife Research Unit

The objectives of this appendix are

• to introduce to biologists the concept and nature of what are called (alternative names

for the same essential idea) ‘variance components’, ‘random effects’, ‘random coefficient

models’, or ‘empirical Bayes estimates’

• present the basic theory and methodology for fitting simple random effects models,

including shrinkage estimators, to capture-recapture data (i.e.,Cormack-Jolly-Seberand

band or tag recovery models)

• extend AIC to simple random effects models embedded into the otherwise fixed-effects

capture-recapture likelihood.

• develop some proficiency in executing a variance components analysis and fitting

random effects model in program MARK

Much of the conceptual material presented in this appendix is derived from a paper authored by

Kenneth Burnham and Gary White (2002) – hereafter, we will refer to this paper as ‘B&W’. It is assumed

that the reader already has a basic knowledge of some standard encounter-mark-reencounter models

as described in detail in this book (e.g., dead recovery and live recapture models – referred to here

generically as ‘capture-recapture’).

We introduce the subject of – and some of the motivation for – this appendix by example. In the

following we consider two relatively common scenarios (out of a much larger set of possibilities) where

a ‘different analytical approach’ might be helpful.

Scenario 1 – parameters as random samples

Consider a Cormack-Jolly-Seber (CJS) time-specific model {(C?C} wherein survival (() and capture

probabilities (?) are allowed to be time varying for (: + 2) capture occasions, equally spaced in time.

If : ≥ 20 we are adding many survival parameters into our model as if they were unrelated; however,

more parsimonious models are often needed. Consider a reduced parameter model – at the extreme,

we have the model {(· ?C} wherein (1 = (2 = · · · = (: = (·. However, this model may not fit well

even if the general (time-dependent) CJS model fits well and there is no evidence of any explainable
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structural time variation, such as a linear time trend, in this set of survival rates, or variation as a function

of an environmental covariate. Instead, there may be unstructured time variation in the (8 that is not

easily modeled by any simple smooth parametric form, yet which cannot be wisely ignored. In this case

it is both realistic and desirable to conceptualize the actual unknown (8 as varying, over these equal-

length time intervals, about a conceptual population mean �(() = �, with some population variation,

�2 (Fig. D.1).

Figure D.1: Schematic representation of variation in occasion-specific parameters �8 , as if the parameters were

drawn randomly from some underlying distribution with mean � and variance �2.

Here, by population, we will mean a conceptual statistical distribution of survival probabilities, such

that the (8 may be considered as a sample from this distribution. Hence, we proceed as if (8 are a random

sample from a distribution withmean� andvariance �2. Doing so can lead to improved inferences on the

(8 regardless of the truth of this conceptualization if the (8 do in fact vary in what seems like a random,or

exchangeable, manner. The parameter �2 is now the conventional measure of the unstructured variation

in the (8 , and we can usefully summarize (1 . . . (: by two parameters: � and �2. The complication is

that we do not know the (8 ; we have only estimates (̂8, subject to non-ignorable sampling variances and

covariances, from a capture-recapture model wherein we traditionally consider the (8 as fixed,unrelated

parameters. We would like to estimate � and �2, and adjust our estimates to account for the different

contributions to the overall variation in our estimates due to sampling, and the environment. For this,

we consider a random effects model.

Scenario 2 – separating sampling + environmental (process) variation

Precise and unbiased estimation of parameter uncertainly (say, the SE of the parameter estimate) is

critical to analysis of stochastic demographic models. Consider for example, the estimation of the risk

of extinction. It is well known (and entirely intuitive) that any simply stochastic process (say, growth

of an age- or size-structured population through time) is more likely to go extinct the more variable a

particular ‘vital rate’ is (say, survival or fertility). Thus, if an estimate of the variance of a parameter is
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biased high, then this tends to bias high the probability of extinction. We wish to use only estimates of

environmental (or process) variation alone, excluding sampling variation, since it is only the magnitude

of the former that we want to include in our viability models (White 2000).

Precise estimation of process variation is also critical for analysis of the relationship of the variation

of a particular demographic parameter to the projected growth of a population. The process variation

in projected growth, �, is a function of the process variance of a particular demographic parameter. To

first order, and assuming no covariances between the 08 9 elements, this can be expressed as

v̂ar(�) ≈
∑
8 9

(
∂�

∂08 9

)
v̂ar(08 9).

From this expression, we anticipate that natural selection will select against high process variation in

a parameter that � is most ‘sensitive’ to (i.e., for which ∂�/∂08 9 is greatest) (Pfister 1998; Schmutz 2009).

Thus, robust estimation of the process variance of fitness components is critical for life history analysis.

In this appendix, we will consider estimation of variance components, and fitting of random effects

models, using program MARK. We begin with the development of some of the underlying theory,

followed by illustration of the ‘mechanics’ of using program MARK, by means of a series of ‘worked

examples’.

D.1. Variance components – some basic background theory

The basic idea is relatively simple. We imagine that the (8 are distributed randomly about �(() = �

(Fig. D.1). The variation in (8 is �2, as if (1 , . . . (: are a sample from a population. It is not required

that the sampling be random – merely that the (1 , . . . , (: are exchangeable (or, more formally, that the

conceptual residuals (�−(8) should appear like an iid sample,with no remaining structural information).

There are no required distributional assumptions, such as normality.

If we knew the (8 then it follows that

�̂(() = (̄ �̂2
=

∑:((8 − (̄)2

: − 1
.

Of course, except in a computer simulation, we rarely if ever know the (8. What we might have are ML

estimates (̂8, and estimates of conditional variation v̂ar
(
(̂8

�� (8 ) .
We can express our estimate of (̂8 in standard linear form as the sum of the mean �, the deviation of

the (8 from the mean, �8 , and the error term &8

(̂8 = � + �8 + &8 ,

where �8 = ((8 − �) and &8 = ((̂8 − (8). Substituting into our expression for (̂8,

(̂8 = � + �8 + &8

= � + ((8 − �)︸ ︷︷ ︸
↑ �

2

(process
variance)

+ ((̂8 − (8).︸ ︷︷ ︸
↑ var((̂8 |(8)
(sampling
variance)

Here (and hereafter) we distinguish between ‘process’ (or, environmental) variation, �2, and ‘sampling’
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variation, var
(
(̂8

�� (8 ) . We refer to the sum of process and sampling variation as total variation, �2
C>C0; .

total variation = �2
C>C0; = process variation + sampling variation

= �2 + var
(
(̂8

�� (8 ) .
It is important to note that sampling variation, var

(
(̂8

�� (8 ) , depends on the sample size of animals

captured, whereas process variance �2 does not. It is also important to note that if there is sampling

covariation, then this should be included in our expression for total variance, �2
C>C0; :

�2
C>C0; = �2 +

[
�
(
var

(
(̂8

�� (8 ) ) + � (
cov

(
(̂8 , (̂9

�� (8 , (9 )) ] .
For fully time-dependent models, the sampling covariances of (8 and (9 are often very small for many

of the data types we work with in MARK, especially relative to process and sampling variance, and the

covariance term can often be ignored. We will do so now, for purposes of simplifying the presentation

somewhat, but will return to the issue of sampling covariances later on.

If we assume for the moment that all the sampling variances are equal, then the estimate of the overall

mean survival is just the mean of the : estimates:

¯̂( =

∑: (̂8
:

,

with the theoretical variance being the sum of process and sampling variance divided by ::

v̂ar
( ¯̂() = �2 + �

[
var

(
(̂8

�� (8 ) ]
:

.

Our interest generally lies in estimation of the process variation. By algebra, we see that process

variance can be estimated by, in effect, subtracting the sampling variation from the total variation.

�2
C>C0; = process variation + sampling variation

= �2 + v̂ar
(
(̂8

�� (8 )
∴ �2

= �2
C>C0; − v̂ar

(
(̂8

�� (8 ) .
Hence, we need an estimate for �2

C>C0; and var
(
(̂8

�� (8 ) .
If we assume that (1, . . . , (: are a random sample, with (̄ = �̂((), and population variance �2, then

from general least-squares theory

¯̂( =

∑: F8 (̂8∑: F8

,

where

F8 =
1

�2 + v̂ar
(
(̂8

�� (8 ) .
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Given F8 , the theoretical variance of ˆ̄( is

var
( ¯̂() = 1∑: F8

.

However, although var
(
(̂8

�� (8 ) is estimable, we would still need to know �2.

An alternative approach which leads to an empirical (data-based) estimator is

v̂ar
( ¯̂() =

∑: F8
(
(̂8 − ¯̂(

)2

(∑: F8
) (
: − 1

) .
We note that if there is no process variation (�2

= 0), then the above reduces to the familiar case of :

replicates.

More generally, if we assume that the weights, F8 are equal (or nearly so), then we can re-write the

empirical estimator as

v̂ar
( ¯̂() =

∑: ((̂8 − ¯̂(
)2

(: − 1) , if F8 = F, ∀8

where

¯̂( =

∑: (̂8
:

.

The assumption that the weights, F8 are equal is generally reasonable if (i) the var
(
(̂8

�� (8 ) are all

nearly equal, or if (ii) they are all small, relative to �2. In theory, when the (8 vary, then the var
(
(̂8

�� (8 )
will also vary. In contrast, with low sampling effort, such that var

(
(̂8

�� (8 ) is much larger than process

variance �2, it might be sufficient to use the approximation

F8 =
1

var
(
(̂8

�� (8 ) .

In this case, only relative weights F8 would be needed (since an estimate of �2 is not needed).

Now, assume for the moment we are interested in estimating the process variation around the mean

(̄. If we also assume that there is no sampling covariance, and that F8 = F, and
∑: F8 = 1, then we

estimate the total variance as

�2
C>C0; = v̂ar

( ¯̂() =
∑: ((̂8 − ¯̂(8

)2

(: − 1)
,

and the sampling variance as the mean of the estimated sample variances

�
[
v̂ar

(
(̂8

�� (8 ) ] =
∑: var

(
(̂8

�� (8 )
:

.

Hence, our estimate of process variance would be

�̂2
=

∑:−1 ((̂8 − ¯̂(8
)2

: − 1
−

∑: var
(
(̂8

�� (8 )
:

.
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However, this estimator (which is essentially the estimator described by Gould & Nichols 1998) is not

entirely correct (or efficient). It was derived under the strong assumption that the sampling variances

are all equal (i.e., that SE((̂8) are all identical). In practice, this is usually not the case, and thus we refer

to the preceding as a ‘naïve’ estimator of process variance.

Instead, we need to weight them to obtain an unbiased estimate of �2. As noted earlier, general least-

squares theory suggests using a weight F8

F8 =
1

�2 + var
(
(̂8

�� (8 ) .
Hence, the estimator of the weighted mean survival is

¯̂( =

∑: F8 (̂8∑: F8

,

with theoretical variance

var
( ¯̂() = 1∑: F8

,

and empirical variance estimator

v̂ar
( ¯̂() =

∑: F8
(
(̂8 − ¯̂(

)2[∑: F8

] (
: − 1

) .

When the F8 are the true (but unknown) weights, we have

1∑: F8

=

∑: F8
(
(̂8 − ¯̂(

)2[∑: F8

]
(: − 1)

,

which if we normalize the weights (such that they sum to 1), gives

1 =

∑: F8
(
(̂8 − ¯̂(

)2

(: − 1) .

Since

F8 =
1

�2 + var
(
(̂8

�� (8 ) and ¯̂( =

∑: F8 (̂8∑: F8

,

then

1 =

∑: F8
(
(̂8 −

¯̂(
)2

(: − 1) =

:∑ 
1

�2 + var
(
(̂8

�� (8 )
(
(̂8 −

:∑
.

1

�2 + var
(
(̂8

�� (8 ) (̂8
)2

(: − 1)
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We then solve (numerically) for �̂2 (which is the only unknown in the expression) – it is convenient

to use the naïve estimate for �2 calculated earlier as a starting point in the numerical optimization.

A confidence interval can be constructed for �2 by solving two modified versions of this equation.

We assume we want a (1 − 
)% CI, where 
 = 
* + 
! (where * and ! stand for upper and lower,

respectively). For the upper limit, we solve for �2 in the following

:∑ 
1

�2 + var
(
(̂8

�� (8 )
(
(̂8 −

:∑ 1

�2 + var
(
(̂8

�� (8 ) (̂8
)2

(: − 1) =

"2
:−1,
!

: − 1
,

where "2
=−1,
!

is the critical value for the central "2 distribution corresponding to (: − 1) df and 
!
percentile.

To find the lower limit, we substitute "2
:−1,1−
* in the RHS of the preceding, and solve for �2. If the

lower limit does not have a positive solution for �2 (since � ≥ 0), then we set the lower CI to 0 and adjust

to a one-sided CI by redefining 
* = 
.

Burnham et al. (1987) describe simplified versions of these estimators for the CI if all the var
(
(̂8

�� (8 )
are the same, or nearly so.

D.2. Variance components estimation – worked examples

Here, we introduce the ‘mechanics’ of the variance decomposition, using a series of progressively more

complex examples. We begin with a simple example loosely based on a ‘known fate’ analysis, where

survival is estimated as a simple binomial probability, and where there is no covariance among samples.

D.2.1. Binomial survival – simple mean (no sampling covariance)

Imagine a simulated scenario where we are conducting a simple ‘known fate’ analysis (Chapter 17). In

each of 10 years (: = 10), we mark and release = = 25 individuals, and determine the number alive, H,

after 1 year (since this is a known-fate analysis, we assume there is no error in determining whether

an animal is ‘alive’ or ‘not alive’ on the second sampling occasion). Here, though, we’ll assume that

the survival probability in each year, (8 , is drawn from N(0.5, 0.05) (i.e., distributed as an independent

normal random variable with mean � = 0.5 and process variance �2
= 0.052).

Conditional on each (8, we generated H8 (number alive after one year in year 8) as an independent

binomial random variable �(=, (8). Thus, our ML estimate of survival for each year is (̂8 = H8/=, with a

conditional sampling variance of v̂ar
(
(̂8

�� (8 ) = [(̂8(1 − (̂8)]/=, which given � = 0.5, and �2
= (0.05)2 is

approximately 0.01.

Table D.1 (top of the next page) gives the values of (8 , H8 and (̂8 for our ‘example data’. Clearly, for a

‘real analysis’, we would not know the true values for (8 – we would have only (̂8, and generally only

have �̂(
(
var

(
(̂8

�� (8 ) ) as v̂ar
(
(̂8

�� (8 ) .
In Table D.1 we see that the empirical standard deviation of the 10 estimated survival rates (i.e., the (̂8)

is 0.106. However, we should not take (0.106)2 as an estimate of �2 because such an estimate includes

both process and sampling variation. Clearly, we want to subtract the estimated sampling variance from

the total variation to get an estimate of the overall process variation.
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Table D.1: Single realization from simple binomial survival example, : = 10, �(() = 0.5, � = 0.05, where

(̂8 = H8/= are �(25, (8), hence expected SE((̂8 |() ≈ 0.1

year (8) (8 (̂8 ŜE
(
(̂8

�� (8 )
1 0.603 0.640 0.096

2 0.467 0.360 0.096

3 0.553 0.480 0.100

4 0.458 0.440 0.100

5 0.506 0.480 0.100

6 0.498 0.320 0.093

7 0.545 0.600 0.098

8 0.439 0.400 0.098

9 0.488 0.560 0.099

10 0.480 0.560 0.099

mean 0.504 0.484 0.100

SD 0.050 0.106

Using the manual approach...

From section D.1, if we make the strong assumption that all the sampling variances are equal, then the

estimate of the overall mean is the mean of the : estimates:

¯̂( =

∑: (̂8
:

,

with the theoretical variance being

v̂ar
( ¯̂() = �2 + �

[
var

(
(̂8

�� (8 ) ]
:

.

In other words the total variance is the sum of the process (environmental) variance, �2, plus the

expected sampling variance, �
[
var

(
(̂8

�� (8 ) ] .
From section D.1, and assuming equal weights F8 , where

∑:
= 1, we estimate the total variance as

v̂ar
( ¯̂() =

∑: ((̂8 − ¯̂(8
)2

(: − 1)
,

and the expected sampling variance as the mean of the sampling variances

�
[
v̂ar

(
(̂8

�� (8 ) ] =

∑: var
(
(̂8

�� (8 )
:

.
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Thus, we can derive an estimate of the process (environmental) variance �2 by algebra

�̂2
=

10∑(
(̂8 − ¯̂(8

)2

(10 − 1) −

10∑
var

(
(̂8

��� (8)
10

.

From Table (D.1), the process variance for our : = 10 samples is estimated as

�2
=

10∑(
(̂8 − ¯̂(8

)2

(10 − 1) −

10∑
var

(
(̂8

��� (8)
10

=

(
0.10064

9

)
− 0.00959

= 0.0016

∴ � =
√

0.0016 = 0.040.

While our estimate of process variance is not much different from the true underlying value (for this

example, true �2
= 0.0025), we noted that this naïve estimator is not entirely correct, since it assumes

equal sampling variances. To obtain an unbiased estimate of �2, we weight the sampling variance by

F8 =
1

�2 + var
(
(̂8

�� (8 ) .
From section D.1, we derive an estimate of process variance over the : = 10 samples by solving

(numerically) the following for �2

1 =

10∑
F8

(
(̂8 − ¯̂(

)2

(10 − 1)

=

10∑ 1

�2 + var
(
(̂8

�� (8 )
©­­­«
(̂8 −

10∑
F8 (̂8

10∑
F8

ª®®®¬

2

(10 − 1)

=

10∑ 
1

�2 + var
(
(̂8

�� (8 )
(
(̂8 −

10∑ 1

�2 + var((̂8 |(8)
(̂8

)2
(10 − 1) .

For the present example, our estimated process variance is �̂2
= 0.00195.

Now, using MARK...

While estimating process variance ‘by hand’ is relatively straightforward for this example, we are clearly

interested in using the capabilities of program MARK to handle the ‘heavy lifting’ – especially for more
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complex problems. Here we will introduce some of the ‘mechanics’ in using program MARK to estimate

process variance for our simulated ‘known fate’ data. The data (number of marked and released animals

that survive the one-year interval; see Table D.1) are formatted for the ‘known fate’ data type, and are

contained in binomial-example.inp.

Since our purpose here is to demonstrate the mechanics of ‘variance components analysis’, and not

‘known fate analysis’, we’ve gone ahead and built the basic general model {(C} for you. Start MARK, and

open up binomial-example.dbf (note: you’ll need to have binomial-example.fpt installed in the same

directory where you have binomial-example.dbf). There is only one model in the browser (for now) –

model ‘S(t) -- general model’. [At some point, you should look at the underlying PIM structure, to

see how we are using the known fate data type to model survival using a simple binomial estimator.]

Retrieve model ‘S(t) -- general model’, and look at the real parameter estimates (shown below). If

you compare these survival estimates with those ‘done by hand’ in Table D.1, we see they are identical.

Next, we will use MARK to handle the estimation of process variance for us. Start by having a look at

the ’Output | Specific Model Output | Variance Components’ menu. You’ll see that we can execute

a variance components analysis on either the � estimates, the real parameter estimates, or on any derived

parameter(s). Here, we are interested in the real parameters, so, select that option.

You will then be presented with a window (shown at the top of the next page) asking you to

specify which parameters you want to include in the variance component estimation, plus some options

concerning the specification of the design matrix, followed by various output options. Note that we

specify parameters ‘1 to 10’ to be included in the estimation. Since the ‘data’ were generated based on

a sample of survival values drawn from a normal distribution with unknown parametric mean � and

variance �2, it should make intuitive sense that we are going to fit a ‘mean model (i.e., intercept only).

This is checked by default (we will consider other DM specifications elsewhere). For output options, we

will accept the default options (selected) – note that at this point, we are not considering the fitting of

a ‘random effects model’ (at least, not directly), so we leave that box unchecked.
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Once you have completed entering the parameters and specifying the DM and the output options,

click ‘OK’. MARK will respond (generally very quickly) by outputting the estimates from the VC analysis

into an editor window, shown below (MARK will also generate a plot of various estimates – ignore and

close the plot for now):

Starting from the top – the first line reports a ‘Beta-hat’ of 0.482526. As you might recall from Chapter

6, this is in fact our most robust estimate of the mean survival probability. Note that it is close, but not

identical to the simple arithmetic mean ¯̂(8 = 0.484. We will outline the reasons for the differences later

– for now, we’ll accept with deferred proof the statement that ‘Beta-hat’ represents our best estimate

for mean survival, since it is the estimate of the expected value of ( as a random variable. This estimate

is followed by the estimate of ‘SE(Beta-hat)’. We’ll defer discussing this for a moment.
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Next, a table of various parameter estimates. The first two columns should be self-explanatory –

the ML estimates of survival (̂8 (‘S-hat’), followed by the binomial standard error for the estimate

(‘SE(S-hat)’. Next, the ‘shrinkage’ estimates (̃8 (‘S-tilde’) and their corresponding SE and RMSE. The

derivation, use and interpretation of the shrinkage estimates is developed in section D.3.

Finally, the estimates for process variation (the G matrix we’ll get to later). First, MARK reports the

‘naive estimate of sigma^2’= 0.001595. This is exactly the same value as the ‘first approximation’ we

derived ‘by hand’ in the preceding section. This is followed by the ‘Estimate of sigma^2’ = 0.0019503

(and the ‘Estimate of sigma’ = 0.044162). Both estimates are identical to those we derived ‘by hand’

using the ‘weighted means’ approach in the preceding section.

Now, about the ‘SE(Beta-hat)’ noted above. For this example, in the absence of sampling covariance,

it is estimated as the square-root of the sum of estimated process variation, �̂2, and sampling variation,

�
[
v̂ar

(
(̂8

�� (8 ) ] , divided by :, where : is the number of parameter estimates. For our present example,

with : = 10,

‘SE(Beta-hat)’ =

√
�̂2 + �

[
v̂ar

(
(̂8

�� (8 ) ]
:

=

√
(0.0019503+ 0.0095872)

10
= 0.03396,

which is what is reported by MARK (to within rounding error). Thus, our estimate of total variance

(i.e., the value of the numerator inside the square-root) would be (ŜE
2 × :) = (0.033962 × 10) = 0.01153.

The ‘SE(Beta-hat)’ is useful for calculating 95% CI for ‘Beta-hat’. For this example, we can construct

a reasonable CI for ‘Beta-hat’ as 0.482526± (1.96 × 0.033946) → [0.4160, 0.5491].

D.2.2. Binomial example extended – simple trend

Here we consider a similar scenario, again involving a simple ‘known fate’ analysis with no sampling

covariance among samples. In each of 15 years (: = 15), we mark and release = = 25 individuals,

and determine the number alive, H, after 1 year. Here, though, we assume that the true mean survival

probability in each year, (̄8 , is declining over time (from 0.60 in the first year, to 0.46 in the final year).

We’ll assume that the survival probability in each year, (8, is drawn from N((̄8 , 0.05). Conditional on

each (8 , we generated H8 (number alive after one year in year 8) as an independent binomial random

variable �(=, (8). Table D.2 (top of the next page) gives the values of (8 , H8 and (̂8 for our ‘example data’.

Now, in the preceding example, the survival probability in each year, (8, was drawn from N(0.5, 0.05)
(i.e., distributed as an independent normal random variable with mean � = 0.5 and process variance

�2
= 0.052). Here, though, not only is there random variation around the mean, but the mean itself

declines over time. In this example there are 2 sources of process variation: the random variation around

the mean survival in any given year, and the decline over time in the value of the mean. As such, we

anticipate that the actual process variance will be > (0.05)2.‗ We also anticipate that if we estimate

process variance using a model based on a simple mean (i.e., where we assume that process variation

is due only to variation around a mean survival which is the same in all years) the estimate will be

biased high (since it will conflate within- and among-year sources of variation). What about sampling

variation? The imposition of a trend does not influence sampling variation – in each year, sampling is

based on a binomial with the same number of individuals ‘released’ each year.

‗ The actual value of the process variance, accounting for both within and among season variation, is �
2
= 0.0045.
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Table D.2: Single realization from simple binomial survival example, : = 15,( declining linearly from 0.6 → 0.46

((̄ = 0.53), � = 0.05, where (̂8 = H8/= are �(25, (8) – hence expected SE
(
(̂8

�� () ≈ 0.1.

year (i) (8 (̂8 ŜE
(
(̂8

�� (8 )
1 0.647 0.560 0.0099

2 0.595 0.440 0.0099

3 0.667 0.440 0.0099

4 0.580 0.640 0.0092

5 0.532 0.640 0.0092

6 0.475 0.720 0.0081

7 0.624 0.360 0.0092

8 0.516 0.400 0.0096

9 0.640 0.520 0.0100

10 0.430 0.480 0.0100

11 0.503 0.400 0.0096

12 0.509 0.520 0.0100

13 0.533 0.360 0.0092

14 0.394 0.360 0.0092

15 0.490 0.240 0.0073

mean 0.542 0.472 0.0093
SD 0.081 0.129

We’ll test both expectations, using data contained in binomial-example-trend.inp. Again, we’ve

provided you with some ‘pre-built’ models to start with (contained in binomial-example-trend.dbf

and binomial-example-trend.fpt). We’ll avoid doing the same ‘hand calculations’ we worked through

in the preceding example (same basic idea, but a fair bit messier because of having to account for both

within and among year variation), and simply use MARK.

Start MARK, and open up binomial-survival-trend.dbf. You’ll see that there are 2 ‘pre-built’

models in the browser: ‘S(t) - DM’ (simple time variation) and ‘S(T) - DM’ (a trend model, where

annual estimates are constrained to follow a linear trend). The ‘-DM’ simply indicates that both were

constructed using a design matrix. Based on AIC2 weights, there is clearly far more support for the

trend model (which is the true generating model) than the model with simple time variation.

Our purpose here is not to do ‘model selection’ (we’ll get there). Our present interest is on estimating

the variance components. So, first question. Which model do we want to estimate variance components

from? This is a more subtle question than it might seem. On the one hand, if we didn’t know there was

a trend, it might seem that we should select the time-dependent model since it is more general. On the

other hand, you might have prior information suggesting a trend, and might think that it is a better

model. Or, you might build both models, see that the trend model has the most support in the data, and

use that model as the basis for estimating variance components.

You need to think this through carefully. We are trying to estimate process variance – we want to

estimate the magnitude of the joint within- and among-year variation in our data. Thus, we want to use

the most general model possible. In this case, model ‘S(t) - DM’. We don’t use model ‘S(T) - DM’, since

the estimates from that model are constrained to fall on a straight line. Meaning, the only remaining

variation would be the annual variation in mean survival (as estimated by the regression equation).

Meaning, that any estimate of process variation from such a model would massively underestimate
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true process variation in the data.

Start by retrieving model ‘S(t) - DM’. Then, select ‘Output | Specific model output | Variance

components | Real parameter estimates’. With 15 samples we specify ‘1 to 15’.

What about the ‘design matrix specification’? Recall from the preceding example that we used

the default ‘Intercept Only (mean)’ specification. However, there are 2 other options available to

you: ‘linear trend’, and ‘user specified’. In effect, the first 2 options (‘intercept only’ and ‘linear

trend’) are there simply for your convenience, since both models are very commonly used. You could,

however, build either model by selecting the ‘user specified’ option (which essentially is the option

you select if you want to build a specific model directly, using the design matrix). We’ll defer using

the ‘user specified’ option for now, and simply compare the ‘intercept only’ and ‘linear trend’

models. We’ll start with the default ‘intercept only’ option.

Once you click the ‘OK’ button, MARK will respond with the estimates of year-specific survival

probabilities, and the estimates of total and process variance (shown below). Again, the first line is

the estimate of the overall mean, ¯̂( = 0.4711, and SE = 0.0342 (representing total variance). Note that

the reported mean is very close to the mean of the true (8 (Table D.2), (̄8 = 0.472.

What about the estimated variance? The estimate of process variance �̂2
= 0.00825, which as we

anticipated is almost twice as large as the true process variance in the data (�2
= 0.0045). Thus, the

estimated SE for total variance will also be biased high.

Now, let’s do a variance components analysis on the time-dependent model, by checking the ‘linear

trend’ DM option, as shown below:
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Here are the parameter estimates.

Note that we no longer have an estimate of a single ‘Beta-hat’ (i.e., we no longer have an estimate of

just the mean). What we do have, though, is an estimate of the intercept (�̂1 = 0.61353), and the slope of

the decline over time (�̂2 = −0.017643). Both are quite close to the values of �̂1 = 0.64 and �̂2 = −0.0102,

estimated from a regression of the true (8 (Table D.2) on year. This is not surprising. The estimated

process variance, �̂2 = 0.0031995, is much more consistent with the true process variance, �2
= 0.0045,

than was our estimate under the ‘intercept only’ model.

D.2.3. What about sampling covariance?

In the preceding examples, we considered situations where there was no sampling covariance. While

this is a useful place to start, it is not particularly realistic in many situations,where sampling covariances

are potentially not small. Recall that our simple (naïve) estimator for process variance, �̂2, for some

parameter � was given as

�̂2
=

:−1∑(
�̂8 − ¯̂�

)2

: − 1
− �

[
var

(
�̂8

�� (8 ) ] .
This is a suitable first approximation when sampling covariances are 0, or nearly so.

However, when sampling covariances are significant, then we need to modify the estimator for �2 to

explicitly account for the sampling covariance.

�̂2
=

:−1∑(
�̂8 − ¯̂�

)2

: − 1
− �

[
var

(
�̂8

�� �8 ) ] + � [
cov

(
�̂8 , �̂9

�� �8 , �9 ) ] .
To illustrate how sampling covariance is handled, we simulated a data set of live-encounter (CJS)

data, 21 occasions, 350 newly marked individuals released at each occasion, under true model {!C ?C}.
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Apparent survival, !8 , over a given interval 8 was generated by selecting a random beta deviate drawn

from B(0.7, 0.005). The encounter probability ?8 at a sampling occasion 8 was generated by selecting

a random beta deviate drawn from B(0.35, 0.005). The simulated live-encounter data are contained in

normsim-VC.inp. The estimates !̂8 from model {!C ?C} are shown at the top of the next page. For a time-

dependent model, the terminal ! and ? parameter estimates are confounded (reflected in the estimated

ŜE(!̂20) = 0.000). This becomes important when we specify the parameters in the variance-components

analysis.

Estimation of �2 under the naïve model is straightforward. The only additional complications are that

(i) the terms in the estimator are calculated over !1 → !19, and (ii) we have to calculate the mean of the

sample covariances to estimate �
[
cov

(
!̂8 , !̂ 9

�� !8 , ! 9

) ]
. In practice, this second step isn’t too difficult,

depending on your facility with computers. You simply need to find a way to calculate the mean of the

off-diagonal elements of the V-C matrix (keeping in mind you’re calculating the mean over !1 → !19).

For the present example, ̂̄cov
(
!̂8 , !̂ 9

�� !8 , ! 9

)
= −0.00008. Thus,

�̂2
=

:−1∑(
!̂8 − ¯̂!

)2

: − 1
− �

[
var

(
!̂8

�� !8 ) ] + � [
cov

(
!̂8 , !̂ 9

�� !8 , ! 9

) ]

=

(
0.11531

18

)
−

(
0.0338

19

)
− 0.00008 = 0.004552.

Clearly, the proportional contribution of the covariance term is very small (2%). This will often be

the case, especially for time-dependent models.

If we analyze these live-encounter data using the variance components routines in MARK, using

the ‘intercept only’ mean model, the reported value for the ‘naïve’ estimate (shown at the top of the

next page) matches the value we derived by hand on the preceding page. The estimate based on the

‘weighted’ estimator is almost identical – and both are not too far off the true value of �2
= 0.005.

The near equivalence of the ‘naïve’ and ‘weighted’ estimates reflects the fact that sampling variation

is small, relative to process variance, in this example (small sampling variance is not surprising, given

that the data were generated under a model with ? = 0.35 and 350 individuals marked and released on
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each sampling occasion). Recall from section D.1 that from least-squares theory, we should weight our

estimates of total and sampling variance to obtain an unbiased estimate of process variance, �2, using

a weight F8 :

F8 =
1

�2 + var
(
!̂8

�� !8 ) .
For this example, var

(
!̂8

�� !8 ) ≪ �2 , ∀8, and so F8 ≈ 1/�2, which is a constant (since �2 is a constant).

Thus, for this example, the weighting does not change the naïve estimate.

You may have noticed that the ML estimates (‘S-hat’) are very close to what we identified earlier as

‘shrinkage’ estimates (‘S-tilde’). Is the near-equivalence of the ‘naïve’ and ‘weighted’ estimates for �2

related to the ‘closeness’ of the ML and ‘shrinkage’ estimates?

D.3. Random effects models and shrinkage estimates

In this section, we introduce what we will refer to as ‘random effects’ models. We’ll begin by having

another look at the results from the simple binomial example (section D.2.1):

From left to right are the ML estimates, (̂8 (‘S-hat’), the estimated standard error for the ML estimate,

ŜE
(
(̂8

�� () (‘SE(S-hat)’), the corresponding ‘shrinkage’ estimate, (̃8 (‘S-tilde’), the estimated standard
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error for the shrinkage estimate, ŜE
(
(̃8

�� (̂8 ) , and the estimated residual mean-squared error (RMSE) for

the shrinkage estimate, �RMSE
(
(̃8

�� (̂8 ) (‘RMSE(S-tilde)’).

Here is a plot of the ML estimates, (̂8 (green line), the ‘shrinkage’ estimates, (̃8 (blue line), and the

model estimates (for the mean model, corresponding to the estimated mean �̂ = 0.4825; red line).

We are familiar with the ‘ideas’ behind the ML estimates, (̂8, and the idea of an overall estimate of

the mean survival, �̂((), hopefully makes some intuitive sense. But, what are ‘shrinkage’ estimates?

We’ll start with a short-form explanation, focussing on the basic ideas, then jump down into the weeds

a bit for a deeper (more technical) discussion. The concept of a ‘shrinkage’ estimate is perhaps not the

easiest thing to understand.‗ We will follow this by illustrating the mechanics of building and fitting

these models in MARK, through a series of ‘worked examples’.

D.3.1. The basic ideas...

Looking at the tabular output and the plot, there are notable differences in point estimates,and precision,

between the ML estimates and the shrinkage estimates. If you look carefully, you’ll notice that for most

years, the shrinkage estimate falls somewhere between the ML estimate, and the mean. The shrinkage

method is so called because each residual arising from the fitted reduced-parameter model ((̂8 − �̂(())
is ‘shrunken’, then added back to the estimated model structure for observation 8 under that reduced

model. In a heuristic sense, the (̃8 are derived from the ML estimates by removal of the sampling

variation.

When sampling covariances are zero†, the shrinkage estimator used in MARK for the mean-only

model (although the structure applies generally) is

(̃8 = �̂(() +

√√√√ �̂2

�̂2 + �̂(
[
v̂ar

(
(̂8

�� (8 ) ] ×
[
(̂8 − �̂(()

]
.

‗ In his definitive text on matrix population models, Hal Caswell comments that understanding eigenvalues and eigenvectors
(which feature prominently in demographic analysis) requires ‘not only a mechanical understanding, but a real intuitive grasp
of the slippery little suckers...’ (p. 662, 2nd edition). We submit the same sentiment applies to ‘shrinkage’ estimates.

† The full shrinkage estimator, accounting for non-zero sampling covariances, is presented in section D.3.2.
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The first term on the right-hand side (RHS) of the expression is the estimate of the mean survival, �̂(().
The last term, [(̂8 − �̂(()], is simply the residual of the ML estimate from the model. But what about the

middle term on the RHS?

We will generally refer to √√√√ �̂2

�̂2 + �̂(
[
v̂ar

(
(̂8

�� (8 ) ] ,
as the ‘shrinkage coefficient’, and it clearly is a function of the proportion of total variance – i.e., the sum

�2 + var
(
(̂8

�� (8 ) – due to process (environmental) variation, �2. The square-root is used because then

�̂2 .
=

∑: ((̃8 − ¯̃(
)2

: − 1
and �̂(() .= ¯̃(.

If there is no process variation (i.e., �2
= 0), then the shrinkage coefficient is evaluated at 0, and thus

the shrinkage estimate would be the mean, �̂((). In other words, if you have no environmental variation,

then the only variation in the system is sampling. If you remove the sampling variation (which we noted

earlier is what shrinkage is doing, at least heuristically), then this makes sense – without process or

sampling variation, every shrinkage estimate would simply be the mean, i.e., (̃8 = �̂((). In contrast, with

increasing process variance (i.e., increasing �2), we see that as �2 > var
(
(̂8

�� (8 ) (i.e., as the proportion

of total variance due to process variance increases), then the shrinkage coefficient approaches 1.0, and

the shrinkage estimate would approach the ML estimate, (̂8 .

This relationship is depicted in the following diagram where the arrows indicate the direction that

decreasing or increasing process variance �2 has on the value of the shrinkage estimate, (̃8 , relative to

the arithmetic average of the ML estimate (̂8 and the mean �̂(().

�̂(() (̃8 (̂8
↓ �2

↑ �2

Thus, another way of looking at it is to view the shrinkage estimate is analogous to an ‘average’

between the two estimates. This is important when we consider model averaging – we defer discussion

of that important topic until section D.5.

We should note that a shrinkage coefficient different than

√√√√ �̂2

�̂2 + �̂(
[
v̂ar

(
(̂8

�� (8 ) ]

could be used. However, this particular shrinkage coefficient has a very desirable property: if we treat

the (̃8 as if they were a random sample, then their sample variance almost exactly equals �̂2. This also

means that a plot of the shrinkage residuals (as implicit in the plot at the top of the preceding page)

gives a correct visual image of the process variation in the (8 .

This starts to point us in the direction of answering the basic question ‘why derive shrinkage

estimators for the (8?’. The answer in part comes from the observation we just made that the sample

variance of the shrinkage estimates is very close to the estimate of process variance, �̂2. So, the shrinkage

estimates are ‘improved’, relative to the ML estimates, since they should have better precision. If we

look at the estimates for the binomial survival example, we see that the improvements gained by the
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shrinkage estimators, (̃8 , appears substantial – they have about 50% better precision (simply compare

ŜE
(
(̃8

�� (8 ) to ŜE
(
(̂8

�� (8 )).
However, because the ML estimates are unbiased, and the shrinkage estimators are biased (as we will

explain), a necessary basis for a fair comparison is the sum of squared errors (SSE). The SSE is a natural

measure of the closeness of a set of estimates to the set of (8 . For example, for the binomial survival

example, the SSE for the ML estimates is

SSE"!� =

10∑(
(̂8 − (8

)2
= 0.067

while for the shrinkage estimates, the SSE is

SSEB ℎA 8=:064 =

10∑(
(̃8 − (8

)2
= 0.019

Clearly, in this sample the shrinkage estimates, as a set, are closer to truth. The expected SSE is the

mean square error, MSE (= �[SSE]), which is a measure of average estimator performance.

Those of you with some background in statistical theory might see the connections between the

preceding and James-Stein estimation, wherein (in highly simplified form) when 3 or more parameters

are estimated simultaneously, there exist combined estimators more accurate on average (that is, having

lower expected MSE) than any method that considers the parameters separately. For example, let ) is

a vector consisting of = ≥ 3 unknown parameters. To estimate these parameters, we take a single

measurement -8 for each parameter �8 , resulting in a vector X of length n. Suppose the measurements

are independent, Gaussian random variables, such that X ∼ N(�, 1). The most obvious approach to

parameter estimation would be to use each measurement as an estimate of its corresponding parameter:

)̂ = X. James-Stein demonstrated that this standard (LS) estimator is suboptimal in terms of mean

squared error, �() − )̂). In other words, there exist alternative estimators which always achieve lower

mean squared error, no matter what the value of ) is. For example, it can be shown that a combined

estimator of the sample and global mean is a better predictor of the future than is the individual sample

mean, since the total MSE of the combined estimator is lower than if using the sample means themselves.

This clearly points to partof the theory underlying the use of shrinkage estimators – James-Stein says that

a combined estimator (say, of the ML estimate and the random mean, which is of course our shrinkage

estimate) will have a lower MSE than will the ML estimates themselves (with the degree of improvement

increasing with increasing number of sample means being combined).

It is important to note, however, that the combined estimator will be closer to optimal overall, since

it minimizes the MSE of the estimates overall. However, it is possible that any one individual estimate

could be ‘incorrectly shrunk’ (relative to the true value of the parameter), even in the wrong direction.

So, shrinkage is conceptually optimal for the set of parameters, but not necessarily for any individual

parameter).

If these ideas are new to you, papers by Efron & Morris (1975, 1977) are quite accessible, and provide

excellent introductions to the subject.

begin sidebar

Shrinkage estimators and 95% confidence limits

For the ML estimates, an approximate 95% confidence interval on (8 is given by (̂8 ±2 ŜE
(
(̂8

�� (8 ) . This

procedure will have good coverage in this example. However, for the shrinkage estimator if we use

(̃8 ± 2 ŜE
(
(̃8

�� (8 ) , coverage will be negatively affected by the bias of (̃. Theory (discussed in B&W)

shows that the correct expected coverage occurs for the interval (̃8 ± 2 �RSME
(
(̃8

�� (8 ) , where
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�RSME
(
(̃8

�� (8 ) =
√

v̂ar
(
(̃8

�� (8 ) + (
(̃8 − (̂8

)2
.

The expectation over (8 of �MSE
(
(̃8

�� (8 ) =
[�RSME

(
(̃8

�� (8 ) ]2
is approximately the mean square

error for (̃8 , MSE8 . For the ML estimates,

�RSME
(
(̂8

�� (8 ) = ŜE
(
(̂8

�� (8 ) ,
because (̂8 is unbiased. The unbiasedness of the ML estimates in the general model, together with a

high correlation between (̂8 and (̃8 , and the assumption that (8 are random, allows an argument that�RMSE
(
(̃8

�� (8 ) is an estimator of the unconditional sampling standard error of (̃8 (over conceptual

repetitions of the data). It then follows that this RMSE can be a correct basis for a reliable confidence

interval. It is rare to have a reliable estimator of the MSE for a biased estimator, but when this occurs

it makes sense to use ±2
√�MSE rather than ±2 ŜE, as the basis for a 95% CI.

end sidebar

D.3.2. Some technical background...

Most random effects theory assumes conditional independence of the estimators. In the introduction

to this section, we started by having another look at the simple binomial survival example introduced

earlier in section D.2.1. In that example, there was no sampling covariance – the estimates were all

independent of each other.

However, more generally in capture-recapture studies, the estimators (̂1, . . . , (̂: are pairwise con-

ditionally correlated. Thus, a more general, extended theory is required, which we develop here in

summary form – complete details are found in B&W. While some of the math can get a bit ugly, some

familiarity with the ideas (at least) is helpful in more fully understanding ‘what MARK is doing’. In the

following, vectors (all column) are underlined. Matrices are in bold font. A matrix, X, may be a vector

if it has only a single column. In that case, we do not underline X.

First, we assume (̂ = (+ �, given (. Conditional on (, � (which has a zero expectation) has a variance-

covariance matrix W, and �
(
(̂

�� () = ( for large samples. Second, unconditionally ( is a random

vector with expectation X� and variance-covariance matrix �2I, where I is the identity matrix. (Note:

the vector � is different than the beta parameters of the MARK link function). Thus, the process errors

&8 = (8−�((8) are independent with homogeneous variance �2. Also, we assume mutual independence

of sampling errors � and process errors &. We fit a model that does not constrain (, e.g., {(C}, and hence

get the maximum likelihood estimates (̂ and an estimate of W.

Let ( be a vector with = elements, and � have : elements. Unconditionally,

(̂ = X� + � + &,

VC(� + &) = D = �2I + W.

We want to estimate � and �2, an unconditional variance-covariance matrix for �̂, a confidence

interval on �2, and to compute a shrinkage estimator of ( (i.e., (̃) and its conditional sampling variance-

covariance matrix. In this random effects context the maximum likelihood estimator is the best condi-

tional estimator of (.

However, once we add the random effects structure we can consider an unconditional estimator of (

((̃) and a corresponding unconditional variance-covariance for (̃, which incorporates �2 as well as W

and has (= − :) degrees of freedom (if we are assuming large df for W and ‘large’ �2).
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For a given �2 we have

�̂ = (X′D−1X)−1X′D−1(̂.

Note that here D, hence �̂, is a function of �2. Now we need a criterion that allows us to find an

estimator of �2. Assuming normality of (̂ (approximate normality usually suffices), then the weighted

residual sum of squares ((̂ − X�̂)′D−1(̂ − X�̂) is central "2-distributed on (= − :) degrees of freedom.

Hence, by the method of moments,‗

= − : = ((̂ − X�̂)′D−1((̂ − X�̂).

This equation defines a 1-dimensional numerical-solution search problem. Pick an initial (starting)

value of �2, compute D, then compute �̂, then compute the right-hand side of the preceding expression.

This process is repeated over values of �2 until the solution, as (̂, is found. This process also gives �̂.

The unconditional variance-covariance matrix of �̂ is VC(�̂) = (X′D−1X)−1.

Now we define another matrix as

H = �

√
D

= �

√
�2I + �(W)

=

√
I + 1

�2
�(W).

(Here we only need H at �̂.)

The recommended shrinkage estimate (which is what is used in MARK) is

(̃ = H((̂ − X�̂) + X�̂

= H(̂ + (I − H)X�̂.

To get an estimator of the conditional variance of these shrinkage estimators (which is not exact as the

estimation of �2 is ignored here, as it is for the variance-covariance matrix of �̂), we define and compute

a projection matrix G as follows:

G = H + (I − H)AD
−1.

Hence,

(̃ = G(̂.

In other words, G is the projection matrix which ‘maps’ the vector of ML estimates to the vector of

shrinkage estimates.

The conditional variance-covariance matrix of the shrinkage estimator is then VC
(
(̃

�� () = GWG′,
whereas W = VC

(
(̃

�� () . Because (̃ is known to be biased, and because the direction of the bias is

known, an improved basis for inference is VC
(
(̃

�� () = GWG′ + ((̃ − (̂)((̃ − (̂)′. The square-roots of the

‗ Which is why the random effects estimation procedure in MARK is sometimes referred to as ‘the moments estimator’.
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diagonal elements of this matrix are

�RMSE
(
(̃8

�� () = √
v̂ar

(
(̃8

�� () + (
(̃8 − (̂8

)2
.

As discussed earlier, confidence intervals should be based on this RMSE. The RMSE can exceed the

SE
(
(̂8

�� (8 ) , but on average, the RMSE is smaller.

D.3.3. Deriving an AIC for the random effects model

We will have started with a likelihood for a model at least as general as full time variation on all the

parameters, say L((, �) = L((1 , . . . , (: , �1, . . . , �ℓ ). Under this time-specific model, {(C , �C}, we have

the MLEs, (̂ and �̂, and the maximized log-likelihood, logL((̂, �̂) based on  = : + ℓ . Thus (for large

sample size, n), AIC for the time-specific model is the (now) familiar −2 logL((̂, �̂) + 2 .

The dimension of the parameter space to associate with this random effects model is  A4 ,

 A4 = tr(G) + ℓ ,

where G is the projection matrix mapping (̂ onto (̃ (see above), and ℓ is the number of free parameters

not being modeled as random effects. tr(G) is the matrix trace (i.e., the sum of the diagonal elements of

G). The tr(G) (and thus  A4 ) is generally not integer.‗

Note that the mapping of (̃ = G(̂ is a type of generalized smoothing. It is known that the effective

number of parameters to associate with such smoothing is the trace of the smoother matrix.

Finally, the large-sample AIC for the random effects model is

AIC = −2 logL((̃, �̃) + 2 A4 .

A more exact version, AIC2 , for the random effects model may, by analogy, be taken as

AIC2 = −2 logL
(
(̃, �̃

)
+ 2 A4 + 2

(
 A4

(
 A4 + 1

)
= +  A4 − 1

)
.

For a full derivation of the AIC, in both a fixed and random effects context, see Burnham & Anderson

(2002).

D.4. Random effects models – some worked examples

In the following, we introduce the ‘mechanics’ of fitting random effects models in MARK, using a series

of progressively more complex examples. Many of the steps were introduced earlier in the context of

variance components analysis (section D.2). We begin by revisiting the simple binomial (‘known fate’)

analysis we introduced in section D.2.1.

‗ Which is why the number of parameters reported for random effects models is generally not integer.

Appendix D. Variance components and random effects models in MARK . . .



D.4.1. Binomial survival revisited – basic mechanics D - 24

D.4.1. Binomial survival revisited – basic mechanics

We begin our analysis of the ‘known fate’ data by considering a candidate set of 2 approximating models:

model {(C}, and model {(·}. Recall that the former model is our general ‘time-dependent’ model – this

is the model we used in our estimation of variance components as detailed in section D.2.1. The second

model, {(·} is a model where survival ( is constrained to be constant over time. Fit both models,and

add the results to the browser:

Clearly, there is overwhelming support in the data for the time-constant model, {(·}.

Let’s have a look at a plot of the estimates from model {(C}:

The point estimates (̂8 appear to vary over time, but notice that the confidence bounds on each

estimate appear to overlap over all intervals. This is perhaps the underlying explanation for why, despite

apparent variation in the point estimates (̂8 , there is essentially no support in the data for the general

time-varying model, {(C}, relative to a model which constrains the estimates to be constant over time,

{(·}.

However, we know logically that (8 cannot truly be constant over time. There must be some true

variation in survival, but our data are insufficient (apparently) to support a time-varying model where

‘time’ is modeled as an unconstrained fixed effect. Rather than concluding our analysis of these data here

(especially when such a conclusion is based on data insufficiency, rather than biological plausibility), we

continue by fitting a random effects model, which we will propose as ‘intermediate’ between constant

models, and fully time-dependent models. We will submit at this point that a random effects model

is, in fact, such an intermediate model (support for this statement will be developed in a later section).

Here, we will try to fit a model where survival varies around some unknown mean �, with unknown

process variance �2 – clearly, this corresponds to the ‘intercept only (mean)’ model we first saw in

section D.2.1 when we introduced variance components estimation in MARK. Such a model also makes
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some intuitive sense, if our intuition is guided by the time-series plot of the estimate (̂8 shown on the

previous page, where it might be reasonable to ‘imagine’ each (8 as ‘bouncing randomly’ around some

mean survival probability, � (with the magnitude of the ‘bouncing’ around the mean being determined

by the process variance, �2).

Formally, we will refer to this model as {(
�,�2}. How do we build such a model in MARK? Easy

enough – we simply run through the steps we need for a variance components analysis for model {(C}
(which should be familiar to you by now, if you’ve reached this point in this appendix – if not, go back

and review section D.2.1): retrieve our general model {(C}, specify parameter indices ‘1 to 10’ in the

variance component estimation window, and now, before hitting the ‘OK’ button, we ‘check’ the box to

build the random effects model in the lower right-hand corner of the ‘Variance Component Estimation’

window:

Now,click the ‘OK’ button. As before,MARK will respond by outputting various parameters estimates

((̂8 , (̃8 , �̂
2) to the editor, and generating a plot of the time-series for the estimates of survival, and the

mean model. The derivation and analysis of both was presented in some detail at the beginning of

section D.3 and in section D.3.1, so we won’t repeat them here.

Here, we introduce the next step, which is the actual ‘fitting’ of the estimated random effects model

to the data. You may have noticed that in addition to the editor window (containing the parameter

estimates) and the plot, MARK has also brought up a ‘Setup Numerical Estimation Run’ window, the

general contents of which will be familiar to you from other analysis you’ve done with MARK.

The biggest ‘visual’ difference is that MARK has modified the model name. Now, the model is called
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‘{S(t)f(t) -- sine link: Random Effects Trace G=4.7017092}’. The part of the model name to the

left of the colon is what we originally used to name the model. The part to the right (which MARK has

added) indicates that we’re now running a random effects model, and that the ‘trace’ of the G matrix is

4.7017092. Recall from section D.3.2 that the trace of the G matrix is a related to the number of estimated

parameters used in the derivation of the AIC (and that because tr(G) is generally non-integer, that the

number of estimated parameters for random effects models is also usually non-integer). We’ll modify

the title by adding the words ‘intercept only (mean)’ somewhere in the title box, to indicate that the

model we’re fitting is the ‘intercept only (mean)’ model. Once done, click the ’OK to run’ button

and add the results to the browser (if you get a warning about MARK not being able to import the

variance-covariance matrix, ignore it).

Several things to note here. First, our random effects model now has some significant support in the

data (AIC2 weight is 0.383). While not the most parsimonious model in the candidate set, it is clearly

better supported than the fixed effect time-dependent model. However, given that a time-invariant

model is not logically plausible, then we should select a model where survival varies over time. If we

make such a logical choice, then (based on the ideas present in section D.3) our best estimate for annual

survival (8 would be the shrinkage estimates (̃8 from our random effects model, {(
�,�2}.

Second, look at the number of parameters that MARK reports as having beenestimated for this model

(4.70171). We see that this number is identical to tr(G). Recall from section D.3.3 that the dimension of

the parameter space (analogous to the number of estimated parameters in the usual sense) to associate

with a random effects model is  A4 ,

 A4 = tr(G) + ℓ ,

where tr(G) is the trace of the G matrix, and ℓ is the number of free parameters not being modeled as a

random effect. In this case, all 10 parameters in the model, (1, . . . , (10 are being modeled as a random

effect, so ℓ = 0, and thus  A4 = tr(G) = 4.70171.

If we next look at the estimates of (8 (below)

we see that all of the estimates are ‘fixed’ at the value of (̃8 . As fixed parameters in the fitted model,
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there is no standard error (or CI) estimated (since there is nothing to be estimated for a fixed parameter,

obviously).

Finally, if you click on the ‘model notes’ button in the browser toolbar

you will be presented with a ‘copy’ of the variance components analysis which was first output to the

editor.

This is convenient, since it allows you to ‘store’ the variance components analysis for any particular

random effects model you fit to the data (note that the variance components analysis is output to the

‘model notes’ only if you run the random effects model).

D.4.2. A more complex example – California mallard recovery data

Here we introduce the mechanics, and some of the challenges, of fitting of ‘random effects’ models in

MARK. We will use a long-term dead recovery data set based on late summer banding of adult male

mallards (Anas platyrhynchos), banded in California every year from 1955 to 1996 (: = 41) (Franklin et

al., 2002). The total number of birds banded (marked and released alive) was 42,015, with a total of 7,647

dead recoveries. In a preliminary analysis, the variance inflation factor was estimated as 2̂ = 1.1952.

The recovery data are contained in california-male-mallard.inp. For your convenience, we’ve also

generated 3 candidate models: {(C 5C}, {() 5C}, and {(· 5C}, where the capital ‘T’ subscript is used to

indicate linear trend. These models are contained in the associated .dbf and .fpt files.

Note that we use time-structure for the recovery parameter 5 . We do so not simply because such a

model often makes more ‘biological sense’ than a model where 5 is constrained (say, 5·), but because

any constraint applied to 5 will impart (or ‘transfer’) more of the variation in the data to the survival

parameter (, such that the estimated process variance �̂2 will be ‘inflated’, relative to the true process

variance. In general, you want to estimate variance components using a fully time-dependent model,

for all parameters, even if such a model is not the most parsimonious given the data.
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Here are the results of fitting these 3 models to the data:

Based on the relative degree of support in the data it would seem that there is essentially no support

for a model where survival is constrained to follow a linear trend, or for a model where survival is

constrained to be constant over time. All of the support in the data (among these 3 models) is for model

{(C 5C}. If this was all we did, we’d come to the relatively uninteresting and uninformative conclusion

that there is temporal variation in survival. A plot of the estimates from this model seems to be consistent

with this conclusion:

However, rather than concluding our analysis of these data here, or perhaps add some models where

annual variation is modeled using a fixed effects approach where annual estimates are constrained to be

linear functions of one or more covariates, we might consider models which are ‘intermediate’ between

constant models, and fully time-dependent models. We will submit that a random effects model is, in

fact, such an intermediate model.

Let’s try to fit a model where survival varies around some unknown mean �, with unknown process

variance �2 – clearly, this corresponds to the ‘intercept only (mean)’ model. As was the case in our

first example involving binomial ‘known fate’ survival, we will refer to this model as {(
�,�2 5C}. Go ahead

and set up this model, first making sure that the fully time-dependent model is the ‘active’ model (by

retrieving it). Specify parameter indices ‘1 to 41’ for the variance component estimation, make sure

‘intercept only (mean)’ is selected, and that the ‘random effects model’ button is checked (as shown

at the top of the next page).
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When you click the ‘OK’ button, you’ll be presented with the estimates of the mean, the ML and

‘shrinkage’ estimates, and the various estimates of the process variance (to save some space, we’ve

snipped out a number of the estimates for (8).
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A plot of the ML and shrinkage estimates, and the model from which the shrinkage estimates were

derived (in this case, the intercept only mean model), is shown below:

Finally, we come to the estimation run window.

Again, we notice that MARK has modified the model name. Now, the model is called‘{S(t)f(t) --

sine link: Random Effects Trace G=32.0229017}’. The part of the model name to the left of the colon

is what we originally used to name the model. The part to the right (which MARK has added) indicates

that we’re now running a random effects model, and that the ‘trace’ of the G matrix is 32.0229. Again,

we’re going to modify the title slightly, to indicate that the model we’re going to fit is the ‘intercept

only (mean)’ model – we’ll simply add the words ‘intercept only’ somewhere in the title box.
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We hit the ‘Ok to run’ button and...

Clearly, something has gone wrong. Generally when you see the phrase ‘numerical convergence

never reached’ (or something to that effect) embedded in an error message, your first response should

be to consider trying ‘better’ starting values. Often, such convergence issues reflect some underlying

‘problems’ with the data (sparseness, one or more parameters estimated near either 0 or 1), and MARK

is potentially having difficulty estimating the likelihood – a problem which might be exacerbated (or

simply an artifact) of the default starting values used in the numerical optimization.

One straightforward approach is to use different starting values – in this case, the ML estimates

from model {(C 5C}. To do this, simply check the ‘provide initial parameter estimates’ box in the

numerical estimation run window, before running the random effects model. Now, when you click ‘OK

to run’, you will be presented with a window asking you to specify the initial parameter estimates for

the numerical estimation. To use the estimates from model {(C 5C}, simply click the ‘retrieve’ button,

and select the appropriate model (labeled ‘S(t)f(t) -- sine link’). This will populate the boxes in

the ‘initial values’ windows with the ML estimates. Then, once you click the ‘OK’ button, MARK will

attempt the numerical optimization. For this example, using these different starting values solves the

problem – the random effects model converges successfully.

An alternative approach which also generally works (albeit at the expense of some extended computa-

tional time in many cases), and which does not require good starting values for the optimization (which

you may not always have), is to use simulated annealing for the numerical optimization. You may recall

(from Chapter 10) that you can specify using simulated annealing for the optimization by selecting

the ‘alternate optimization’ checkbox on the right-hand side of the ‘run numerical estimation’

window. What simulated annealing does during the optimization is to periodically make a random

jump to a new parameter value. It is this characteristic is what allows the algorithm more flexibility in

finding the global maximum (in cases where there may in fact by local maxima in the likelihood; see

Chapter 10 for a discussion of this in the context of multi-state models), and minimizes the chances that

the numerical solution is determined by starting values (simulated annealing starts with the defaults,

but then makes the random jumps around the parameter space, as described).

To use simulated annealing for our mallard analysis, you simply retrieve model {(C 5C} (our general

model), run through the variance components analysis (remembering to check the ‘random effects

model’ box), and then try again – this time, before hitting the ‘OK to run’ button for the generated

random effects model, make sure the ‘Use Alt. Opt. Method’ button is checked. Change the title (we’ll

add ‘intercept only model -- SA’ to indicate both the model, and the optimization method used

to maximize the likelihood), then click ’OK to run’. Simulated annealing takes significantly longer to

converge than does the default optimization routine – how much longer will depend on how fast your

computer is. Nonetheless, this approach also works fine, and yields the same model fit as the model fit

using different initial values for the optimization. We’ll only keep one of these in the browser (shown

at the top of the next page).
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We see that the ‘intercept only’ random effects model has virtually all the support in the data, even

relative to our previous ‘best model’ {(C 5C}. Again, we note that the number of parameters estimated

for the random effects model is non-integer. Note, however, that the number of parameters estimated

(74.02363) is not simply tr(G) (= 32.02363). The difference between the two values is (74.02363 −
32.02363) = 42. Where does the 42 come from? Recall that the number of parameters estimated for

the random effects model,  A4 is given as  A4 = tr(G) + ℓ , where ℓ is the number of free parameters

not being modeled as a random effect. In our mallard example, we modeled the 41 survival parameters

(1, . . . , (41 as a random effect, but we left the recovery parameter 5 modeled over time as a simple fixed

effect. How many 5 parameters in our model? ℓ = 42, which of course is why the number of parameters

estimated is 42 more than tr(G).

What more can we about our results so far? Consider the improvement in precision achieved by the

shrinkage estimates, (̃8 , from model {(�,� 5C} compared to the ML estimates, (̂8 from model {(C 5C}. As

discussed in section D.3.2, a convenient basis for this comparison is the ratio of average �'"(� to (̂�:

�'"(�
(
(̃8

�� (8 )
(̂�

(
(̂8

�� (8 ) =
0.06476

0.07870
= 0.823.

The average precision of the shrinkage estimates is improved, relative to MLEs,by 18%,hence confidence

intervals on (8 would be on average 18% shorter.

Let’s continue by fitting a linear trend random effects model. First, retrieve model {(C 5C}. Then, start

a ‘variance components’ analysis – this time, selecting the ‘linear trend’ design matrix specification,

instead of the default ‘intercept only (mean)’. Here is a truncated listing of the numerical estimates.
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We see that the estimated process variance is nearly half the value estimated from the intercept only

model. We also see that the estimate for the slope is positive (�̂ = 0.0034). This is reflected in the plot of

the ML and shrinkage estimates against the model, shown below:

Next, we’ll go ahead and fit the estimated ‘linear trend’ RE model to the data, after adding the

phrase ‘linear trend’ to the title.

Here is the results browser with the ‘linear trend’ random effects model results added:

We see clear evidence of strong support for random variation in the individual (8 around the trend

line – this model has almost twice the support in the data as the next best model (our intercept only

model). What is of particular note is that if we hadn’t built the random effects models, and had based our

inference solely on the 3 starting models, we would have concluded there was no evidence whatsoever

of a trend, when in fact, the random effects trend model ended up being the best supported by the data.

The simple random effects models we used here are both necessary for inference about process

variation, �2, and also for improved inferences about time-varying survival rates.

D.4.3. Random effects – environmental covariates

Here, we consider fitting a random effects model when survival differs as a function of some envi-

ronmental covariate. Suppose we have some live encounter (CJS) data collected on a fish population

studied in a river that is subject to differences in water level. You hypothesize that annual fish survival

is influenced by variation in water level. We have : = 21 occasions of mark-recapture data (contained
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in level-covar.inp). Over each of the 20 intervals between occasions, water flow was characterized as

either ‘average’ (A) or ‘low’ (L) (more specific covariate information was not available). Here is the time

series of flow covariates: {AAAALLLAAALALALLLLAL}.

We begin our analysis by considering 3 fixed effect models for apparent survival, !: {!C ?C}, {!· ?C}
and {!;4E4 ; ?C}. Here are the results from fitting these 3 models to the data:

We see strong evidence for variation over time in apparent survival, but no support for an effect of

water level. If you look at the estimates from model {!;4E4 ;} for average (!̂0E6 = 0.709, SE = 0.0106) and

low (!̂;>F = 0.650, SE = 0.0100), the lack of any support for this model may not be surprising. At least,

based on considering water level as a fixed effect.

Now let’s consider some random effects models. We’ll build 2 different models – one a simple

intercept only (mean) model, which would seem to be consistent with the strong support for the simple

time variation model {!C}, and one where survival is thought to vary randomly around a level-specific

mean. In other words, we hypothesize �;>F ≠ �0E6 . We’ll assume, however, that �2
;>F = �2

ℎ86ℎ . This is

not directly testable using the moments-based variance components approach in MARK, but is testable

using an MCMC approach (see appendix E).

By this point, building and fitting the intercept only model for the survival parameters !1 → !19

(remember, we don’t include !20 since it is confounded with our estimate of ?21 for our time-dependent

model) should be straightforward,so we’ll skip the description of the mechanics,and will simply present

the results – we’ve added the ‘intercept only’ model to the browser (below).

We see strong evidence that the intercept only random effects model is more parsimonious given the

data than any other model.

Now, we consider the final model where survival is though to vary randomly around a level-specific

mean. We’ll refer to this as model {!
�;4E4; �

2
;4E4;

}. How do we construct this model in MARK? Here

we finally make use of the ‘User Specified’ design matrix option in the variance components setup

window (shown at the top of the next page). Simply retrieve the time-specific fixed effect model {!C ?C},

start the variance components analysis, specify the parameters (1 to 20), and check the ‘User Specified’

design matrix option. Make sure you’ve also checked the ‘Random Effects Model’ option as well.
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Now, all we need to do is click the ‘OK’ button. Once you do so, MARK will present you with a small

pop-up window asking you to specify how many covariate columns you want in the user-specified

design matrix. The default is 3, but here, for our model, we need only 2: one to code for the intercept,

and one to code for the water level (a single column since there are only two levels of the water covariate).

The design matrix entry window is shown below:

Note that there are only 19 rows in the DM, since we’re applying a random effect to !1 → !19 only.

Also note the small ‘pop-up’ window indicating that ‘When you have filled out the design matrix,

click OK to continue’. Meaning you should do as it says – specify your design matrix for the survival
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parameters, and then when you’re sure it’s correct, click the ‘OK’ button.

First we’re presented with a plot (below), showing the ML and shrinkage estimates, and (importantly

here) the underlying model (the red line).

The red line clearly indicates that there are 2 separate means being modeled, for the low and average

water flow years, respectively. The estimated process variance is �̂2
= 0.00313, and the estimate for

�̂1 = 0.0717 in the linear model indicates that survival is higher in ‘average’ water level years (since we

used ‘low’ level years as the reference level in our design matrix, above). What is also very important

here, is that the shrinkage estimates are clearly not constrained to fall exactly ‘on the red line’ – they

represent shrunk estimates of apparent survival as if each estimate was drawn randomly from a sample

with a water level-specific mean.

OK, what about the results of fitting this random effects model to the data?

What is especially noteworthy here is that the random effects model with water level-specific means,

{!
�;4E4; �

2
;4E4;

}, is now the most parsimonious model in the model set, despite ‘water level’ having

no support whatsoever when considered in a fixed effects design. The near equivalence of the AIC2

weights between this model and the simpler ‘intercept only’ random effects model suggest that we

can’t differentiate between the two, but whereas our initial conclusion strongly rejected the hypothesis

that there was an influence of water level on apparent survival, our random effects modeling would

suggest that perhaps we shouldn’t be quite so sure.
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D.4.4. Worked example – ,-Pradel model

We conclude with analysis of a famous set of data, the moth (Gonodontis bidenta) data reported on by

Bishop et al. (1978) and compulsively analyzed by many others (e.g., Link & Barker 2005). The data

consist of records for 689 male moths that were captured, marked, and released daily over 17 days in

northwest England. These moths were nonmelanic; demographic parameters were estimated as part of

a larger study looking at comparative fitness of distinct color morphs.‗

Here we will use random effect Pradel models (Chapter 13), focussing on estimation of process

variance, and possible trend, in realized growth rate �. The data we’ll work with are contained in

moth-example.inp. Our focus here is on variation in �. Recall that in a Pradel model, � an be estimated

as either a structural (real) parameter (for data type ‘survival and lambda’), or as a derived parameter

(for any of the other Pradel model data types). For the purposes of estimating process variance on �, it

doesn’t particularly matter which data type we use, since we can estimate process variance for either

real or derived parameters. We have already seen variance components analysis of real parameters in

earlier examples, so here, we’ll demonstrate the process of estimation for � as a derived parameter.

To start, select the data type ‘Pradel survival and seniority’. 17 occasions. Now, you may recall

that there are some challenges with parameter confounding for fully time-dependent Pradel models.

As is often the case, some of these problems can be handled by applying constraints to one or more

parameters. Since our purpose here is simply to demonstrate some mechanics, and not conduct an

exhaustive analysis of these data, we’ll avoid some of these issues by simply setting the encounter

probability ? to be constant over time. So, our general model will be {!C ?· �C}. Go ahead and modify

the PIM chart to construct this model, and add the results to the browser. Model deviance is 236.708.

Here are the derived estimates

Note that MARK generates derived estimates of �, and log�. While there are important considera-

tions as to which is more appropriate for analysis (see discussion in Chapter 13), our purpose here is

‗ The underlying motivation for this study should be very familiar to any of you with some background in evolutionary biology.
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simply to demonstrate some of the ‘mechanics’, so we’ll focus on estimates of � on the linear scale.

Let’s construct a random effects model for �, using {!C ?· �C} as our general model. The steps are the

same, except that when you access the ‘variance components’ sub-menu, you need to specify ‘derived

parameter estimates’ for the parameter type. You’ll be asked to select either ‘Lambda Population

Change’ or ‘log(Lambda) Population Change’. We’ll select the former.

Now, for the first ‘challenge’ – specifying the parameter index values for�. You might simply assume

that you would select all of them: 1 to 16. However, here (and generally), we need to be a bit careful.

When specifying the parameters to include in the random effect, you should not include parameters

that are confounded, or that are otherwise known to have ‘issues’. For Pradel models, there is potential

for confounding, but constraining encounter probability ? to be constant over time should solve some

of that problem. However, experience has shown that the first and last estimates of � in Pradel models

are often biased. If you look at the estimates for �̂1 and �̂16 shown on the previous page, you’ll see some

evidence that this might be the case for these data. For example, �̂1 = 3.217. This is often a judgement

call (for example, you might say that �̂11 = 3.55 is even larger, so using scale as evidence for a ‘problem’

with �̂1 is perhaps not a great criterion). For now, we’ll be ‘conservative’, and include only �2 → �15 in

specifying the random effect.

Now, for one important difference in fitting random effects models to derived parameters – you can’t.

If you look in the lower-right-hand corner, you’ll notice that the ‘Random Effects Model’ check-box has

been ‘greyed-out’.

If you think about it, this should make some sense. The random effects ‘constraint’ can be applied

only to real (structural) parameters in the model. Here, we are estimating � as a derived parameter (i.e.,

by algebra), and thus we can’t build and fit a random effects model using the Pradel ‘Survival and

seniority only’ data type. We’ll revisit this point in a moment. Go ahead and click the ‘OK’ button. The

plot of the real estimates �̂8 and shrinkage estimates �̃8 is shown at the top of the next page. The estimated

mean ¯̂� = 1.147, with an estimated process variance of �̂2
= 0.722. The plot shows clear evidence of

fairly large swings in realized growth – this is not overly surprising for an insect, where large changes

in reproduction and survival are relatively commonplace (there aren’t enough data available to test for

‘boom-bust’ cycles, another common occurrence with insect growth dynamics).

Now, what if we wanted to fit a random effects model for �, and not simply estimate the mean and

process variance? To do this, we need to change the data type, to one where � is included as a structural
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parameter in the model. Simply select ‘PIM | Change data type’. You will be presented with a box

contained the different data types you can apply to these data. You’ll see that one of those data types

presented is ‘Pradel survival and lambda’. Since that is the only model containing� as a real structural

parameter, select that data type, and click ‘OK’.

You’ll find that you’ve been returned back to the browser view – with no indication that anything

has changed. But, if you look at the PIM chart, you’ll see that the current ‘active’ model structure is

{!C ?C �C}. In other words, the parameter structure of the model has changed (as expected), but the

underlying model has reverted back to the fully time-dependent model. MARK has basically assumed

that if you’re switching data types, you are (in effect) starting over. So, we want to make the encounter

probability ? constant, so that our general model under this data type, {!C ?· �C} is consistent with the

general model we used under the data type where � was estimated as a derived parameter.

Go ahead and run model {!C ?· �C}, and add the results to the browser.

Unfortunately we see that these are not the same models, even though in theory they should be – the

model deviances and the number of estimated parameters are both different. There might be a couple

of issues here. First, if you look at the estimates, you’ll see that the first and final estimates of apparent

survival ! and the final estimate of � are both poorly estimated, and are probably confounded (despite

setting ? constant). Second, and perhaps more likely, the logical constraint that �8 > !8 is not enforced

for 1 or more parameters. This is not uncommon in fitting the ‘Pradel survival and lambda’ model

(for discussion of this issue, see the -sidebar- beginning on p. 9 of Chapter 13). As such, comparing

model {!C ?· �C} with {!C ?· �C} makes little sense, although the estimates of ¯̂� = 1.170 and �̂2
= 0.697

from model {!C ?· �C} (using �2 → �15) are fairly close to the estimates derived for model {!C ?· �C}.

For the moment, we’ll skip over this issue, and focus on some additional ‘mechanics’. Delete model
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{!C ?· �C} from the browser – we’ll focus on model {!C ?· �C}. We are interested in analysis of trend in

�. Trend in realized � is potentially of great significance for conservation and management, and robust

estimation of trend would seem to be something worth pursing. Now, based on the plot of �̂8 and �̃8
shown at the top of the preceding page, we don’t expect a ‘trend’ model of any flavor to have much

support in the data. But, to demonstrate the mechanics, we’ll proceed anyway.

With model {!C ?· �C}, we can see there are at least 2 ways we could proceed. We could build an

ultrastructural model where � is constrained to fall on a straight trend line, or we could build a random

effects trend model. We’ll do both, for purposes of comparison. To make the comparison ‘fair’, we’ll

build the ‘T’ (trend) ultrastructural model applied to �2 → �15 only, since these are the parameters we

would use in the random effects model. Then, we’ll build the random effects ‘trend’ model, also using

�2 → �15 only, and add the results of both to the browser.

We notice immediately that the random effects modelwith trendactually gets a fairamountof support

in the data, especially relative to the ultrastructural fixed effects trend model. So, despite appearances,

there might be some evidence of trend in the data. Enough that the overall support for this model is

fairly compelling.

At least 2 points to make here. First, there are some general concerns with the ultrastructure approach,

where constraints are applied to �. Since growth is a function of per capita survival plus per capita

recruitment, � = ! + 5 , then any constraint applied to � enforces a strict negative covariance between

!̂ and 5̂ (see chapter 13, and discussions in Franklin 2001). Such a covariance is clearly artificial, and

may make little to no biological sense (since it would imply that any increase in survival is perfectly

balanced by an equal and opposite change in recruitment). Second, the random effects approach to

trend analysis can’t be applied to � when � is estimated as a derived parameter – you can estimate the

intercept and slope of the trend, and the process variance, but you can’t fit a random effects model for

a derived parameter (i.e., you cannot add it to the browser).

While there are some technical challenges withPradelmodels in general (especially for time-dependent

models,whichare exacerbated forrandom effects models whichare generally applied to time-dependent

models), it seems clear that considering variance components and random effects analysis for� in Pradel

models has potential to be extremely useful.

D.5. Model averaging?

At this point, you might be asking yourself, ‘what about model averaging?’. This important topic is

introduced in some detail in Chapter 4 (see the Burnham & Anderson ‘model selection’ book for a

comprehensive treatment).

There are at least two issues to consider here. First, if our candidate model set contains both fixed

effect and random effect models, should we model average over the entire set? In fact, MARK does

nothing ‘mechanically’ to prevent you from doing so. For example, take the mallard analysis intro-

duced in section D.4.2. Assume that we have the following 5 models in the browser – 3 fixed effects
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models ({(C 5C}, {(· 5C}, {() 5C}), and 2 random effect models (‘linear trend model’, and ‘intercept

only (mean) model’:

You can go ahead and run the model averaging routines on the survival estimates – MARK simply

assumes you want to average over the entire model set. Your only hint that you might need to be a bit

careful comes when you look at the model averaging output. Here is a snippet of the output for the

mallard analysis, for the parameter corresponding to (1:

Pay particular attention to the right-hand side. Notice that for the 2 random effects models, you get a

‘warning’ about ‘invalid parameter estimates’ with ‘zero SE?’. MARK has ‘noticed’ that the parameter

estimates for parameters modeled as random effects (the survival parameters, in this case) have a zero

SE. MARK ‘suspects’ there might be a problem, but in fact this is exactly what you should see. As

discussed earlier, the random effects model is fit to the data after fixing the random parameters to

their shrinkage estimates, and thus, there is no SE for those parameters. And, since model averaging

intends to generate an unconditional parameter estimate, by accounting for conditional uncertainty

in the parameter for each model, then there are clear problems when one or more of the parameters

‘appear’ to be estimated without any uncertainty (i.e., have zero SE’s). So, if MARK included the random

effect parameter estimates in the model averaging, then the estimate of the unconditional SE for that

parameter would be very negatively biased (i.e., much too small).

The second issue is ‘conceptual’, and relates broadly to the issue of ‘model redundancy’. In the

extreme, having 2 structurally identical models in the same candidate model set would clearly render

model averaged estimates invalid. Model redundancy in the context of AIC selection is discussed in

Burnham and Anderson (sections 4.2.9 and 4.2.10). With some thought, you might see that the random

effects model is substantially redundant to its fixed effects likelihood version. For example, model

{(�,� 5C} would be redundant to some degree to model {(C 5C}.

In one sense, a random effects model is a model which is intermediate between a time-invariant

(‘dot’, say (·) model, and a fully time-varying fixed effects model (say, (C). Recall from section D.3 that
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shrinkage estimates (̃8 generally lie between �̂(() and (̂8 . Recall from section D.3.1 that in the absence

of sampling covariance, the shrinkage estimator used in MARK is

(̃8 = �̂(() +

√√√√ �̂2

�̂2 + �̂(
[
var

(
(̂8

�� (8 ) ] ×
[
(̂8 − �̂(()

]
.

Consider the estimates of survival for the first interval from the binomial example presented in section

D.2.1: the ML estimate (̂1 = 0.640, the mean survival �̂(() = 0.484, and the shrunk estimate (̃1 = 0.548.

As shown in the following

�̂(() (̃1 (̂1

0.484 0.548 0.640

‘shrunk toward the mean’

the ML estimate is ‘shrunk’ toward the mean, with the resulting shrinkage estimate, (̃1 being ‘inter-

mediate’ between the mean, �̂(() (which is equivalent to a ‘dot’ model, in some respects) and the ML

estimate (̂1 (which comes from the ‘time-dependent’ model). So, the shrinkage estimate is analogous to

an ‘average’ between the two estimates. As noted in section D.3, the degree of shrinkage is determined

by the magnitude of the process variance �2, relative to the sampling variance, �̂([var
(
(̂8

�� (8 )]. If the

process variance is relatively small, then the shrunk estimates will approach the estimate for the mean

�̂((),whereas if the process variance is large relative to the sampling variance, then the shrunk estimates

will be closer to the ML estimates, (̂8 . So, the shrinkage model {(�,� , �}, is intermediate between model

{(C , �} and model {(· , �}, and is thus strongly analogous to an ‘average model’. As a result, when the

process and sampling variances are similar, the estimates from model {(�,� , �} will tend to be quite

similar to the model-averaged estimates estimated over model {(C , �} and model {(· , �}.

D.6. Caveats, warnings, and general recommendations

Using random effects as a basis for modeling collections of related parameters is a long-standing

approach in statistics and one that can be very effective. Use of the random effects approach in capture-

recapture is relatively new – in the nearly 10 years since the publication of B&W, there have been

relatively few applications of these models to real data, despite what we believe are several interesting

opportunities made available by these methods.

However, we also believe that the methodology needs to be better understood as to any potential

pitfalls and as to its operating characteristics. The following is a summary of our experience to date

with random effects models, particularly as implemented in MARK. This material is largely abstracted

from B&W, and accumulated experience with such models since the time of that publication.

1. the ‘method of moments’ described in the appendix, and as implemented in MARK, has

been shown to perform well, especially when �2 > 0.025. The method(s) may not do so well

if �2 → 0. However, we think it reasonable to believe that for a worthwhile study yielding

good data,process variation,�2,will generally not be too small, relative to average sampling

variation and it is for these conditions (of ‘good data’) that we need effective random effects

inference methods.
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2. Another issue to be aware of, as regards estimation of the parameter �2, is the matter

of unequal, rather than equal length, time intervals. Let the time interval 8 have length

Δ8 . Then we should parameterize the model as (8 = (#8)1/Δ8 where now each survival

probability#8 is on the same unit time basis. It may then make biological sense to consider

parameters that are a mean and variation for#1, . . . ,#: . But this may just as well not make

sense, because the time intervals are intrinsically not comparable as they may be in very

different times of the annual cycle. It becomes a subject matter judgement as to whether

random effects analysis will be meaningful with unequal time intervals. For the moment,

don’t apply random effects models or variance components analysis to situations where

the intervals between sampling occasions are unequal (even specifying unequal interval

length will generally yield negatively biased estimates of process variance, �2).

3. In practice if there is over-dispersion in the data, as measured by a scalar often denoted

by 2 (see Chapter 4 and Chapter 5), the estimated sampling variance-covariance must be

adjusted by a reliable 2̂ (see discussion in B&W, and Franklin et al. 2002 for an example

with real data).

4. A key design feature to focus on to meet the criterion of ‘having good data’ when applying

random effects is :, the number of estimable random effects parameters (time intervals,

locations, etc.). The sample size for estimating �2 is :. Therefore, one must not have : too

small; < 10 is too small. Even if we knew all the underlying (8 a sample of size : < 10 is too

small for reliable inference about the variation of these parameters (even given a random

sample of them, which is not required here). Inference performance has been shown to

be acceptable when : > 15. The benefits (includes shrinkage estimates) of random effects

models become greater as the number of underlying parameters, :, increases.

5. The other influential design feature is number of individuals marked and released. Both

numbers initially released and numbers recaptured are important to the performance of

inferences from random effects models. While there are no ‘hard and fast’ rules, we can

make some general recommendation. B&W showed that low numbers of marked and

released animals, especially for low survival and encounter probabilities, generally led to

point estimates of �2 → 0. This is because the sampling variation was much larger than

process variance in these cases.

6. The situation where inferences from a random effects model are most advantageous

seems to be for when �2 is about the same as average sampling variance, ((̂8 | (8) (recall

that sampling variance is strongly influenced by sample size of animals capture and

reencountered, whereas process variance is not). If one or the other variance component

dominates the total variation in the MLE’s (̂8 then the data strongly favor either the simple

model {(· ?C} (sample variance dominates), or the general model {(C ?C} (process variation

dominates), rather than the random effects model.

However, it is not a problem, as regards inference about �2, to have large sample sizes

of animals, hence small sampling variances, so that should be one’s design goal. If it then

turns out that sampling variance is similar to process variance, the random effects model

will be markedly superior to model {(C ?C}. Thus, in a sense the random effects model is

optimal at the ‘intermediate’ sample size case. As sample size of animals increases, the

random effects model converges to model {(C ?C}.

7. A potential technical issue is the ‘boundary effect’ (at least under what is basically a

likelihood approach). As discussed in B&W, if one enforces the constraint ( < 1 when

the unbounded MLE (̂ ≥ 1, then standard numerical methods used in MARK to get the

observed information matrix fails. As a result, the estimated information matrix is incorrect

for any terms concerning the (̂ that is at the bound of 1 (and the inverse information
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matrix is likely wrong in all elements). Experience shows that, in this case, the resultant

point estimate of �2 can be very different from what one gets when the survival parameter

MLE’s are allowed to be unbounded. The difference can be substantial. Using an identity

link, B&W found �̂2 to be unbiased in many cases.‗ With good data we rarely observe an

unbounded MLE of ( that exceeds 1. This might be explored in a Bayesian context, where

it is easy (in a MCMC analysis) to allow ( to have its distribution over an interval such as 0

to 2 (rather than 0 to 1). B&W considered this, and found a strong effect of the upper-bound

on the point estimate (and entire posterior distribution) for �2, and for that particular (.

(Note: MCMC applications in MARK are discussed in Appendix E).

D.7. Summary

This appendix has considered random effects models. The name ‘random effects’ can be misleading in

that a person may think it means that underlying years or areas (when spatial variation is considered,

rather than temporal) mustbe selectedat random.This is neither true,norpossible,fora setof contiguous

years. Variance components is a better name, in that at the heart of the method is the separation of

process and sampling variance components. The issue of what inferential meaning we can ascribe to �2

is indeed tied to design and subject matter considerations. However, the shrinkage estimators do not

depend on any inferential interpretation of �2; rather, they can always be considered as improvements,

in a MSE sense, over the MLEs based on full time-varying (C . The random effects model only requires

that the residuals ((8 − XB) are exchangeable.

When are we interested in these sorts of models? Often, if a data set is sparse, but with many (≥ 10)

occasions, model {((.)} will be selected. Clearly, this is a model, as we know that conditional survival

probability cannot remain exactly the same over any significant length of time. While model {((.)} might

be ‘best’ in the sense of a bias-variance trade-off (i.e., it is identified by AIC as most parsimonious among

the candidate models), it might leave the investigator wondering about the variation in the parameters.

Thus, the estimation of �2 has relevance. At the other extreme, assume that model {(C} is selected; here

the investigator might have (say) 25 estimates of the survival parameters, each perhaps with substantial

sampling variation. This makes it difficult to see patterns (e.g., time trends orassociations) orunderstand

the variation in the parameters. Further, analysis of stochastic population models is often complicated

by uncertainty concerning the relative variation in estimates of one or more demographic parameters.

Random effects models are a very interesting class of models which can address both issues (amongst

many more), but even a partial understanding is somewhat difficult to achieve. The intent of this

appendix was to try to convey the general notion of random effects models, and the idea of ‘variance

components’, as implemented in program MARK, in a reasonably accessible fashion. The subject of

random effects models and variance components as applied to data from marked individuals is treated

in considerably more depth in several of the following papers. An alternative approach to estimating

variance components, based on Bayesian inference (sensu Royle and Link, 2002) and Markov Chain

Monte Carlo (MCMC), is presented in Appendix E.

‗ Note that we do not suggest routinely accepting final inferences that include survivalestimates exceeding 1. In fact, the shrinkage

estimates will generally not exceed 1, so using (̃8 and not (̂8 will be the needed improved inference. However, to get to this
final inference it may be desirable to pass through an imaginary space (( > 1), just as imaginary numbers can facilitate real
solutions to real problems. Models only need to possess utility, not full reality.
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