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For most of the examples presented in the MARK book, the construction of the design matrix

(DM) using the ‘graphical DM template’ is relatively straightforward. Moreover, by ‘forcing’ you to

confront the actual structure of the design matrix, the relationship between linear models, covariates,

even fundamental statistical entities like ‘degrees of freedom’ may actually make more sense than they

did before.

However, quite often in real-world situations, where the size of design matrices can get very large,

very quickly, it is often cumbersome to build design matrices in this fashion. Further, your chances of

making a mistake while building the design matrix increase in rough proportion to the size of the design

matrix - compounded when the models contain significant ultrastructure. Also, if either the number

of occasions or group structure changes, PIMs and DMs must be changed and this means rebuilding

each model in MARK. Thus, automated model development is almost a necessity for researchers that

monitor populations over time and are continually adding sampling occasions.

This appendix describes an alternate interface that can be used in place of MARK’s graphical interface

to describe and run models in terms of formula (e.g., Phi∼sex+age+time). The interface constructs

the necessary PIMS and design matrices which automates model development. The interface creates

the MARK input file, initiates mark.exe and then extracts the results from the output files. All of the

computation for parameter estimation is done with MARK (mark.exe). This alternative interface is a

package that has been written in R, a freely available statistical programming environment.

Thus the package was named RMark. This appendix provides an introduction and description of

the RMark interface to help you get started. The appendix does not document every function and

every function argument in the package because that reference material is provided in the help file

documentation that accompanies the package as described below. Instead, analyses of the dipper and

swift datasets and other examples are repeated here using RMark to demonstrate this ‘formula based’

approach to specifying models.
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In addition to automating model development, RMark has the following advantages:

1. labels for real (reconstituted) and � parameters are automatically added for ease of

interpretation

2. scripts can be written to run an entire analysis and the script can be documented

3. covariate-specific real parameter estimates can be computed within R without re-

running the analysis

4. the R environment is available for plotting and further computation on the results.

Examples of these advantages are given throughout this appendix.

However, there are a number of disadvantages in comparison to the existing MARK graphical

interface. First and foremost, you need to have a rudimentary knowledge of R before using RMark.

There is no getting around it and while it could be viewed as a disadvantage for RMark, it can also be

viewed as an advantage because R is a very powerful statistical programming environment that can be

useful for many different analysis tasks and RMark may be the push you need to start using R for all

of your analyses. To help you learn R, we provide a very brief R primer at the end of this appendix,

but we suggest that you also take advantage of the R tutorial material on the web and in various books.

Even if you have a reasonable grasp of R, it may be useful to review the tutorial to understand how lists

provide useful structures for working with models in RMark.

At present, another disadvantage is that the RMark interface does not replicate every aspect of the

MARK interface. In particular, not every model in MARK is supported by RMark. For a complete

list, refer to the MarkModels.pdf file that is installed in the RMark subdirectory ( from within MARK,

see also ‘Help | Data Types’). In addition, features such as the median 2̂ goodness-of-fit testing and

random effects are not available at present. A solution is to export the model runs from RMark into the

MARK interface (discussed later in this appendix).

Another subtle difference with the MARK interface is that all models constructed in the RMark

interface are developed via a design matrix approach rather than coding the model structure via

parameter index matrices (PIMS). The title for this appendix was chosen to reflect this aspect of the

RMark interface. However, as of version 1.7.6 RMark can create models with an identity design matrix

and you can now use the sin link as long as the formula specifies a model that can be represented

by a identity matrix. Obviously, you cannot use covariates with the sin link. See section C.10 for more

explanation. Even though RMark constructs the design matrix for you, you still need to understand the

concepts described in the book about design matrices and counting parameters. Having the description

of RMark in an appendix to this book is intentional and appropriate because initially it is best to learn

to use the standard interface so that you understand what RMark is doing.

In manuscripts, cite this appendix for RMark and in describing it make sure to say something like

“we used the R (R Development Core Team 2007) package RMark (Laake 2013) to construct models for

program MARK (White and Burnham 1999).” Use citation("RMark") in R to get the proper citation

for R.∗

If you have no experience with R we highly recommend that you start by reading C.1 and C.24

and either a good introductory text on R or the online material on the R home page (which is found at

http://www.r-project.org/). Once you become moderately comfortable with R, read sections C.2-C.12

and follow along with the examples. After reading section C.12 you should be able to import your own

data and work through the more advanced sections in C.13-C.16. Specific examples of models beyond

CJS are given in section C.17-C.20 and we expect to add more sections like this in future revisions. If

∗ Laake, J. L. (2013). RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. AFSC Processed Rep 2013-01,
25p. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., 7600 Sand Point Way NE, Seattle WA 98115.
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you want to know how to export RMark models to use features of the MARK interface see section

C.21. Examples of using R for further computation on results like creating delta method variances are

described in C.22. If you encountererrors orproblems, see C.23 fora list of common errors and suggested

solutions.

Some of the examples displayed here will only work with version 1.7.3 of RMark or later and the

December, 2007 version or later of mark.exe.

C.1. RMark installation and first steps

There are a number of tasks that you need to accomplish prior to using RMark. Since you are reading

this appendix, chances are good that you will have already installed MARK on your computer. If not,

refer to the Foreword of this book.

If you haven’t already done so, you must install R from the R Project website

http://cran.r-project.org/

Select ‘Windows95 or later’, then select base and finally select r-v.v.v-win32.exe (where v.v.v is

the current version (e.g., R-2.6.1-win32.exe)). Select run and then follow the directions and choose the

default setup by clicking on “next” at each prompt. Download and save the RMark package (RMark.zip)

from www.phidot.org. Start R from either the desktop icon or from the Start/All Programs list. From

within R, select Packages from the menu and then choose Install package(s) from local zip at the

bottom of the menu list:

Doing so will show a “select files” window. Navigate to the location where you saved the RMark.zip

and select the zip file. This will load the package into c:\Program Files\R\R-v.v.v\library, where

v.v.v represents the current version of R that you are using (e.g., 2.6.1). Note that R installs each

version into separate sub-directories of c:\Program Files\R. Any updates for RMark can be installed

as described above over previous versions. If you update R versions, you need to repeat the RMark

installation.
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You only need to install RMark once but to use RMark you will need to issue the command

library(RMark) in R to attach the package every time you start R. R should respond by displaying

the version number that you have installed (e.g. 1.7.3 as shown below) and it will give details about the

build date and time and the version of R that was used to build the package:

This is RMark 1.7.3 Built: R 2.6.1; i386-pc-mingw32; 2007-12-20 09:57:44; windows

Most of the time the version of R that you are using can be newer than the R version used to build

RMark. However, there are exceptions and if you are having problems with error messages that you

cannot resolve, check that the version numbers agree. To avoid manually entering the command each

time you initiate R, you have a couple of options. You can edit and enter the library(RMark) command

into the file named “RProfile.site” with any text editor. It is located in the directory C:\Program

Files\R\R-v.v.v\etc\ where v.v.v represents the R version. If you add the library(RMark) command

to rprofile.site, the RMark package will be loaded anytime you start R. For additional material on

RProfile.site see C.24.

Alternatively, you can write a function .First=function()library(RMark) and save it into any

.Rdata workspace from which you will do MARK analyses. The .First() function is run anytime

that particular .Rdataworkspace is opened. See section C.13 and R documentation for more on writing

functions.

If you didnot select the default location forMARK in the installation process (C:\Program Files\Mark)

where RMark will expect it, then you need to set a variable MarkPath to point to the location of the

mark.exe file. This is best to do in either the RProfile.site file or .First function. As an exam-

ple, if you installed MARK to d:\myfiles\mymark, then in RProfile.site, then add the command

MarkPath="d:/myfiles/mymark/" or MarkPath="d:\\myfiles\\mymark\\" (note: Windows uses a back-

slash ("\") to separate sub-directories in a path but in R they are either represented by either a double

backslash ("\\") or the simpler single forward slash ("/")). The default value is MarkPath="C:/Program

Files/Mark/". Anotheruseful variable that can be set is MarkViewer. By default this is set to notepad.exe

but you can set it to any program like wordpad.exe or any text editor you prefer. You need to specify the

full directory specification and program name unless the directory is in the PATH environment variable.

MARK creates several files when it runs a model (.inp,.out,.vcv,.res) and RMark retains and uses

these four files in the directory where they were created. Everything else RMark creates is contained in

the .Rdata file which is the R workspace. Thus, it is best to create a sub-directory for each set of data you

are going to analyze with RMark. After you have created the sub-directory copy an empty .Rdata file

into the new sub-directory and then you can initiate an R session by simply double-clicking the .Rdata

file and any files RMark creates will be contained within the subdirectory. It is typically best to start with

an empty .Rdata workspace. After a fresh install of R, the file C:\Program Files\R\R-v.v.v\.Rdata is

empty and can be copied to start with an empty workspace. Or all of the workspace contents can be

deleted using the commandrm(list=ls(all=TRUE)) oruse ’remove all objects’ under the ’Misc’ item

in the R menu. This is particularly important if you want to mimic some of the examples described in

this appendix.

Beyond this appendix, there is an extensive amount of documentation written for each function

contained in RMark. You can see this documentation using ?markwithin R after library(RMark) or to

see the entire help file double-click on the file

C:\Program Files\R\R-v.v.v\library\RMark \chtml\RMark.chm

where v.v.v is the R version that you are using. From there you can view or print the entire contents

(currently 144 pages).
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C.2. A simple example (return of the dippers)

Let’s start with a very simple example to explain some of the basic aspects of using RMark. Create an

empty directory and copy a .Rdata file to it. Double click the .Rdata file to initiate R with that workspace.

If there are any objects in the workspace (use ls() to see the contents) remove any objects the ’remove

all objects’ under the ’Misc’ menu item. Type library(Rmark) to attach the package if you have not

setup R such that the RMark package is always attached.

For your first example, we will use the well-known dipper data set that accompanies MARK (the

dipper data, and all of the other example data files referred to in the MARK book and this ap-

pendix are found at http://www.phidot.org/software/mark/docs/book/. In the drop-down menu

‘Book chapters & data files’, select ‘Example data files’). In fact, the dipper data set and a number

of others are already contained in the RMark package and they can be accessed with the data function

which extracts the dataframe from the library and puts a copy into your workspace. In addition, with

each example set of data, there is some example code for RMark to demonstrate use of that particular

model. You can run the example code by typing example(dipper), but for this tutorial we will take a

simple example and enter each command. If you type data(dipper) and then type ls(), it should only

show dipper as the contents of your workspace.

> data(dipper)

> ls()

[1] "dipper"

(Note: The object dipper is a dataframe which is equivalent to a table in MS-ACCESS). Let’s get a

summary of dipper and display the first 5 records to see that it is in the correct format for RMark:

> summary(dipper)

ch sex

Length:294 Female:153

Class :character Male :141

Mode :character

> dipper[1:5,]

ch sex

1 0000001 Female

2 0000001 Female

3 0000001 Female

4 0000001 Female

5 0000001 Female

From the above you see that dipper has a field named “ch” which is a character string containing

the capture (encounter) history and it has a field called “sex” which is a factor variable. We can tell that

“sex” is a factor variable because summary shows the frequency of the levels of the factor variable. If it

was a numeric variable, summary would show the min, mean, max etc.

We can run a very simple analysis with the mark function and assign it to the object “myexample” as

follows:

> myexample=mark(dipper)
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The output on the screen will be:

Output summary for CJS model

Name : Phi(~1)p(~1)

Npar : 2

-2lnL: 666.8377

AICc : 670.866

Beta

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890516 2.8634801

Real Parameter Phi

1 2 3 4 5 6

1 0.560243 0.560243 0.560243 0.560243 0.560243 0.560243

2 0.560243 0.560243 0.560243 0.560243 0.560243

3 0.560243 0.560243 0.560243 0.560243

4 0.560243 0.560243 0.560243

5 0.560243 0.560243

6 0.560243

Real Parameter p

2 3 4 5 6 7

1 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

2 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

3 0.9025835 0.9025835 0.9025835 0.9025835

4 0.9025835 0.9025835 0.9025835

5 0.9025835 0.9025835

6 0.9025835

So what happened and what did that do? First of all let’s dissect the command. The piece of code

mark(dipper) called the function mark with the data file dipper and used it for the value of its first

argument which is called data. The equal sign (or <- can be used) was used to assign the result of

the mark function to the object myexample which is stored in the .Rdata workspace (although only in

memory until the workspace is saved to disk).

So what actually happened inside of the mark function? It constructed and ran an analysis using the

dataframedipperand the defaultvalues for the function argumentsmodel("CJS")andmodel.parameters

which for this model is to construct Phi(.)p(.) (i.e., {!· ?·}) in MARK notation and Phi(∼1)p(∼1) in

R notation. It also used the default values for other function arguments such as time.intervals and

assumed that there was no group structure for the analysis. Numerous steps were involved but all you

need now is the abbreviated version.

The function mark examined the capture history (ch) to determine the numberof occasions,developed

all the necessary structure that it needed,created an .inpfile forMARK, ran mark.exe in the background

and extracted relevant parts of the MARK output files that it needed to create a list of results. If you

use the R function list.files() you’ll see that your directory now contains 4 more files which are the
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input and the 3 output files from mark.exe and each with the prefix mark001.

> list.files()

[1] "mark001.inp" "mark001.out" "mark001.res" "mark001.vcv"

The file mark001.inp is the file that would be equivalent to what you would see if you used “Save

Structure” rather than directly running the model in the MARK interface. mark001.out is the text

output file from MARK with all the results. mark001.res is the file of residuals (not currently used by

RMark) and mark001.vcv is a binary file containing the variance-covariance matrices and parameter

estimates. All of these files are “linked” to the result object in R by the base filename. In this case

myexample is linked to “mark001”. Files are numbered sequentially for each analysis with the first

available number, but more on that later.

The results from MARK were put into the object myexample which is a list. If you don’t understand

the concept of a list in R, refer to the R tutorial in section C.24. The list created by RMark is a slightly

special list because it has been assigned to a class which means that R will treat it differently based on its

class. The differential treatment occurs when generic functions like print and summary are called with

the object. You can see the class of an object with the class function as follows:

> class(myexample)

[1] "mark" "CJS"

It has 2 classes with the first being mark and the second being the type of mark-recapture model which

is “CJS” (Cormack-Jolly-Seber) by default. You need to know this only to understand that when you

use functions like print and summary that R actually calls print.mark and summary.mark. When MARK

was finished with the analysis it called summary (summary.mark) which created the output on the screen.

You can see the output again on the screen by simply typing summary(myexample). If you want to save

those results to a file, you can use cut and paste to the clipboard or you can use the sink function to

save any screen output to a file. Use sink(myfilename) before issuing the command that generates the

output and use any valid file specification in place of myfilename. To restore output to the screen use

sink().

Let’s discuss the summary output to learn some more about RMark. The first part of the summary

describes the type of model and some basic information. This simple analysis was for the CJS type

of analysis and the model name defaults to the concatenation of the formulas used for each of the

parameters in the model which was simply Phi(∼1)p(∼1). The symbol ∼ is used to begin a formula

when the dependent variable on the left is not specified and implied. The “1” represents an intercept

so “∼ 1” is a model with only the intercept which is equivalent to the ‘dot’ in MARK notation. We will

explain much more about specifying formulas later.

After the model description, summary provides the number of parameters in the model, the −2 log(L)

value and the AIC2 value for the model. We’ll see later that the contents of this portion can vary

depending on options for parameter counting and use of 2̂. Next the estimates, standard errors and

confidence intervals for the �’s are listed as they are shown similarly in the MARK output. The estimates

are labeledwith the type ofparameter (e.g.,Phiorp forCJS) andadditionalnames related to the variables

in the formula. For this model they are labeled intercept but later we’ll see more informative labels. All

of the labels for � and real parameters are done automatically and not manually by the user.

The real parameters are shown next in PIM format. For the CJS model, each of the parameters uses an

upper-right triangular format for the PIM. The real values are shown for each parameter type (e.g., Phi

and p in this case) and if there were groups defined, the values would be shown by group with a group

label. The rows of the triangular PIMS are labeled with the cohort value (time of cohort release) and

the columns are labeled with either the beginning time for time-interval parameters like Phi (survival
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from time 1 to 2 is labeled with 1) or with the time for the occasion for occasion-specific parameters

like p (re-capture probability at time i is labeled with i). This labeling is controlled by the value given

to the beginning time of the experiment (begin.time) and by the lengths of the time intervals between

occasions (time.intervals). For our simple example, we used the default of begin.time=1 and all the

time intervals being 1 so the rows are all labeled from 1 to 6 and the columns are labeled 1 to 6 for Phi

to represent survival intervals 1 → 2, 2 → 3, · · · , 6 → 7 and for p the columns are labeled 2 to 7 for the

recapture occasions. Had we set begin.time to 1990, the rows and columns for Phi would have been

labeled 1990 to 1995 and the columns for pwould have been labeled 1991 to 1996.

By showing the real parameters in PIM format it can become readily obvious how the model is

parameterized. Although this example is not a particularly good one, it is clear that the constant model

was used as all of the real parameters are the same. We’ll see more informative examples later.

A summary is nice and later we’ll see other types of summaries but how do you look at the whole

output file like you do in MARK? All you have to do is type the name of the object containing the results

(e.g. myexample) and hit enter. R looks for a print method for the object when you type the name of the

object (this is discussed in the R primer at the end of this appendix). When you type the name of an

object with class mark, it will use the function print.mark to display the object. The function print.mark

uses the Windows program notepad.exe to display the complete output file from mark.exe. Until you

close the viewer you cannot continue in the R session that issued the call to the viewer. If you want to

use a different program for viewing output files, simply assign the file specification for the program as

a character string to the object MarkViewer.

Had we not assigned the results of mark(dipper) to myexample, R would have called print.mark to

view the output file, and once it was closed, the summary output would have been displayed but no

object would have been saved in the R workspace. However, the input and 3 output files would still be

in the directory but they would not be linked to an object in the R workspace. If you were to make this

mistake, you can create a MARK object in the R workspace and link the existing files to it by using the

exact same call to MARK but adding the filename argument and specifying the base filename for the

orphaned files. To see how this works, type mark(dipper) again but without assigning it to an object

and it will create the files mark002.*, because it is the second analysis that you have run. Then enter the

following:

> myexample2=mark(dipper,filename="mark002")

he code will respond with a query when it sees that the files already exist.

Create MARK model with existing file (Y/N)?y

By entering “y” it will rebuild the model object and link the files to myexample2.

Occasionally you will run models and even create an R object for them but later decide to delete the R

objects in the workspace. Deleting the R object will not delete the linked files. The function cleanupwill

purge orphaned input and output files. By typing ?cleanup you will see the help file that describes this

function. By typing cleanup(ask=FALSE), all the orphaned files will be deleted. If you want to selectively

delete the files, use cleanup() and you will be asked to confirm each file deletion.

To see how this works, remove myexample2, list the files, use cleanup and then list the files again as

shown below:

> rm(myexample2)

> list.files()

[1] "mark001.inp" "mark001.out" "mark001.res" "mark001.vcv" "mark002.inp"
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[6] "mark002.out" "mark002.res" "mark002.vcv"

> cleanup(ask=FALSE)

> list.files()

[1] "mark001.inp" "mark001.out" "mark001.res" "mark001.vcv"

C.3. How RMark works

So now that you know how to create, summarize and print a simple model, let’s learn more about how

RMark works so you can fully understand the more realistic examples. To build and run the simple

model for the dipper data you did not have to create PIMS nor a design matrix as you might in MARK,

because RMark did it for you. But you may be saying to yourself, that is not really any different than

the ability of the MARK interface to create pre-specified models. In some ways that is true but with a

big difference. The RMark package widens the concept of pre-specified models to include user-defined

formulas for model definition rather than the limited list of formulas in the MARK interface.

So how does it do that? Well with a few tricks and the R function model.matrix, it is surprisingly

simple. The first trick is to realize that your options for developing models are limited by the PIM

structure you choose and to fit completely general models without restrictions you need to use what

MARK calls the all-different PIM structure. An all-different PIM is the default PIM type used in RMark

(although there are some situations where it is useful to specify a simpler PIM structure - see section

C.11). You can see the PIM structure by using the PIMS function for Phi and pwith myexample as follows:

> PIMS(myexample,"Phi",simplified=FALSE)

group = Group 1

1 2 3 4 5 6

1 1 2 3 4 5 6

2 7 8 9 10 11

3 12 13 14 15

4 16 17 18

5 19 20

6 21

> PIMS(myexample,"p",simplified=FALSE)

group = Group 1

2 3 4 5 6 7

1 22 23 24 25 26 27

2 28 29 30 31 32

3 33 34 35 36

4 37 38 39

5 40 41

6 42

Each of the 21 real parameters in Phi (!) and another 21 real parameters in p are given their own

unique index, thus the term ‘all-different’.

The second trick is realizing that you can automatically create and assign “design data” to the real

parameters based on the model and group structure. This is truly the crux of RMark and what makes

it possible to use formulae to create models. We use the term “design data” to represent “data” about
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the model structure, or design. The design data that are created depends on the type of model (e.g, CJS,

Multistrata) and the group structure. For a CJS model without groups, the "design data” are occasion

(time), age and cohort-specific data. Separate design data are defined for each parameter (e.g., ? and !

forCJS models) to allow flexibility and differences in the way design data are handled foreach parameter.

Also, for labeling it is better to keep them separate since some parameters like Phi represent an interval

and others like p are for an occasion.

Using our first simple example let’s describe the design data for the all-different PIMS shown above.

There are many different kinds of design data that can be created for any particular example, but there

are always several kinds of data that can be created automatically by default. For this example, they are

cohort, time and age. We will first describe the design data for p which is represented by the indices

22 to 42. Imagine a table of data with 21 rows (one for each parameter) labeled 22 to 42. Let’s define

a cohort variable that represents the release cohort for each parameter. Rows 22-27 would contain a 1

because they are all for the first cohort, rows 28-32 would contain a 2,. . . , and row 42 would contain a 6.

Likewise, if we wanted to create a time variable, then row 22 would contain a 2, rows 23 and 28 would

contain a 3,. . . , and rows 27,32,36,39,41, and 42 would contain a 7 because all of those are in the last

column for time 7. Likewise we can define a variable we’ll call age which is really time-since-marking

(TSM) unless all the animals are first released at the same age (e.g., banding young of the year birds).

Age(TSM) is zero upon first release but it is 1 at the first recapture occasion and age is constant along

the diagonals. To create an age variable, the rows 22,28,33,37,40 and 42 in our design data would each

have a 1 in the age field, rows 23,29,34,38, and 41 would contain a 2,. . . , and row 27 would contain 6.

We will defer describing how the design data are actually created and can be manipulated but we

will show you a summary and list of the first 10 rows of the design data for p beginning with index 22

of our design data object, that were created for myexample to explain the concept further.

group cohort age time Cohort Age Time

1:21 1:6 1:6 2:1 Min. :0.000 Min. :1.000 Min. :0.000

2:5 2:5 3:2 1st Qu.:0.000 1st Qu.:1.000 1st Qu.:2.000

3:4 3:4 4:3 Median :1.000 Median :2.000 Median :4.000

4:3 4:3 5:4 Mean :1.667 Mean :2.667 Mean :3.333

5:2 5:2 6:5 3rd Qu.:3.000 3rd Qu.:4.000 3rd Qu.:5.000

6:1 6:1 7:6 Max. :5.000 Max. :6.000 Max. :5.000

group cohort age time Cohort Age Time

22 1 1 1 2 0 1 0

23 1 1 2 3 0 2 1

24 1 1 3 4 0 3 2

25 1 1 4 5 0 4 3

26 1 1 5 6 0 5 4

27 1 1 6 7 0 6 5

28 1 2 1 3 1 1 1

29 1 2 2 4 1 2 2

30 1 2 3 5 1 3 3

31 1 2 4 6 1 4 4

You will likely notice that there are more fields than we described and that some appear to be the

same field. First off there is a group field that we didn’t describe and it is always 1. This example did

not have any group structure, thus all dippers were put in the same group numbered 1. We’ll describe

the use of grouping variables later. The cohort, age and time fields are created as factor variables as

you can notice by the summary that shows the counts of the number of entries with each value (level) of
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the variable. Then there are continuous versions of these variables named Cohort, Age, and Timewhich

have been defined such that they start at 0 for Cohort and Time. In the summary the min, max, mean and

quartiles are shown for these numeric variables. Capitalization was used to remain consistent with

the MARK notation (actually, a Colorado State convention) of p(t) to represent fitting a model with a

separate parameter for each occasion (level of time) and p(T) is a continuous trend with an intercept

and slope as shown below. In RMark, these same models would be ∼time and ∼Time respectively.

So far this “trick” may just seem like added complication to the PIM concept. However, that is not the

case once you know about the R function model.matrix which creates design matrices from a formula

and data. Now that we have created “design data” for the real parameters, we only need to specify a

formula using those data to create the design matrix. While you will never use model.matrix directly

with the RMark package, it is useful to see a demonstration of it to understand how RMark works. It

is also a useful way to check to make sure your model formula is correct. On the next page, we’ll create

the design matrix for the first 10 rows (representing parameters 22-31) for the following models for p:

∼time, ∼Time, ∼Time + age:

> model.matrix(~time,myexample$design.data$p[1:10,])

(Intercept) time3 time4 time5 time6 time7

1 1 0 0 0 0 0

2 1 1 0 0 0 0

3 1 0 1 0 0 0

4 1 0 0 1 0 0

5 1 0 0 0 1 0

6 1 0 0 0 0 1

7 1 1 0 0 0 0

8 1 0 1 0 0 0

9 1 0 0 1 0 0

10 1 0 0 0 1 0

> model.matrix(~Time,myexample$design.data$p[1:10,])

(Intercept) Time

1 1 0

2 1 1

3 1 2

4 1 3

5 1 4

6 1 5

7 1 1

8 1 2

9 1 3

10 1 4

> model.matrix(~Time+age,myexample$design.data$p[1:10,])

(Intercept) Time age2 age3 age4 age5 age6

1 1 0 0 0 0 0 0

2 1 1 1 0 0 0 0

3 1 2 0 1 0 0 0

4 1 3 0 0 1 0 0
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5 1 4 0 0 0 1 0

6 1 5 0 0 0 0 1

7 1 1 0 0 0 0 0

8 1 2 1 0 0 0 0

9 1 3 0 1 0 0 0

10 1 4 0 0 1 0 0

Once the design data are defined, the R function does all the work of creating the design matrix for

any formula using the design data. The design matrix is created using the convention called treatment

contrasts. That means the first level is used as the intercept and the parameters for the remaining levels

are an additive amount relative to the intercept. Also note that model.matrix automatically provides

all of the label names for the � parameters as the column names of the design matrix.

If you only had these automatic design data, RMark would be fairly useful but would still be less than

optimal. Later we’ll show how you can manipulate and extend the design data to make it completely

general and much more useful for designing models beyond these basic cookie-cutter types.

While all-different PIMS are necessary to enable creation of any model, they become problematic

when the size of the problem is such that the number of real parameters (number of rows in the design

matrix) exceeds 5,000. For some data sets and models this happens easily. Some large models will not

run in mark.exe due to insufficient memory when the variance-covariance matrix for the real parameters

is created. However, even if MARK can run the model it is quite inefficient and slow to use a design

matrix with say 5000 real parameters and only 2 columns for the Phi(.)p(.) model.

This difficulty led to ‘trick number 3’ which is the concept of simplifying the design matrix. If you

have the Phi(.)p(.)model with 5,000 real parameters, 2,500 of the design matrix rows would have a 1

in column 1 and a 0 in column 2 and the other 2,500 rows would have a 0 in column 1 and a 1 in column

2. That is quite redundant and really all one needs is the 2 unique rows to convey the information in the

5,000 rows. After the design matrix is created with the all-different PIMS, RMark simplifies it to contain

only the unique rows and re-codes the PIMS. A link is maintained between the original indices and

the new simplified indices. Simplification has important consequences for the viability of the modeling

approach in RMark and the speed at which mark.exe completes the analysis.

To see the simplified and recoded PIMS for a model, you can use the PIMS function but this time

using the default value of simplified=TRUE. If you use it with myexample as below you’ll see that the

42 parameters have been recoded to the 2 unique parameters.

> PIMS(myexample,"Phi")

group = Group 1

1 2 3 4 5 6

1 1 1 1 1 1 1

2 1 1 1 1 1

3 1 1 1 1

4 1 1 1

5 1 1

6 1

> PIMS(myexample,"p")

group = Group 1

2 3 4 5 6 7

1 2 2 2 2 2 2
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2 2 2 2 2 2

3 2 2 2 2

4 2 2 2 2

5 2 2

6 2

If you can simplify and recode the PIMS to the unique values, why would you want to keep the

links to the original all-different indices? Because the original all-different PIMS provides a compatible

foundation for all the analyses of the same data set using the same underlying type of model (e.g., CJS).

With the all-different PIMS it is easier to display real parameters in PIM format, associate labels to the

real parameters and to use model averaging on the real parameters from different models which will

have different simplified PIM coding.

It should be helpful to examine the recoded PIMS for some other models, so without describing how

we got them, we show the recoded PIMS for parameter pwith ∼time, ∼Time and∼Time+agemodels with

Phi(∼1) as shown above for design matrices:

~time or ~Time group = Group 1

2 3 4 5 6 7

1 2 3 4 5 6 7

2 3 4 5 6 7

3 4 5 6 7

4 5 6 7

5 6 7

6 7

~Time + age group = Group 1

2 3 4 5 6 7

1 2 3 4 5 6 7

2 8 9 10 11 12

3 13 14 15 16

4 17 18 19

5 20 21

6 22

Notice that the recoded PIMS for the ∼Time+age model has 21 different parameters as with the all-

different PIMS because with that model all of the rows of the design matrix for p are different. However,

the PIM is recoded to start at 2 because Phi(∼1) only requires a single parameter.

To a large extent the PIM/design simplification is transparent to you as a user in analyzing the data

except that simplification does create a conflict between the labeling of real parameters in the MARK

output and the labeling of real parameters in output from summary and other functions in R. When the

PIMS are simplified there is no attempt to create a unique meaningful label for the real parameters in

the input file sent to mark.exe. It uses the label associated with the first real parameter translated to

the new PIM coding. However, the labeling of real parameters in R is maintained with the use of the

all-different PIM structure. So use R when you want to look at real parameter values with their labels

and ignore the labels in the MARK output file for real parameters.

PIM simplification is done for all parameters except for parameters that use the mlogit links like #

in the multistrata model and pent in POPAN. The mlogit link assures that the sum of a specified
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set of probabilities sums to 1 but it is implemented in MARK by using a sum of the unique real

parameters indices and not the full set of real parameters. So for example, if you had 5 strata (A to

E) and you wanted to estimate 4 real parameters for transitions from A by constraining equality for

D and E (#��,#�� ,#��
= #

��). If you give these 4 parameters indices 1 to 4, then the mlogit link

will work properly because it will sum across all 4, but if you give the parameters the indices 1,2,3,3

to constrain the last two parameters then the sum will be only the first 3 parameters and it will not

sum the third parameter twice. Thus, an all-different PIM structure is required for parameters that use

the mlogit link and any equality constraints must be implemented with the design matrix without any

simplification of the PIMS. This restriction on mlogit links does not affect how you use RMark but may

affect the speed at which MARK computes the parameter estimates because the number of parameters

and the size of the design matrix is larger without PIM simplification.

As we showed above, model.matrix in R is the workhorse for creation of design matrices from

formula; however, it cannot directly cope with individual covariates in the design matrix structure

of MARK which uses the name of the individual covariate in the design matrix. To be generally useful,

the formula notation needed to encompass individual covariates and this led to ‘trick number 4’ which

is probably the only clever trick in the RMark implementation. But we’ll delay divulging it until section

C.16.

There are just a few things more you should understand before we move on. Note that the indices

are “stacked on top of each other” to get unique indices for all of the parameters. Thus, for our example

there are 21 ! parameters numbered 1 to 21 and 21 ? parameters numbered 22 to 42. This ordering of

the index numbers is done in a consistent fashion for each model. For example, ? always follows ! in

the CJS model. However, in most places in the code where you have to specify indices (see C.11 - fixing

real parameters) it will typically only need to identify the parameter with the parameter-specific index

which is the row number in the design matrix. Thus, in most cases for ?, the parameters are identified

by the indices 1 to 21. The only exception is situations in which you are referring to parameter indices

across parameter types (e.g., both ! and ?) as with the function covariate.predictions (C.16).

For most models in MARK, the design matrix could be displayed in the following manner:

design for parameter 1 0 0 0

0 design for parameter 2 0 0

0 0
. . . 0

0 0 0 design for parameter k

where none of the different types of parameters (e.g., ?, ! etc) share columns of the design matrix.

Parameter types can share the same covariate (e.g., !C ?C), but the effect of that covariate is not the same

for the different types of parameters so the covariates are represented by different columns in the design

matrix. For most models, this works quite well but there are some exceptions including parameters “p”

and “c” in the closed and robust design models, parameters “p1” and “p2” in the MSOccupancy model,

and “GammaPrime” and “GammaDoublePrime” in the robust design models. In each of these cases the

parameter has a different name but it is effectively the same type of parameter, so it is quite reasonable

to build models in which they “share” covariates or are equated. To accommodate this exception, the

parameter listed first is set as the dominant parameter and the formula for the dominant parameter is

given a special argument “share” that can be set to TRUE or FALSE. If it is set to TRUE, then the design
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data are combined ‘on the fly’ and an extra column is added for the non-dominant parameter to enable

fitting additive models. See section C.19 for an example.

C.4. Dissecting the function “mark”

Now that you have been introduced to some of the ideas on the inner workings of RMark like design

data and PIM structure and simplification,we’ll discuss the steps that are taken in producing an analysis

and along the way we will expand the concept of design data to include group structure. The function

mark is actually quite simple because it is a convenience function that calls 5 other functions that actually

do the work in the following order:

1. process.data

2. make.design.data

3. make.mark.model

4. run.mark.model

5. summary.mark

Why do you care? Primarily because the function has dual calling modes for efficiency and to enable

adding/modifying the design data. Depending on the arguments that you pass mark, it will either start

with process.data or it will skip directly to make.mark.model. This allows you to do the first 2 steps

once, optionally modify the design data, and then run a whole series of models on the data without

repeating the first 2 steps in each call to mark.

C.4.1. Function process.data

The first function process.data literally does what its name implies. It takes the input data frame

and the user-defined arguments and creates a list (processed data) containing the data and numerous

defined attributes that the remaining functions use in defining the analysis models. The following are

the primary attributes that are set:

1. model: the type of analysis model (e.g., “CJS”, “Known”, “POPAN”); see help for

function mark (?mark) for a complete listing of the supported models

2. begin.time: the time of the first capture/release occasion for labeling

3. time.intervals: the lengths of the time intervals between capture occasions

4. groups: the list of factor variables in the data to define groups

5. initial.ages: the age of animals at first capture/release corresponding to the levels

of the age grouping variable (age.var)

6. nocc: number of capture/encounter occasions which is determined from the con-

tents of the “ch” field in the data and the type of analysis model(model).

As an example, we will use the dipper data and the field sex to create 2 groups in the data and define

fictitious beginning time and time intervals for the data:

> data(dipper)

> dipper.process=process.data(dipper,model="CJS",begin.time=1980,

time.intervals=c(1,.5,1,.75,.25,1),groups="sex")
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The resulting object (dipper.process) is a list containing the data and its attributes. The names of

the elements of the list can be viewed with the names function:

> names(dipper.process)

[1] "data" "model" "mixtures" "freq"

[5] "nocc" "nocc.secondary" "time.intervals" "begin.time"

[9] "age.unit" "initial.ages" "group.covariates" "nstrata"

[13] "strata.labels"

Note that there are many more attributes than described above. Some – like mixtures, nstrata,

nocc.secondary and strata.labels – are only relevant to specific models but these are often included

with a default, NULL or empty value for models in which they are not relevant. Specific elements of

the list can be extracted as illustrated:

> dipper.process$nocc

[1] 7

> dipper.process$group.covariates

sex

1 Female 2 Male

> dipper.process$begin.time

[1] 1980

> dipper.process$strata.labels

character(0)

> dipper.process$nocc.secondary

NULL

> dipper.process$time.intervals

[1] 1.00 0.50 1.00 0.75 0.25 1.00

From the first 5 rows of the field freq it is obvious that this is the structure used to create the frequency

data for the MARK input file with the defined grouping structure and the column labels as the group

labels:

> dipper.process$freq[1:10,]

sexFemale sexMale

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0

The structure of the encounter history and the analysis depends on the analysis model that you

choose like “CJS” above. Thus, it is necessary to process the data frame (data) containing the encounter

history and a chosen model to define the relevant values which will be used by the remaining functions.

For example, number of capture occasions (nocc) is automatically computed based on the length of the

encounter history (ch) in data; however, this is dependent on the type of analysis model. For models

such as “CJS”, “Pradel” and others, it is simply the length of ch. Whereas, for “Burnham” and “Barker”

models, the encounter history contains capture and resight/recovery values so nocc is one-half the

length of ch. Likewise, the number of time.intervals depends on the model. For models, such as

“CJS”, “Pradel” and others, the number of time.intervals is nocc-1; whereas, for capture-recovery (or

resight) models the number of time.intervals is nocc. The default time interval is unit time (1) and if
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this is adequate, the function will assign the appropriate length; otherwise the appropriate number of

values must be given.

A processed data frame can only be analyzed using the model that was specified in the call to

process.data. The model value is used by the functions make.design.data and make.mark.model to

define the design data and the appropriate input file structure for MARK. Thus, if the data are going

to be analyzed with different underlying models, create different processed data objects possibly using

the type of model as an extension. For example,

dipper.cjs=process.data(dipper,model="CJS")

dipper.popan=process.data(dipper,model="POPAN")

The process.data function will report any inconsistencies in the lengths of the capture history values

and when invalid entries are given in the capture history. For example,with the “CJS” model, the capture

history should only contain 0 and 1 whereas for “Barker” it can contain 0,1,2. For “Multistrata” models,

the code will automatically identify the number of strata (nstrata) and strata labels (strata.labels)

based on the unique alphabetic codes used in the capture histories. For “Robust” design models, the

number of secondary occasions (nocc.secondary) is determined by the specified time.intervals.

The argument begin.time specifies the time for the first capture/release occasion. This is used

in creating the levels of the time factor variable in the design data and for labeling parameters. If

begin.time varies by group, enter a vector of times with one for each group.

The argument groups can contain one or more character strings specifying the names of factor

variables contained in data. A group is created for each unique combination of the levels of the factor

variables. Further examples of grouping and use of age variables will be given later and they can be

found in the help documentation with R (?process.data and ?example.data).

C.4.2. Function make.design.data

The next step is to create the design data and PIM structure which depends on the selected type of

analysis model (e.g., CJS or Multistrata), number of occasions, grouping variables and other attributes of

the data that were defined in the processed data, which is the first and primary argument to the function

make.design.data that creates the design data. For parameters with triangular PIMS the default design

data are cohort, age and time and any grouping factor variables that were defined. For parameters with

square PIMS, there is only one row so the cohort variable is not automatically included in the design

data but there are ways to create a cohort structure in this case with groups.

In creating the factor variables for cohort, age, and time, a separate factor level is created for each

value of the variable. However, you can optionally bin the values into intervals in creating the factor

variable. For example, if birds were always classified as either young (< 1) or as adult (1+), then

age.bins could be specified in the call to make.design.data. However, if you wanted the option to

model age based on all levels of the factor and other models with some ages collapsed into intervals

then it is best to allow make.design.data to create the default factor variables and create additional

design data with the function add.design.data or using R statements and functions. There are many

other features of make.design.data including restricting parameters to use “time” or “constant” PIMS,

setting the subtraction stratum for “Multistrata” models, and automatic removal of unused design data.

These features are described in the help files (?make.design.data and ?add.design.data) and they are

described in more detail in later sections.

For now, a simple example with the dipper data will suffice to illustrate this step and explain the

basic concepts. But before we do that we’ll reprocess the data to use annual time intervals rather than

the fictitious ones used above:
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> dipper.process=process.data(dipper,model="CJS",begin.time=1980,groups="sex")

The result of a call to make.design.data is a list of design data, so one naming convention is to use

ddl (design data list) as the suffix and the data name as the prefix as follows:

> dipper.ddl=make.design.data(dipper.process)

Before we look at the design data, let’s run a simple model with mark but this time rather than

specifying the data file, we’ll specify the processed data and the design data list. When MARK is called

with these 2 arguments it recognizes that they have already been created and skips to step 3 to create

and run the model directly.

> myexample2=mark(dipper.process,dipper.ddl)

Output summary for CJS model Name : Phi(~1)p(~1)

Npar : 2

-2lnL: 666.8377

AICc : 670.866

Beta

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890517 2.8634800

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.560243 0.560243 0.560243 0.560243 0.560243 0.560243

1981 0.560243 0.560243 0.560243 0.560243 0.560243

1982 0.560243 0.560243 0.560243 0.560243

1983 0.560243 0.560243 0.560243

1984 0.560243 0.560243

1985 0.560243

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.560243 0.560243 0.560243 0.560243 0.560243 0.560243

1981 0.560243 0.560243 0.560243 0.560243 0.560243

1982 0.560243 0.560243 0.560243 0.560243

1983 0.560243 0.560243 0.560243

1984 0.560243 0.560243

1985 0.560243

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1981 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1982 0.9025835 0.9025835 0.9025835 0.9025835
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1983 0.9025835 0.9025835 0.9025835

1984 0.9025835 0.9025835

1985 0.9025835

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1981 0.9025835 0.9025835 0.9025835 0.9025835 0.9025835

1982 0.9025835 0.9025835 0.9025835 0.9025835

1983 0.9025835 0.9025835 0.9025835

1984 0.9025835 0.9025835

1985 0.9025835

If you are following along with these commands and did not get the results above make sure that

you reprocessed the data with the annual intervals and then created the design data before entering the

call to mark because the results will vary with different time intervals. Notice that the results are exactly

the same as the first analysis we did with the dipper data; however, the real parameter summaries are

displayed for each sex because it was used to define groups.

Now let’s look at the non-simplified PIMS for ! and compare them to the design data that were

created.

> PIMS(myexample2,"Phi",simplified=FALSE)

group = sexFemale

1980 1981 1982 1983 1984 1985

1980 1 2 3 4 5 6

1981 7 8 9 10 11

1982 12 13 14 15

1983 16 17 18

1984 19 20

1985 21

group = sexMale

1980 1981 1982 1983 1984 1985

1980 22 23 24 25 26 27

1981 28 29 30 31 32

1982 33 34 35 36

1983 37 38 39

1984 40 41

1985 42

To accommodate the group structure 42 possible real parameter indices were created for Phi with

1-21 for females and 22-42 for males. The same structure was also created for p. If we look at the names

of the design data list

> names(dipper.ddl)

[1] "Phi" "p" "pimtypes"

we see that there are 3 elements in the list. The first 2 are the design data for the parameters in the

CJS model (Phi and p) and the last is a list of the type of PIMS used which in this case is the default of

all-different. We can examine the design data for Phi as follows (with abbreviated output):
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> dipper.ddl$Phi

group cohort age time Cohort Age Time sex

1 Female 1980 0 1980 0 0 0 Female

2 Female 1980 1 1981 0 1 1 Female

3 Female 1980 2 1982 0 2 2 Female

4 Female 1980 3 1983 0 3 3 Female

5 Female 1980 4 1984 0 4 4 Female

6 Female 1980 5 1985 0 5 5 Female

7 Female 1981 0 1981 1 0 1 Female

8 Female 1981 1 1982 1 1 2 Female

9 Female 1981 2 1983 1 2 3 Female

10 Female 1981 3 1984 1 3 4 Female

<...>

22 Male 1980 0 1980 0 0 0 Male

23 Male 1980 1 1981 0 1 1 Male

37 Male 1983 0 1983 3 0 3 Male

38 Male 1983 1 1984 3 1 4 Male

39 Male 1983 2 1985 3 2 5 Male

40 Male 1984 0 1984 4 0 4 Male

41 Male 1984 1 1985 4 1 5 Male

42 Male 1985 0 1985 5 0 5 Male

Rows (indices) 1 and 22 have the same design data except that row 1 is for females and row 22 is

for males. Any grouping variables are automatically included into the design data. A field “group”

is created which is a unique combination of the different values of each grouping variable and then

a separate field is included for each grouping variable. With a single grouping variable, like sex, the

2 fields are identical. The pre-defined models in MARK like {!6∗C} are equivalent to using the field

group in the formula. As we will show later, the inclusion of each grouping variable allows additive

models to be created with the grouping variables rather than just using the group field which is the full

interaction of the grouping variables.

C.5. More simple examples

Hopefully you now have a basic understanding of how PIMS, design data and design matrices are

created in RMark and we can move on to learning how to specify formula for analysis models. Along

the way we’ll reiterate and expand on the material we have presented so far. We will continue on with

the dipper data withsex used for groups to describe using formulawith the existing design data created

by default and then we’ll consider examples that work with user-defined supplemental design data.

Following along the lines of MARK, a model is described by sub-models for each parameter of the

particular type of mark-recapture analysis. With the dipper data we have been using the CJS model with

parameters ! and ?, and so far we have been using the default model which is a constant value for each

parameter. A parameter specification (sub-model) is defined by a list, although in most circumstances

the list will only contain a single element named the formula. For reasons that will be obvious later, the

parameter specifications should be assigned to an object named with a prefix being the parameter name

and the suffix being a description for the formula or some other strategy like numbering. For example,

with the simple model we have constructed so far the parameter specifications would be:

> Phi.dot=list(formula=~1)

> p.dot=list(formula=~1)
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The parameter specifications are used with the mark argument model.parameters to define the model.

The default model we ran earlier could also be specified as:

> myexample2=mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.dot,p=p.dot))

Now the parameter specification Phi.dot and p.dot are identical so you could have done the

following:

> myexample2=mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.dot,p=Phi.dot))

and gotten the same results but that could be a bit confusing and lateryou’ll see that there are advantages

to having a separate parameter specification object for each parameter even if they have the same values.

So, let’s create some more parameter specifications solely for demonstration purposes as some of

these models may not make sense for the dipper data:

Phi.time=list(formula=~time)

Phi.sex=list(formula=~sex)

Phi.sexplusage=list(formula=~sex+age)

p.time=list(formula=~time)

p.Time=list(formula=~Time)

p.Timeplussex=list(formula=~Time+sex)

By including the dot models,we could easily specify 16 (4×4) different models forall the combinations

of these parameter specifications. Hmm, how do we name all these models to keep them straight? One

way is to use the data name and add on the parameter specifications as in the following examples:

dipper.phi.dot.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.dot,p=p.dot))

dipper.phi.time.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.time,p=p.dot))

dipper.phi.sex.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.sex,p=p.dot))

dipper.phi.sex.p.Timeplussex=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.sex,p=p.Timeplussex))

dipper.phi.time.p.time=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.time,p=p.time))

dipper.phi.sexplusage.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.sexplusage,p=p.dot))

See how easy it is? No messing with PIMS or design matrices. You are certainly getting the idea but

let’s look at the last 3 models in more detail to learn some more. If you ran these by simply copying the

text into R, the output will have passed by on the screen but we can simply repeat it with the summary

function:

> summary(dipper.phi.sex.p.Timeplussex)

Output summary for CJS model

Name : Phi(~sex)p(~Time + sex)

Npar : 5

-2lnL: 664.1672

AICc : 674.3101
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Beta

estimate se lcl ucl

Phi:(Intercept) 0.1947163 0.1403108 -0.0802928 0.4697254

Phi:sexMale 0.7547928 0.1989333 -0.3351165 0.4447022

p:(Intercept) 1.2297543 0.6455548 -0.0355331 2.4950417

p:Time 0.3162690 0.2255297 -0.1257693 0.7583073

p:sexMale 0.4290287 0.6660079 -0.8763468 1.7344042

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5485258 0.5485258 0.5485258 0.5485258 0.5485258 0.5485258

1981 0.5485258 0.5485258 0.5485258 0.5485258 0.5485258

1982 0.5485258 0.5485258 0.5485258 0.5485258

1983 0.5485258 0.5485258 0.5485258

1984 0.5485258 0.5485258

1985 0.5485258

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5620557 0.5620557 0.5620557 0.5620557 0.5620557 0.5620557

1981 0.5620557 0.5620557 0.5620557 0.5620557 0.5620557

1982 0.5620557 0.5620557 0.5620557 0.5620557

1983 0.5620557 0.5620557 0.5620557

1984 0.5620557 0.5620557

1985 0.5620557

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.7737756 0.8243386 0.8655639 0.8983077 0.9237786 0.9432727

1981 0.8243386 0.8655639 0.8983077 0.9237786 0.9432727

1982 0.8655639 0.8983077 0.9237786 0.9432727

1983 0.8983077 0.9237786 0.9432727

1984 0.9237786 0.9432727

1985 0.9432727

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.8400746 0.8781527 0.9081557 0.9313485 0.9490134 0.9623168

1981 0.8781527 0.9081557 0.9313485 0.9490134 0.9623168

1982 0.9081557 0.9313485 0.9490134 0.9623168

1983 0.9313485 0.9490134 0.9623168

1984 0.9490134 0.9623168

1985 0.9623168

Let’s look at the mark result object some more so you can see how to extract various parts of the

results. We see that the names of the elements are:

> names(dipper.phi.sex.p.Timeplussex)
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[1] "data" "model" "title" "model.name"

[5] "links" "mixtures" "call" "parameters"

[9] "time.intervals" "number.of.groups" "group.labels" "nocc"

[13] "begin.time" "covariates" "fixed" "design.matrix"

[17] "pims" "design.data" "strata.labels" "mlogit.list"

[21] "simplify" "model.parameters" "results" "output"

The field output is the link to the input and output files

> dipper.phi.sex.p.Timeplussex$output

[1] "mark012"

The value may be different for you depending on how many models you have run and whether

you removed models and used the cleanup function. The element pims is the all-different PIMS for

the model but the extractor function PIMS produces clearer output than simply typing the command

dipper.phi.sex.p.Timeplussex$pims. The element model.parameters is simply the value of the mark

argument with the same name; whereas, the parameters field is for internal use with various attributes

set for each parameter. Likewise, the links between the simplified PIMS and the non-simplified PIMS

contained in the list element simplify is only useful internally. The design matrix for the simplified

model structure is also contained in the result as a matrix:

> dipper.phi.sex.p.Timeplussex$design.matrix

Phi:(Intercept) Phi:sexMale p:(Intercept) p:Time p:sexMale

Phi gFemale c1980 a0 t1980 "1" "0" "0" "0" "0"

Phi gMale c1980 a0 t1980 "1" "1" "0" "0" "0"

p gFemale c1980 a1 t1981 "0" "0" "1" "0" "0"

p gFemale c1980 a2 t1982 "0" "0" "1" "1" "0"

p gFemale c1980 a3 t1983 "0" "0" "1" "2" "0"

p gFemale c1980 a4 t1984 "0" "0" "1" "3" "0"

p gFemale c1980 a5 t1985 "0" "0" "1" "4" "0"

p gFemale c1980 a6 t1986 "0" "0" "1" "5" "0"

p gMale c1980 a1 t1981 "0" "0" "1" "0" "1"

p gMale c1980 a2 t1982 "0" "0" "1" "1" "1"

p gMale c1980 a3 t1983 "0" "0" "1" "2" "1"

p gMale c1980 a4 t1984 "0" "0" "1" "3" "1"

p gMale c1980 a5 t1985 "0" "0" "1" "4" "1"

p gMale c1980 a6 t1986 "0" "0" "1" "5" "1"

The list element of most interest is results, a list containing extracted values from the MARK output

files:

> names(dipper.phi.sex.p.Timeplussex$results)

[1] "lnl" "deviance" "npar" "n"

[5] "AICc" "beta" "real" "beta.vcv"

[9] "derived" "derived.vcv" "covariate.values" "singular"

The definitions of the elements are as follows:

• lnl: −2 logL Likelihood value

• deviance: difference between null deviance and model deviance

• npar: Number of parameters (always the number of columns in design matrix)
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• n: effective sample size

• AICc: Small sample corrected AIC using npar

• beta: data frame of � parameters with estimate, standard error (se), lower confi-

dence limit (lcl), and upper confidence limit (ucl)

• real: data frame of unique (simplified) real parameters with estimate, standard er-

ror (se), lower confidence limit (lcl), and upper confidence limit (ucl), and notation

for fixed parameters

• beta.vcv: variance-covariance matrix for �

• derived: dataframe of derived parameters if any

• derived.vcv: variance-covariance matrix for derived parameters if any

• covariate.values: dataframe with fields Variable and Valuewhich are the covari-

ate names and value used for real parameter estimates in the MARK output

• singular: indices of � parameters that are non-estimable or at a boundary

The individual elements can be extracted using list notation. For example, the data frame of the �

parameters:

> dipper.phi.sex.p.Timeplussex$results$beta

estimate se lcl ucl

Phi:(Intercept) 0.1947163 0.1403108 -0.0802928 0.4697254

Phi:sexMale 0.7547928 0.1989333 -0.3351165 0.4447022

p:(Intercept) 1.2297543 0.6455548 -0.0355331 2.4950417

p:Time 0.3162690 0.2255297 -0.1257693 0.7583073

p:sexMale 0.4290287 0.6660079 -0.8763468 1.7344042

or the data frame of the unique (simplified) real parameters:

> dipper.phi.sex.p.Timeplussex$results$real

estimate se lcl ucl fixed

Phi gFemale c1980 a0 t1980 0.5485258 0.0347473 0.4799376 0.6153188

Phi gMale c1980 a0 t1980 0.5620557 0.0349965 0.4927116 0.6290571

p gFemale c1980 a1 t1981 0.7737756 0.1130024 0.4911177 0.9237935

p gFemale c1980 a2 t1982 0.8243386 0.0721225 0.6387191 0.9256861

p gFemale c1980 a3 t1983 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1980 a4 t1984 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1980 a5 t1985 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1980 a6 t1986 0.9432727 0.0411246 0.7866317 0.9868417

p gMale c1980 a1 t1981 0.8400746 0.0970652 0.5603827 0.9558434

p gMale c1980 a2 t1982 0.8781527 0.0627026 0.6956116 0.9578565

p gMale c1980 a3 t1983 0.9081557 0.0430622 0.7823503 0.9645393

p gMale c1980 a4 t1984 0.9313485 0.0345158 0.8248454 0.9750509

p gMale c1980 a5 t1985 0.9490134 0.0312841 0.8397867 0.9850955

p gMale c1980 a6 t1986 0.9623168 0.0291539 0.8408254 0.9919649

Remember that the labels for the real parameters in the simplified model can be misleading due to

the simplification process.
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To view all of the real parameters with standard errors, use summary as follows (the output has been

abbreviated):

> summary(dipper.phi.sex.p.Timeplussex,se=T)

Output summary for CJS model Name : Phi(~sex)p(~Time + sex)

Real Parameter p

par.index estimate se lcl ucl fixed

p gFemale c1980 a1 t1981 3 0.7737756 0.1130024 0.4911177 0.9237935

p gFemale c1980 a2 t1982 4 0.8243386 0.0721225 0.6387191 0.9256861

p gFemale c1980 a3 t1983 5 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1980 a4 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1980 a5 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1980 a6 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1981 a1 t1982 4 0.8243386 0.0721225 0.6387191 0.9256861

p gFemale c1981 a2 t1983 5 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1981 a3 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1981 a4 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1981 a5 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1982 a1 t1983 5 0.8655639 0.0495235 0.7365526 0.9368173

p gFemale c1982 a2 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1982 a3 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1982 a4 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1983 a1 t1984 6 0.8983077 0.0424479 0.7803679 0.9564497

p gFemale c1983 a2 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1983 a3 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1984 a1 t1985 7 0.9237786 0.0418005 0.7910491 0.9748739

p gFemale c1984 a2 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gFemale c1985 a1 t1986 8 0.9432727 0.0411246 0.7866317 0.9868417

p gMale c1980 a1 t1981 9 0.8400746 0.0970652 0.5603827 0.9558434

p gMale c1980 a2 t1982 10 0.8781527 0.0627026 0.6956116 0.9578565

p gMale c1980 a3 t1983 11 0.9081557 0.0430622 0.7823503 0.9645393

p gMale c1980 a4 t1984 12 0.9313485 0.0345158 0.8248454 0.9750509

The par.index field is the index within the simplified set of real parameters (i.e., the recoded

parameter index). The label for the real parameter uses a short hand notation in which g is for group,

c for cohort, a for age and t for time. After each letter is the value of the variable. In other types of

mark-recapture models, like Multistrata, additional values are added like s for stratum, and t for to

stratum, for movement from one stratum to another stratum.

C.6. Design covariates in RMark

There are 2 types of covariates used in RMark. You have already seen examples of the first type which

is the design covariate (design data). Design covariates are linked to the parameters in the model and

specify differences in the parameters associated with the model structure (e.g., time, cohort) or with

group structure of the animals (e.g., sex) because different parameters are used for different groups of

animals. The second type of covariate is individual covariates which specify differences in the individual

animals. The distinction between the types is not entirely clear-cut because design covariates for group
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structure are individual covariates because each animal has its own value. However, group design

covariates have 2 important restrictions: 1) they must be a factor variablewhich means they will typically

have a small number of unique values (e.g., sex=M or F), and 2) the value cannot change over time.

Thus, individual covariates are typically used for numeric variables (e.g., mass, length) or for covariates

where the value changes over time (e.g., trap dependence). You can code factor variables as individual

covariates by creating (: − 1) dummy variables (0/1) for a factor variable with : levels, but it is usually

better to use factor variables as group design covariates. Design covariates are stored in the design data

(ddl) and individual covariates remain with the encounter history data. Use of individual covariates in

data and models is described in C.16 and in this section we demonstrate how the flexibility of design

covariates can be used to expand the usefulness of model formula.

So far, all of the examples we have created have only used the design data created by default using

the group and model structure. While that may be all that is needed in many instances, additional

design data can be created and used in formula and this substantially adds to the flexibility of model

development. What kinds of design data can be added and why would you want to do that? Any data

that are relevant to the model and group structure can be added to the design data. These can be dummy

variables that enable “effects” to be modeled for subsets of any of the design data fields. For example,

below we will create a design data field called Flood for the dipper example which is 1 in years with

floods and 0 in non-flood years. Dummy variables are equivalent to coding a column in the design

matrix as you do with the standard MARK interface. Or the added design data fields may create a

factor variable with new intervals of existing design data. For example, we’ll create a design data field

that bins ages as young (0 and 1) and sub-adult (2-3), and adult (4+) (note: this and other treatments of

the dipper data may not be realistic for dippers). Finally, the added design data could be a numeric field

that is specific to some parameter. For example, we’ll create an effort field for each sampling occasion

in the dipper data to model capture probability.

Design data can be created and modified with any relevant R statement or function. We will start

with a simple example using the dipper data using the fictitious dates we assigned. With the dipper

data, between sampling occasions 1981-1982 and 1982-1983 there were severe floods that could have

reduced survival in those periods and capture probability may have differed in 1982 (note: use of these

dates may not reflect the true situation). To model this effect, we will define a Flood variable that is 1

for flood periods and 0 otherwise. Remember that there are different design data for each parameter,

so a Flood field has to be defined for each parameter that will use the field in the model. Because the

timing of the effect varies for ! and ?, the definitions of those variables are different.

> dipper.ddl$Phi$Flood=0

> dipper.ddl$Phi$Flood[dipper.ddl$Phi$time==1981 | dipper.ddl$Phi$time==1982]=1

> dipper.ddl$p$Flood=0

> dipper.ddl$p$Flood[dipper.ddl$p$time==1982]=1

The first statement above creates a Flood field for Phi and assigns the value 0 to all values. The second

statement assigns 1 to Flood for those rows in the dataframe for which time is either 1981 (for interval

1981 to 1982) or 1982 (for interval 1982 to 1983). The last 2 statements define the Flood variable for

capture probability. Once the data have been created they can be used in models as shown below:

> Phi.Flood=list(formula=~Flood)

> p.Flood=list(formula=~Flood)

> dipper.phi.flood.p.dot=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.Flood,p=p.dot))

> dipper.phi.flood.p.flood=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.Flood,p=p.Flood))
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While you can use any R statement to create design data, in many instances the design data you are

creating is a modification of existing data or merges new data with existing data, so some functions

were created to simplify the process. If the new design data are simply creating bins (intervals) of time,

age, or cohort, then you can use the function add.design.data. For example, if we want to create age

intervals for survival (young, sub-adult, and adult) as we described above, we can do it as follows:

> dipper.ddl=add.design.data(dipper.process, dipper.ddl,

parameter="Phi", type="age", bins=c(0,1,3,6),name="ageclass")

If we summarize the design data for Phi, we see that the variable we chose to name ageclass has

been defined properly:

> summary(dipper.ddl$Phi)

group cohort age time Cohort Age

Female:21 1980:12 0:12 1980: 2 Min. :0.000 Min. :0.000

Male :21 1981:10 1:10 1981: 4 1st Qu.:0.000 1st Qu.:0.000

1982: 8 2: 8 1982: 6 Median :1.000 Median :1.000

1983: 6 3: 6 1983: 8 Mean :1.667 Mean :1.667

1984: 4 4: 4 1984:10 3rd Qu.:3.000 3rd Qu.:3.000

1985: 2 5: 2 1985:12 Max. :5.000 Max. :5.000

Time sex Flood ageclass

Min. :0.000 Female:21 Min. :0.0000 [0,1]:22

1st Qu.:2.000 Male :21 1st Qu.:0.0000 (1,3]:14

Median :4.000 Median :0.0000 (3,6]: 6

Mean :3.333 Mean :0.2381

3rd Qu.:5.000 3rd Qu.:0.0000

Max. :5.000 Max. :1.0000

It is always a good idea to examine the design data after you have created it to make sure that the

intervals were defined as expected and that they included the entire range of the data. In the definition

of ageclass, a “(” means the interval is open on the left which means that value is not included in the

interval. Whereas a square bracket (“[” or “]”) is for a closed interval which means the interval end point

is included. If we decided that the intervals should be shifted to the left, the easiest way is as follows:

> dipper.ddl=add.design.data(dipper.process, dipper.ddl,

parameter="Phi", type="age",

bins=c(0,1,3,6),name="ageclass",right=FALSE,replace=TRUE)

Had we not used replace=T, we would have gotten the following error:

Error in add.design.data(dipper.process, dipper.ddl, parameter =

"Phi", : Variable ageclass already in design data. Use

replace=TRUE if you want to replace current values

Now ageclass defines the intervals 0,1 to 2, and 3+ for modeling age effects in Phi:

> summary(dipper.ddl$Phi$ageclass)

[0,1) [1,3) [3,6]

12 18 12
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Had we issued the following function call:

> dipper.ddl=add.design.data(dipper.process, dipper.ddl,

parameter="Phi", type="age",bins=c(1,3,6),name="badageclass")

then when we summarized the field, the presence of NAs make it apparent that the defined bins did not

span the range of the age field:

> summary(dipper.ddl$Phi$badageclass)

[1,3] (3,6] NA’s

24 6 12

The NAs occurred in this case because 0 was excluded. Notice that the intervals are always closed

on the far left and far right. Since we do not want this field, by assigning NULL to the field

> dipper.ddl$Phi$badageclass=NULL

it is removed from the design data for Phi:

> names(dipper.ddl$Phi)

[1] "group" "cohort" "age" "time" "Cohort" "Age" "Time" "sex"

[8] "Flood" "ageclass"

In many situations the additional design data are simply covariates to be used in place of occasion/-

time effects. Examples are effort, weather, or observers which vary for occasions and may be useful to

simplify modeling of capture probability rather than time-varying parameters. For this situation, the

function merge_design.covariates was created. The following is an example in which fictitious effort

data were created for the dipper data:

> df=data.frame(time=c(1980:1986),effort=c(10,5,2,8,1,2,3))

> dipper.ddl$p=merge_design.covariates(dipper.ddl$p,Xdf)

> summary(dipper.ddl$p$effort)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 2.000 2.000 3.095 3.000 8.000

So why is the maximum value for effort only 8 and not 10? For the CJS model there is no capture

probability for 1980, so the value is ignored. The function is less forgiving if you forget to include data

for one of the times:

> df=data.frame(time=c(1980:1985),effort=c(10,5,2,8,1,2))

> dipper.ddl$p=merge_design.covariates(dipper.ddl$p,df)

Error in merge_design.covariates(dipper.ddl$p,df) :

df does not contain a time value for each time in design data

The dataframe can contain any number of covariates with any valid names and the only restriction is

that it must contain a field named timewith values that match those in the design data. The dataframe

can be created as above or functions like read.table can be used to import data in a file into a dataframe.

For more details on these functions, refer to the R help files on read.table and data.frame.

Let’s create another model that uses those new design data.
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> Phi.ageclass.plus.sex=list(formula=~ageclass+sex)

> p.effort.plus.sex=list(formula=~effort+sex)

> dipper.phi.ageclassplussex.p.effortplussex =

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=

Phi.ageclass.plus.sex,p= p.effort.plus.sex))

Output summary for CJS model

Name : Phi(~ageclass + sex)p(~effort + sex)

Npar : 7

-2lnL: 665.1266

AICc : 679.3946

Beta

estimate se lcl ucl

Phi:(Intercept) 0.1964602 0.1750104 -0.1465602 0.5394805

Phi:ageclass[1,3) 0.1033126 0.2258833 -0.3394186 0.5460439

Phi:ageclass[3,6] -0.1287800 0.4376419 -0.9865582 0.7289982

Phi:sexMale 0.0306891 0.2046965 -0.3705160 0.4318943

p:(Intercept) 2.3193847 0.5699104 1.2023604 3.4364090

p:effort -0.0901470 0.1098187 -0.3053917 0.1250977

p:sexMale 0.4862940 0.6626337 -0.8124681 1.7850561

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5489577 0.5743870 0.5743870 0.5169136 0.5169136 0.5169136

1981 0.5489577 0.5743870 0.5743870 0.5169136 0.5169136

1982 0.5489577 0.5743870 0.5743870 0.5169136

1983 0.5489577 0.5743870 0.5743870

1984 0.5489577 0.5743870

1985 0.5489577

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5565444 0.5818718 0.5818718 0.5245725 0.5245725 0.5245725

1981 0.5565444 0.5818718 0.5818718 0.5245725 0.5245725

1982 0.5565444 0.5818718 0.5818718 0.5245725

1983 0.5565444 0.5818718 0.5818718

1984 0.5565444 0.5818718

1985 0.5565444

Notice the diagonal patterns in Phi as it relates to the final ageclass definition that we used.

It is also possible to assign group-specific and time-specific covariates to the design data with the

merge_design.covariates function. The following is an example using the dipper data in which effort

is sex (group) specific. A dataframe (df) is constructed with the group and time-specific effort values

and this is then used in the call to merge_design.covariates. See the help file for that function for more

details.

> df=data.frame(group=c(rep("Female",7),rep("Male",7)),

time=rep(c(1980:1986),2),effort=c(10,5,2,8,1,2,3,20,10,4,16,2,4,6))
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> df

group time effort

1 Female 1980 10

2 Female 1981 5

3 Female 1982 2

4 Female 1983 8

5 Female 1984 1

6 Female 1985 2

7 Female 1986 3

8 Male 1980 20

9 Male 1981 10

10 Male 1982 4

11 Male 1983 16

12 Male 1984 2

13 Male 1985 4

14 Male 1986 6

> dipper.process=process.data(dipper,group="sex",begin.time=1980)

> dipper.ddl=make.design.data(dipper.process)

> dipper.ddl$p=merge_design.covariates(dipper.ddl$p,df,bygroup=TRUE)

> dipper.ddl$p

group cohort age time Cohort Age Time sex effort

1 Female 1980 1 1981 0 1 0 Female 5

2 Female 1980 2 1982 0 2 1 Female 2

3 Female 1980 3 1983 0 3 2 Female 8

<...>

29 Male 1981 2 1983 1 2 2 Male 16

30 Male 1981 3 1984 1 3 3 Male 2

31 Male 1981 4 1985 1 4 4 Male 4

32 Male 1981 5 1986 1 5 5 Male 6

<...>

40 Male 1984 1 1985 4 1 4 Male 4

41 Male 1984 2 1986 4 2 5 Male 6

42 Male 1985 1 1986 5 1 5 Male 6

C.7. Comparing results from multiple models

We have put together quite a few models with lots of different names! So how do we keep track of the

models and how do we summarize them for model selection and possible model averaging of parameter

estimates? Later we will explain more organized approaches but they all tie back to the functions we will

use now. The first function is collect.models which collects all of the models that have been run into a

single list and it calls the function model.table, although the latter can be called separately. Although

collect.models does have arguments in most cases it will be called without arguments and assigned

to a list that you can name to help you remember its contents:

> dipper.cjs.results=collect.models()

What did this do? It looked through all of the objects in the workspace and collected any object that

had a class of “mark”. If the workspace included more than one type of MARK model, like “CJS” and
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“POPAN”, it would have issued a warning message. Although it does not matter for this session, the

collection of objects can be limited to a particular type of model as follows:

> dipper.cjs.results=collect.models(type="CJS")

Like the models which have a class of “mark” the list resulting from collect.models has a class

of “marklist” and some of the generic functions treat it differently. For example, the print function

provides a listing of the model.table element of the list rather than printing each list element which

are the various model results.

> dipper.cjs.results

model npar AICc DeltaAICc weight Deviance

3 Phi(~Flood)p(~1) 3 666.1597 0.00000 0.5767865187 77.62566

4 Phi(~Flood)p(~Flood) 4 668.1557 1.99605 0.2126073874 77.58357

2 Phi(~1)p(~1) 2 670.8660 4.70638 0.7548324523 84.36055

11 Phi(~1)p(~1) 2 670.8660 4.70638 0.7548324523 58.15788

12 Phi(~1)p(~1) 2 670.8660 4.70638 0.7548324523 84.36055

5 Phi(~sex)p(~1) 3 672.7331 6.57343 0.0215582207 84.19909

9 Phi(~time)p(~1) 7 673.9980 7.83838 0.0114533494 77.25297

6 Phi(~sex)p(~Time + sex) 5 674.3101 8.15044 0.0097987244 81.69012

7 Phi(~sex + age)p(~1) 8 678.9925 12.83286 0.0009427448 80.17008

8 Phi(~sex + age)p(~Time) 9 679.1198 12.96015 0.0008846140 78.21000

1 Phi(~ageclass + sex)p(~effort + sex) 7 679.3946 13.23491 0.0007710649 82.64951

10 Phi(~time)p(~time) 11 679.5879 13.42824 0.0007000190 74.47310

The table of model results is fashioned along the lines of the results table shown in the MARK

interface. By default the table is displayed in ascending order for AIC2 . The number on the left hand-

side of the table is the order of the model in the list. If we look at the names of the list elements we see

that the first 12 are the names of the models that we created and the last is the model.table which is

the dataframe that is displayed above.

> names(dipper.cjs.results)

[1] "dipper.phi.ageclassplussex.p.effortplussex"

[2] "dipper.phi.dot.p.dot"

[3] "dipper.phi.flood.p.dot"

[4] "dipper.phi.flood.p.flood"

[5] "dipper.phi.sex.p.dot"

[6] "dipper.phi.sex.p.Timeplussex"

[7] "dipper.phi.sexplusage.p.dot"

[8] "dipper.phi.sexplusage.p.Time"

[9] "dipper.phi.time.p.dot"

[10] "dipper.phi.time.p.time"

[11] "myexample"

[12] "myexample2"

[13] "model.table"

The model with the lowest AIC2 is the third model in the list. Notice that models 2, 11 and 12 are all

the same model. That is because the collection includes the first examples we created named myexample

and myexample2. We certainly don’t want models duplicated in the list and especially if we use model

averaging. There are different ways they can be removed from the list. One approach would be to use

the rm function in R to remove them from the workspace and then recreate the list. The more direct

approach would be to use the function remove.mark to remove models 11 and 12 as follows:
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> dipper.cjs.results=remove.mark(dipper.cjs.results,c(11,12))

> dipper.cjs.results

model npar AICc DeltaAICc weight Deviance

3 Phi(~Flood)p(~1) 3 666.1597 0.00000 0.6478308242 77.62566

4 Phi(~Flood)p(~Flood) 4 668.1557 1.99605 0.2387947959 77.58357

2 Phi(~1)p(~1) 2 670.8660 4.70638 0.0615863089 84.36055

5 Phi(~sex)p(~1) 3 672.7331 6.57343 0.0242136031 84.19909

9 Phi(~time)p(~1) 7 673.9980 7.83838 0.0128640885 77.25297

6 Phi(~sex)p(~Time + sex) 5 674.3101 8.15044 0.0110056589 81.69012

7 Phi(~sex + age)p(~1) 8 678.9925 12.83286 0.0010588651 80.17008

8 Phi(~sex + age)p(~Time) 9 679.1198 12.96015 0.0009935742 78.21000

1 Phi(~ageclass + sex)p(~effort + sex) 7 679.3946 13.23491 0.0008660389 82.64951

10 Phi(~time)p(~time) 11 679.5879 13.42824 0.0007862422 74.47310

Each of the 10 models is stored in the list and the individual named objects in the workspace are no

longer needed. The names of the model objects can be collected with the function collect.model.names

and easily removed as follows:

> rm(list=collect.model.names(ls())) # result of function used as argument to ’rm’

> ls()

[1] "df" "dipper" "dipper.cjs.results"

[4] "dipper.ddl" "dipper.process" "p.dot"

[7] "p.effort.plus.sex" "p.Flood" "p.time"

[10] "p.Time" "p.time.fixed" "p.Timeplussex"

[13] "Phi.ageclass.plus.sex" "Phi.dot" "Phi.Flood"

[16] "Phi.sex" "Phi.sex.plus.age" "Phi.sexplusage"

[19] "Phi.time"

The objects defined for the parameter model specifications (e.g., p.flood) remain but the model

results were removed from the workspace. You can summarize,print, and manipulate any of the models

by simply referring to the model as a particular list element (e.g., summary(dipper.cjs.results[[3]])).

Maintaining the model results in a marklist is a muchtidierway to organize results of analyses; however,

more importantly, model averaging requires the results to be contained in a marklist. Also, adjusting

model selection for over-dispersion is much easier if the models are maintained in a marklist.

C.8. Producing model-averaged parameter estimates

The function model.average provides model averaging of the real parameters either for a single type of

parameter (e.g., “Phi” or “p”) or for all parameters. No facility is provided for model averaging the beta

parameters although all of the values are available in the marklist to do so. All of the real parameters

can be averaged over the models as follows:

> dipper.mod.avg=model.average(dipper.cjs.results,vcv=TRUE)

By default, the function returns a dataframe of the model averaged estimates with standard errors but

not confidence intervals. If you include vcv=TRUE, it will return a list with a dataframe named estimates

which includes the estimates with standard errors and confidence intervals and a variance-covariance

matrix.

> names(dipper.mod.avg)

[1] "estimates" "vcv.real"
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Model-averaged estimates, standard errors and confidence intervals are provided in the estimates

dataframe:

> summary(dipper.mod.avg$estimates)

par.index estimate se lcl ucl

Min. : 1.00 Min. :0.4771 Min. :0.02991 Min. :0.3833 Min. :0.5719

1st Qu.:21.75 1st Qu.:0.6023 1st Qu.:0.03016 1st Qu.:0.5339 1st Qu.:0.6667

Median :42.50 Median :0.7506 Median :0.03357 Median :0.6609 Median :0.8066

Mean :42.50 Mean :0.7364 Mean :0.03439 Mean :0.6592 Mean :0.7956

3rd Qu.:63.25 3rd Qu.:0.9000 3rd Qu.:0.03433 3rd Qu.:0.8237 3rd Qu.:0.9454

Max. :84.00 Max. :0.9034 Max. :0.04926 Max. :0.8241 Max. :0.9593

The field par.index is the parameter index for the all-different PIM. In this case the first 42 (2

groups of 21) are for Phi and the last 42 are for p. Unless you need a covariance between parameters of

different types, it is more useful to construct the model-averaged estimates by parameter type because

the default design data are added to the estimates dataframe which provides some context for the

estimates.

> dipper.Phi.mod.avg=model.average(dipper.cjs.results,"Phi",vcv=TRUE)

> dipper.Phi.mod.avg$estimates[1:5,]

par.index estimate se lcl ucl fixed group cohort age time Cohort Age Time sex

1 1 0.6024905 0.03488516 0.5325433 0.6684866 Female 1980 0 1980 0 0 0 Female

2 2 0.4771467 0.04853963 0.3839480 0.5719644 Female 1980 1 1981 0 1 1 Female

3 3 0.4776554 0.04857463 0.3843736 0.5725222 Female 1980 2 1982 0 2 2 Female

4 4 0.6023430 0.03432131 0.5335474 0.6673187 Female 1980 3 1983 0 3 3 Female

5 5 0.6022495 0.03435730 0.5333826 0.6672924 Female 1980 4 1984 0 4 4 Female

The estimates, standard errors and variance-covariance matrix are constructed as described by

Burnham and Anderson (2002: chapter 4). Confidence intervals for the model-averaged estimates were

somewhat more challenging. To provide valid intervals for bounded parameters (e.g., 0 < ! < 1),

the model-average variance-covariance matrix of the real parameters are transformed to a variance-

covariance matrix for the estimates transformed into the appropriate link space using the Delta-method

(see Appendix B). Then asymptotic 95% normal confidence intervals are constructed for the transformed

link values and the interval end points are then back-transformed into real parameters. That same

method is used to construct confidence intervals for the real parameters for a single model in MARK.

C.9. Quasi-likelihood adjustment

An estimate of 2̂ for over-dispersion can be derived using the TEST2+TEST3 "2/df from program

RELEASE (see Chapter 5 for full details).

Program RELEASE can be run with the function release.gof as shown below with the dipper data:

> data(dipper)

> dipper.processed=process.data(dipper,model="CJS",groups="sex")

> release.gof(dipper.processed)

RELEASE NORMAL TERMINATION

Chi.square df P

TEST2 7.5342 6 0.2743

TEST3 10.7735 15 0.7685

Total 18.3077 21 0.6295
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If you add the argument view=TRUE, the RELEASE output file named (Releasennn.out) will be

displayed in a window.

Alternatively 2̂ can be estimated using the median 2̂ procedure but this is not currently supported in

RMark. However, you can export the input file and the output from the global model to MARK and

use the MARK interface to run the median 2̂ procedure. See section C.21 for a description of exporting

to MARK.

Adjustments for over-dispersion are implemented with the function adjust.chat which sets the

value of chat for an individual model or all models in a marklist. For example, we will set the value of

2̂ to 2 for the set of dipper results we just created:

> dipper.cjs.results=adjust.chat(2,dipper.cjs.results)

Doing so does nothing more than setting an element called 2̂ in each model to 2 in this case. It does

not adjust standard errors or confidence intervals in any of the model objects but that is done with

functions that extract the results (e.g., get.real). However, it does adjust the model.table values:

> dipper.cjs.results

model npar QAICc DeltaQAICc weight QDeviance chat

3 Phi(~Flood)p(~1) 3 336.1083 0.000000 0.4661602174 38.81283 2

2 Phi(~1)p(~1) 2 337.4472 1.338942 0.2386644310 42.18028 2

4 Phi(~Flood)p(~Flood) 4 338.1254 2.017100 0.1700307784 38.79179 2

5 Phi(~sex)p(~1) 3 339.3950 3.286715 0.0901226832 42.09955 2

6 Phi(~sex)p(~Time + sex) 5 342.2265 6.118215 0.0218766933 40.84506 2

9 Phi(~time)p(~1) 7 344.1330 8.024731 0.0084330973 38.62649 2

1 Phi(~ageclass + sex)p(~effort + sex) 7 346.8313 10.722996 0.0021880957 41.32475 2

7 Phi(~sex + age)p(~1) 8 347.6689 11.560662 0.0014393600 40.08504 2

8 Phi(~sex + age)p(~Time) 9 348.7762 12.667990 0.0008274011 39.10500 2

10 Phi(~time)p(~time) 11 351.1128 15.004529 0.0002572427 37.23655 2

The model.table now contains QAIC2 values and the remaining computations based on it instead

of AIC2 . The ordering of the models is also changed in this case.

C.10. Coping with identifiability

Now let’s look at the summary output from the Phi(∼time)p(∼time) model which we know will be

over-parameterized because only the product of the last ! and ? are estimable:

Output summary for CJS model

Name : Phi(~time)p(~time)

Npar : 12 (unadjusted=11)

-2lnL: 656.9502

AICc : 681.7057 (unadjusted=679.58789)

Beta

estimate se lcl ucl

Phi:(Intercept) 0.9354557 0.7685213 -0.5708461 2.4417575

Phi:time1981 -1.1982745 0.8706688 -2.9047853 0.5082364

Phi:time1982 -1.0228292 0.8049137 -2.6004601 0.5548017

Appendix C. RMark – an alternative approach to building linear models in MARK



C.10. Coping with identifiability C - 35

Phi:time1983 -0.4198589 0.8091476 -2.0057882 1.1660705

Phi:time1984 -0.5360978 0.8031424 -2.1102571 1.0380614

Phi:time1985 0.2481368 244.9012000 -479.7582200 480.2544900

p:(Intercept) 0.8292835 0.7837354 -0.7068380 2.3654050

p:time1982 1.6556230 1.2913788 -0.8754795 4.1867256

p:time1983 1.5220926 1.0729148 -0.5808205 3.6250057

p:time1984 1.3767410 0.9884819 -0.5606835 3.3141654

p:time1985 1.7950894 1.0688773 -0.2999101 3.8900889

p:time1986 -0.0147563 187.0364400 -366.6061900 366.5766800

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.7181808 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1981 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1982 0.4781705 0.6261176 0.5985334 0.7655931

1983 0.6261176 0.5985334 0.7655931

1984 0.5985334 0.7655931

1985 0.7655931

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.7181808 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1981 0.4346709 0.4781705 0.6261176 0.5985334 0.7655931

1982 0.4781705 0.6261176 0.5985334 0.7655931

1983 0.6261176 0.5985334 0.7655931

1984 0.5985334 0.7655931

1985 0.7655931

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.6962034 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1981 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1982 0.9130435 0.9007892 0.9324138 0.6930734

1983 0.9007892 0.9324138 0.6930734

1984 0.9324138 0.6930734

1985 0.6930734

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.6962034 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1981 0.9230769 0.9130435 0.9007892 0.9324138 0.6930734

1982 0.9130435 0.9007892 0.9324138 0.6930734

1983 0.9007892 0.9324138 0.6930734

1984 0.9324138 0.6930734

1985 0.6930734

Note that the number of parameters is shown as 12 and AIC2 is calculated based on 12, but an

unadjusted parameter count and AIC2 are also shown with the proper count of 11. The mark function

assumes that all parameters are identifiable and if the parameter count in the MARK output is

less than the number of columns in the design matrix, it adjusts the count and AIC2 value if the
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default value of the argument adjust=TRUE is used. It also keeps the values reported by MARK in

results$npar.unadjusted and results$AICc.unadjusted and these are reported in summary.

Why not trust the values computed by MARK? The ability of MARK to count the number of

parameters correctly is impaired when using design matrices and it will often not count parameters

that are estimable but are at a boundary (0 or 1 for ! or ?) which can happen easily with sparse

data sets (the technical details of how MARK counts parameters are presented in Chapter 4). Overly

complex models that have numerous parameters that are at boundaries can appear to be the best model

because the parameters are counted improperly. It is more conservative to assume that all parameters

are estimable.

When you know that some parameters are not identifiable and should not be counted there are a

couple of ways to proceed. One approach is to fix the value of one of the parameters to 1 so it will not

be counted and the other parameter is then an estimate of the product of the parameters. This can be

done with the argument fixed in the parameter specification list as follows:

p.time.fixed=list(formula=~time,fixed=list(time=1986,value=1))

dipper.phi.time.p.time=

mark(dipper.process,dipper.ddl,model.parameters=list(Phi=Phi.time,p=p.time.fixed))

Output summary for CJS model Name : Phi(~time)p(~time)

Npar : 11 -2lnL: 656.9502 AICc : 679.5879

Beta

estimate se lcl ucl

Phi:(Intercept) 0.9354601 0.7685246 -0.5708483 2.4417684

Phi:time1981 -1.1982793 0.8706724 -2.9047973 0.5082387

Phi:time1982 -1.0228337 0.8049168 -2.6004706 0.5548031

Phi:time1983 -0.4198627 0.8091504 -2.0057975 1.1660720

Phi:time1984 -0.5361021 0.8031460 -2.1102683 1.0380640

Phi:time1985 -0.8128580 0.7947326 -2.3705340 0.7448179

p:(Intercept) 0.8292792 0.7837366 -0.7068447 2.3654031

p:time1982 1.6556296 1.2913815 -0.8754783 4.1867374

p:time1983 1.5220968 1.0729155 -0.5808177 3.6250112

p:time1984 1.3767444 0.9884827 -0.5606817 3.3141704

p:time1985 1.7950930 1.0688789 -0.2999097 3.8900957

p:time1986 0.0000000 0.0000000 0.0000000 0.0000000

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.7181817 0.4346708 0.4781705 0.6261177 0.5985334 0.5306122

1981 0.4346708 0.4781705 0.6261177 0.5985334 0.5306122

1982 0.4781705 0.6261177 0.5985334 0.5306122

1983 0.6261177 0.5985334 0.5306122

1984 0.5985334 0.5306122

1985 0.5306122

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.6962025 0.9230771 0.9130435 0.9007891 0.9324138 1

1981 0.9230771 0.9130435 0.9007891 0.9324138 1

1982 0.9130435 0.9007891 0.9324138 1

1983 0.9007891 0.9324138 1

1984 0.9324138 1
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1985 1

Fixing parameters can get a little tricky with additive models, so an alternative approach is to

use adjust=FALSE with mark to accept the parameter counts from MARK or afterward you can use

the function adjust.parameter.count to change the parameter count to a new value and AIC2 is

subsequently recalculated. If you are going to accept the MARK parameter counts, make sure they

are correct! In complex models with dozens of parameters, it is quite possible that the optimization

code does not reach the global maximum and parameters end up at boundaries and are not counted.

Indices for the parameters that are not counted by MARK are stored in results$singular. You should

always check these parameters and ascertain whether it is likely that they are at boundaries and whether

they are estimable. If you have any doubts, rerun the model with new starting values as we show in the

next example.

The final example we ran earlier demonstrates a situation in which a parameter is at a boundary but

is properly estimated:

> summary(dipper.phi.sexplusage.p.dot)

Output summary for CJS model

Name : Phi(~sex + age)p(~1)

Npar : 8 (unadjusted=7)

-2lnL: 662.6472

AICc : 678.9925 (unadjusted=676.91513)

Beta

estimate se lcl ucl

Phi:(Intercept) 0.1647608 1.696575e-01 -0.1677680 0.4972896

Phi:sexMale 0.0830684 1.995167e-01 -0.3079844 0.4741211

Phi:age1 0.0173059 2.538808e-01 -0.4803006 0.5149123

Phi:age2 0.3599325 3.692076e-01 -0.3637144 1.0835793

Phi:age3 -0.0402832 5.407864e-01 -1.1002246 1.0196581

Phi:age4 0.2645044 8.873705e-01 -1.4747419 2.0037506

Phi:age5 -19.8742890 1.076391e-08 -19.8742890 -19.8742890

p:(Intercept) 2.2565572 3.289010e-01 1.6119113 2.9012031

Real Parameter Phi Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5410973 0.5453913 0.6282445 0.5310793 0.6056982 2.755882e-09

1981 0.5410973 0.5453913 0.6282445 0.5310793 6.056982e-01

1982 0.5410973 0.5453913 0.6282445 5.310793e-01

1983 0.5410973 0.5453913 6.282445e-01

1984 0.5410973 5.453913e-01

1985 5.410973e-01

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5616421 0.5658982 0.6474300 0.5517010 0.6253534 2.994585e-09

1981 0.5616421 0.5658982 0.6474300 0.5517010 6.253534e-01
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1982 0.5616421 0.5658982 0.6474300 5.517010e-01

1983 0.5616421 0.5658982 6.474300e-01

1984 0.5616421 5.658982e-01

1985 5.616421e-01

Real Parameter p Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1981 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1982 0.9052146 0.9052146 0.9052146 0.9052146

1983 0.9052146 0.9052146 0.9052146

1984 0.9052146 0.9052146

1985 0.9052146

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1981 0.9052146 0.9052146 0.9052146 0.9052146 0.9052146

1982 0.9052146 0.9052146 0.9052146 0.9052146

1983 0.9052146 0.9052146 0.9052146

1984 0.9052146 0.9052146

1985 0.9052146

> dipper.phi.sexplusage.p.dot$results$singular

[1] 7

The seventh � for the age 5 ! effect is at a boundary such that survival from age 5 to 6 is estimated to

be zero, We can see if this a numerical problem by rerunning the model and changing the initial value

for beta 7 using the initial argument of mark as follows:

> initial= dipper.phi.sexplusage.p.dot$results$beta$estimate

> initial[7]=0

> dipper.phi.sexplusage.p.dot

=mark(dipper.process,dipper.ddl,model.parameters

=list(Phi=Phi.sexplusage,p=p.dot),initial=initial)

Setting the “singular” �s to zero and refitting the model will often help the optimization move away

from the boundary and find the global maximum. That is the approach that is taken if you set the

argument retry in mark to a non-zero value. Upon fitting a model and finding singular � values, it

will refit the model the specified number of times, using the initial values from the previous fitting but

setting the initial value of singular �s to 0. However, in this case, re-running the analysis produces the

same result. A quick check of the capture histories for the first release cohort shows that there was not

a single encounter of the first cohort on the last occasion:

> dipper$ch[substr(dipper$ch,1,1)==1]

[1] "1000000" "1000000" "1000000" "1000000" "1000000" "1000000" "1000000"

[8] "1000000" "1000000" "1010000" "1010000" "1100000" "1100000" "1100000"

[15] "1100000" "1100000" "1100000" "1101110" "1111000" "1111000" "1111100"

[22] "1111110"
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Thus, with an assumed constant capture probability the best explanation of not seeing any on the

seventh occasion is that survival from age 5 to 6 was 0. The parameter is identifiable and is being

estimated correctly but it is at a boundary and is not being counted correctly by MARK. Moral of the

story is to be careful counting parameters (this point has been made at several points in this book). The

philosophy incorporated into RMark is that it is safer to over-count parameters rather than risk fitting

an overly-complex model to sparse data.

The ability of MARK to count parameters can be improved by using the sin link which is now

supported by RMark as long as the resulting design matrix for the parameter is an identity matrix. The

sin link can be used for some parameters and a different link for others, so the entire design matrix need

not be an identity matrix. If the model formula contains any design or individual covariates then the

sin link is not allowed. Also, to use the sin link the formula cannot be additive or use an intercept. If

either of the above occurs, an error message will be generated if you specify the sin link. To specify an

identity design matrix there must be a 1:1 relationship between the �’s and the real parameters. Because

RMark simplifies the PIMS this can occur even when the group structure is quite complex.

As an example, we will use example.data which has sex, age and region factors for grouping. Even

though there are many parameters in the all-different formulation we can use the sin link with the

intercept model (as shown below) because there is one � and one real.

> data(example.data)

> example.processed=process.data(example.data,groups=c("sex","age","region"),initial.ages=c(0,1,2))

> example.ddl=make.design.data(example.processed)

> mark(example.processed,example.ddl,model.parameters=list(Phi=list(formula=~1,link="sin")),output=F)

For the ∼timemodel there is also one � for each real parameter but if we specify the model with the

sin link, we get an error message:

> mark(example.processed,example.ddl,

model.parameters=list(Phi=list(formula=~time,link="sin")),output=F)

Error in make.mark.model(data.proc, title = title, covariates = covariates, :

Cannot use sin link with non-identity design matrix

The error occurs because∼time creates a design matrix with an intercept and a � for each time beyond

the first time, so it is additive which is not allowed. However, we can specify a design matrix without an

intercept using ∼-1 + time as shown below, or ∼-1+sex:

> mark(example.processed,example.ddl,model.parameters=list(Phi=list(formula=~-1+time,link="sin")),output=F)

> mark(example.processed,example.ddl,model.parameters=list(Phi=list(formula=~-1+sex,link="sin")),output=F)

Likewise, we can use the sin link with full interaction models as long as the intercept is removed.

> mark(example.processed,example.ddl,model.parameters=

list(Phi=list(formula=~-1+region:time,link="sin")),output=F)

But again you cannot have any additive terms even in the case of adding 2 two-way interactions:

> mark(example.processed,example.ddl,model.parameters=

list(Phi=list(formula=~-1+region:time+sex:time,link="sin")),output=F)

Error in make.mark.model(data.proc, title = title, covariates = covariates, :

Cannot use sin link with non-identity design matrix
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But the 3-way interaction model can use the sin link:

> mark(example.processed,example.ddl,model.parameters=

list(Phi=list(formula=~-1+sex:region:time,link="sin")),output=F)

C.11. Fixing real parameter values

Parameter confounding presented a situation in which it was useful to fix specific real parameter values

and in C.10 we showed how that could be done with the fixed argument of the parameter specification

list. However, there are other instances in which real parameter values need to be fixed and there

are several ways in which fixed parameters can be specified with RMark. In addition to parameter

confounding, real parameters are typically fixed in circumstances in which there are no data to estimate

the parameter (i.e., a structural zero). For example, imagine a scenario where you conducted a “CJS”

study in which new animals were only released every other year. In those years with no releases there

cannot be any recaptures from that cohort to estimate the parameters. For the limiting case in which

only one cohort is released and then followed through time, see discussion about pim.type at the end

of this section. Another example would be a Multistrata model in which the strata are defined such that

some transitions are not possible, so they would be fixed to 0.

There are 2 generalapproaches to specification offixedparameters.The firstapproachwas introduced

in C.10 using the fixed argument which identifies specific parameters by their indices and specifies their

fixed values. The second approach is to delete the rows from the design data for the parameters that are

to be fixed at a single default value for each type of parameter (e.g.,! or ?). If you need to fix parameters

of the same type to different values (e.g., some ? = 0 and others ? = 1), you need to use the first approach.

The second approach is most useful when all the parameters are being fixed to the same value because

of missing data (i.e., structural zero). We will use the dipper data to illustrate how to fix real parameters

using these different approaches.

There are 4 different forms for the fixed argument. The first sets all of the parameters of a particular

type to the same value. For example, the following poor and non-realistic model would set all of the !

values to 1 for the dipper data.

> dipper.processed=process.data(dipper,groups=("sex"),begin.time=1980)

> dipper.ddl=make.design.data(dipper.processed)

> dipper.ddl$p

> Phidot=list(formula=~1)

> Phi.1=list(formula=~1,fixed=1)

> mark(dipper.processed,dipper.ddl,model.parameters=list(Phi=Phi.1))

Output summary for CJS model

Name : Phi(~1)p(~1)

Npar : 1

-2lnL: 981.2354

AICc : 983.2449

Beta

estimate se lcl ucl

Phi:(Intercept) 0.000000 0.0000000 0.000000 0.0000000

p:(Intercept) -1.018446 0.0777791 -1.170893 -0.8659991
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Real Parameter Phi

Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 1 1 1 1 1 1

1981 1 1 1 1 1

1982 1 1 1 1

1983 1 1 1

1984 1 1

1985 1

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 1 1 1 1 1 1

1981 1 1 1 1 1

1982 1 1 1 1

1983 1 1 1

1984 1 1

1985 1

Fixing all of the parameters to one value is most useful to simplify the model structure. For example,

setting the fidelity parameter (F) in the Burnham model for the case in which the recovery and recapture

areas are the same or setting the resight probability (R and RPrime) in the Barker model to zero to get

the Burnham model.

The other forms of the fixed argument involve specifying a set of times, cohorts, ages, groups or

generic indices and a set of one or more values. The first 4 are simply short-cuts for the most general

approach of specifying indices. Let’s start with a generalization of the approach given in C.10 in which

we want to fix ? = 0 in 1982 and 1984 (presumably because of no sampling):

> p.time.fixed=list(formula=~time,fixed=list(time=c(1982,1984),value=0))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Real Parameter p

Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9343357 0 0.5387934 0 0.8816249 0.9999979

1981 0 0.5387934 0 0.8816249 0.9999979

1982 0.5387934 0 0.8816249 0.9999979

1983 0 0.8816249 0.9999979

1984 0.8816249 0.9999979

1985 0.9999979

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9343357 0 0.5387934 0 0.8816249 0.9999979

1981 0 0.5387934 0 0.8816249 0.9999979

1982 0.5387934 0 0.8816249 0.9999979

1983 0 0.8816249 0.9999979

1984 0.8816249 0.9999979

1985 0.9999979

The same approach will work if you specify certain age, cohort or group values. The use of group is

restricted to the group numbers and not the factor variables defining the groups.
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Now you would think that the following would work to constrain ? for 1982 to 0 and ? for 1986 to

1, but it does not (although the programming could be changed) because it expects to have as many

values as there are parameters associated with times 1982 and 1986.

> p.time.fixed=list(formula=~time,fixed=list(time=c(1982,1986),value=c(0,1)))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Lengths of indices and values do not match for fixed parameters for p

Error in make.mark.model(data.proc, title = title, covariates = covariates,

That brings us to the final approach which is to specify the parameter indices and the values for those

parameters. The indices are the row numbers of the design data for the parameter. For example, in the

first 10 rows of the ? design data, the indices for 1982 are 2 and 7:

dipper.ddl$p[1:10,]

group cohort age time Cohort Age Time sex

1 Female 1980 1 1981 0 1 0 Female

2 Female 1980 2 1982 0 2 1 Female

3 Female 1980 3 1983 0 3 2 Female

4 Female 1980 4 1984 0 4 3 Female

5 Female 1980 5 1985 0 5 4 Female

6 Female 1980 6 1986 0 6 5 Female

7 Female 1981 1 1982 1 1 1 Female

8 Female 1981 2 1983 1 2 2 Female

9 Female 1981 3 1984 1 3 3 Female

10 Female 1981 4 1985 1 4 4 Female

Now you certainly don’t want to look them up and type them in because you will almost certainly

make a mistake and it would disable automatic updating of the model if the group structure changed or

another occasion was added. The solution is to use a little R code to define the set of indices as follows:

> p1982.indices=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1982,]))

> p1982.indices

[1] 2 7 23 28

> p1986.indices=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1986,]))

> p1986.indices

[1] 6 11 15 18 20 21 27 32 36 39 41 42

The above code selects the indices which have a time of 1982 and stores it into p1982.indices and

likewise for 1986. That code will work even if the group or data structure changes as long as the

begin.time doesn’t change but even that part of the code could be automated. Now you don’t want to

count how many values need to be set to 0 and 1, so again we use some R code to do the work:

> p1982.values=rep(0,length(p1982.indices))

> p1986.values=rep(1,length(p1986.indices))

> p1982.values

[1] 0 0 0 0

> p1986.values

[1] 1 1 1 1 1 1 1 1 1 1 1 1
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Finally, you can put it all together as follows:

> p.time.fixed=list(formula=~time,fixed=list(index=c(p1982.indices,p1986.indices),

value=c(p1982.values,p1986.values)))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Real Parameter p

Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.9720207 0 0.8387273 0.8880947 0.938504 1

1981 0 0.8387273 0.8880947 0.938504 1

1982 0.8387273 0.8880947 0.938504 1

1983 0.8880947 0.938504 1

1984 0.938504 1

1985 1

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.9720207 0 0.8387273 0.8880947 0.938504 1

1981 0 0.8387273 0.8880947 0.938504 1

1982 0.8387273 0.8880947 0.938504 1

1983 0.8880947 0.938504 1

1984 0.938504 1

1985 1

It may help to examine the value for fixed, which we can see is a list with the 2 sets of indices

($index) pasted (concatenated) together and a set of values ($value), which contain 4 zeros for the 1982

parameters and 12 ones for the 1986 parameters.

> list(index=c(p1982.indices,p1986.indices),value=c(p1982.values,p1986.values))

$index

[1] 2 7 23 28 6 11 15 18 20 21 27 32 36 39 41 42

$value

[1] 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

The above approach is completely general and you can use the same pattern and simply change the

subset of parameters that are selected. Without showing the results, the following snippet of code could

be used to set ? in 1982 for females to 0 but for males it sets ? in 1984 to 0:

> p1982.f=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1982&

dipper.ddl$p$sex=="Female",]))

> p1984.m=as.numeric(row.names(dipper.ddl$p[dipper.ddl$p$time==1984&

dipper.ddl$p$sex=="Male",]))

> p.time.fixed=list(formula=~time,fixed=list(index=c(p1982.f,p1984.m),value=0))

> mark(dipper.processed,dipper.ddl,model.parameters=list(p=p.time.fixed))

Now if the parameters need to be fixed to model structural zeros in the data, then deleting the design

data for the parameters representing the missing data is typically the easiest approach. To demonstrate

with an example, below we stripped the 1982 cohort from the dipper data and saved it in xdipper.

After processing the data and making the design data, we deleted the ! and ? design data for 1982
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by copying all design data other than the data for the 1982 cohort. When the model is run, the default

summary shows blanks for parameters with deleted design data. When the model is summarized with

the argument show.fixed=TRUE, then the default parameter values of ? = 0 and ! = 1 are shown for

the 1982 cohort.

> xdipper=dipper[!substr(dipper$ch,1,3)=="001",]

> xdipper.processed=process.data(xdipper,groups=("sex"),begin.time=1980)

> xdipper.ddl=make.design.data(xdipper.processed)

> xdipper.ddl$p=xdipper.ddl$p[xdipper.ddl$p$cohort!=1982,]

> xdipper.ddl$Phi=xdipper.ddl$Phi[xdipper.ddl$Phi$cohort!=1982,]

> xdipper.model=mark(xdipper.processed,xdipper.ddl)

> summary(xdipper.model,show.fixed=TRUE)

Real Parameter Phi

Group:sexFemale

1980 1981 1982 1983 1984 1985

1980 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1981 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1982 1.0000000 1.0000000 1.0000000 1.0000000

1983 0.5886486 0.5886486 0.5886486

1984 0.5886486 0.5886486

1985 0.5886486

Group:sexMale

1980 1981 1982 1983 1984 1985

1980 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1981 0.5886486 0.5886486 0.5886486 0.5886486 0.5886486

1982 1.0000000 1.0000000 1.0000000 1.0000000

1983 0.5886486 0.5886486 0.5886486

1984 0.5886486 0.5886486

1985 0.5886486

Real Parameter p

Group:sexFemale

1981 1982 1983 1984 1985 1986

1980 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1981 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1982 0.0000000 0.0000000 0.0000000 0.0000000

1983 0.8919246 0.8919246 0.8919246

1984 0.8919246 0.8919246

1985 0.8919246

Group:sexMale

1981 1982 1983 1984 1985 1986

1980 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1981 0.8919246 0.8919246 0.8919246 0.8919246 0.8919246

1982 0.0000000 0.0000000 0.0000000 0.0000000

1983 0.8919246 0.8919246 0.8919246
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1984 0.8919246 0.8919246

1985 0.8919246

Because structural zeros can be a common occurrence with missing cohorts, a function argument

remove.unusedwas added to make.design.data. If it is set to TRUE, then the design data is automatically

deleted for any cohorts without any releases. Thus, the example above can be run with the following

commands:

> xdipper.ddl=make.design.data(xdipper.processed,remove.unused=TRUE)

> xdipper.model=mark(xdipper.processed,xdipper.ddl)

> summary(xdipper.model,show.fixed=TRUE)

Some of the parameters have a natural default value (Table C.1) that is assigned if the design data

are deleted but on occasion you may want to change the default value or assign a default value to a

parameter that has no assigned default value. That is accomplished by setting the argument default in

the parameter specification list. In the following rather silly example, the defaults for the above analysis

are set to ? = 0.9 and ! = 0.5:

> xdipper.model=mark(xdipper.processed,xdipper.ddl,

model.parameters=list(p=list(default=.9),Phi=list(default=.5)))

> summary(xdipper.model,show.fixed=TRUE)

In some cases,you can handle the structuralzeros by using a PIM type other than the default “alldiffer-

ent”. It can be useful to use pim.type="time" or pim.type="constant" in the call to make.design.data.

If you choose one of these simpler PIM structures, you cannot use formula for that parameter that is

more complex than the structure allows. A constant PIM can be useful to simplify a model by fixing a

real parameter at a value (� = 1 for Burnham model) or only allowing models with a single parameter

to be estimated. A time PIM can be used in a similar situation for triangular PIMS which can be useful

with the CJS model for a single release cohort. Using pim.type="time" eliminates the need for deleting

the unneeded design data and the summary printout of real parameters is limited to a single line. We

demonstrate with the dipper data which is restricted to the data from the first release cohort:

> data(dipper)

> dipper=dipper[substr(dipper$ch,1,1)=="1",]

> mark(dipper,design.parameters=list(p=list(pim.type="time"),

Phi=list(pim.type="time")))

Real Parameter Phi

1 2 3 4 5 6

1 0.6043321 0.6043321 0.6043321 0.6043321 0.6043321 0.6043321

Real Parameter p

2 3 4 5 6 7

1 0.8207724 0.8207724 0.8207724 0.8207724 0.8207724 0.8207724

Had we not used pim.type="time", then summary would have shown the entire triangular PIM even

if the design data were deleted.
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C.12. Data Structure and Import for RMark

So far we have only used the dipper data that accompanies RMark and have not discussed data

requirements. There are numerous other example datasets to demonstrate other models in RMark

(e.g., BlackDuck, mallard, mstrata and many others). However, to use RMark for your own data you

need to understand the requirements for the data structure and how to input data. Data for RMark must

exist in an R dataframe with some formatting and naming conventions. There are numerous ways to

create dataframes in R but we will describe two functions in RMark to help in creating the necessary

dataframe.

The format for data input with RMark is different than with MARK, but a function convert.inp

was written to convert an .inp file used for MARK to a dataframe for RMark. The conversion is

necessary because the data format and structures for MARK and RMark have a fundamental difference

in handling groups, as illustrated below. The formats are similar in that each record (row) contains a

capture history which can represent one or more animals as specified by the count (freq) and any

number of covariates can be tacked on at the end of the record. However, with MARK, group structure

is accommodated by having a count (freq) for each group but the data do not contain any information

about what was used to construct the groups. The group structure is only represented by group labels.

In comparison with RMark, each record only represents animals from a single group and the record

can contain columns for factor variables that are used to define the group structure.

First we will start with a simple example to show how easy it is to convert an .INP file and then we’ll

work into more complicated examples. The \Examples subdirectory of MARK contains a file pradel.inp

which can be converted to a dataframe for RMark and we can look at the first 5 rows with the following

commands:

> pradel=convert.inp("C:/Program Files/MARK/Examples/pradel.inp")

pradel[1:5,]

ch freq

1 0000000000001 47

2 0000000000010 36

3 0000000000011 12

4 0000000000100 30

5 0000000000101 8

The first argument value “C:/Program Files/MARK/Examples/pradel.inp” is the name of the MARK

.inp file which is shown here with the full path and file specification. Make sure to use a single

forward slash or two backslashes to separate sub-directories (note: forward slash? backward slash? The

differences reflect the convention used in R to accommodate different directory naming conventions

between Windows on the one hand, and almost everything else on the other). The extension is assumed

to be .inp but if it is something different, you can specify the extension with the filename (e.g.,

“pradel.txt”).

If there is no group structure or covariates as in the above example then the conversion is quite easy,

but it does not get much more complicated. Now let’s consider the MARK example Pass3MStrata5.inp

which has 2 covariates weight and length and also uses comments to identify each row uniquely. First

we will show what happens if you get it wrong:

> p3m5=convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp")

Error in convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp") :

Number of columns in data file does not match group/covariate specification
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We forgot to specify the 2 covariates that were in the file, so let’s try it again:

> p3m5=convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp",

covariates=c("weight","length"))

> p3m5[1:5,]

ch freq weight length

1 U00000000000 1 1295 548

2 00000000000U 1 2653 671

3 000000D0D000 1 1324 528

4 0000000000W0 1 1415 570

5 0000D0000000 1 982 500

You can see that it ignored the comments contained on each row of the file. If they are unique and

we wanted to use them to label the data, we would change it to:

> p3m5=convert.inp("C:/Program Files/MARK/Examples/Pass3MStrata5.inp",

covariates=c("weight","length"),use.comments=TRUE)

> p3m5[1:5,]

ch freq weight length

1F1-16C-1054 Upper Green U00000000000 1 1295 548

1F1-567-2B3A Upper Green 00000000000U 1 2653 671

1F1-70D-3E7F Desolation 000000D0D000 1 1324 528

1F1-770-5307 White 0000000000W0 1 1415 570

1F1-940-3256 Desolation 0000D0000000 1 982 500

Hadthe comments notprovidedunique labels then the conversion wouldhave failedand theuse.comments

argument would have to be deleted.

Now let’s consider how to convert an .inp file that contains a group structure. We will use the MARK

example file huggins.inpwhich has 2 groups. The example doesn’t label those groups but we’ll assume

that the first group was for females and the second for males. To convert the file, we need to specify a

value for the argument group.dfwhich is a dataframe that specifies the covariates that will be assigned

to each group in the RMark dataframe. The rows of group.df must correspond to the columns of the

frequency field in the .inp file. In this simple example, there are 2 columns so there will be 2 rows in

our dataframe which will be specified as group.df=data.frame(sex=c("Female","Male")).

Let’s dissect that command. First c("Female","Male") creates a vector by pasting (concatenating)

the strings ‘‘Female’’ and ‘‘Male’’. Then the vector is assigned to “sex” which will be the name in

the R dataframe for that group factor value. So the commands to convert and look at the first and last

few records are:

> huggins=convert.inp("C:/Program Files/MARK/Examples/huggins.inp",

group.df=data.frame(sex=c("Female","Male")))

> head(huggins)

ch freq sex

1:1 0101010 1 Female

1:2 0011000 1 Female

1:3 1001100 1 Female

1:4 1100101 1 Female

1:5 0101010 1 Female

1:6 1011011 1 Female
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> tail(huggins)

ch freq sex

2:389 0001111 1 Male

2:390 0010000 1 Male

2:391 1000101 1 Male

2:392 0100000 1 Male

2:393 1010100 1 Male

2:394 1001010 1 Male

Now let’s move onto a more complicated group structure. Below is a table showing the first 4 records

from the swift dataset (multi_group.inp file) that is described in chapter 6. Groups represent 2 levels

of sex (female/male) and 2 levels (good/poor) of colony and because there are 4 groups, there are an

equivalent number of frequency fields for each capture history. For example there are 145 Females in

‘poor’ colonies with the capture history 0010 and 171 Males in ‘good’ colonies with the same capture

history. Here are the first 4 records in the file:

history female, good female, poor male, good male, poor

0010 150 145 171 167;

0011 200 205 179 183;

0100 213 198 131 77;

0101 14 26 32 50;

As shown below, the same 4 records expand to 16 records in the RMark format because each record

corresponds to a single animal or group of animals. If one or more of the frequencies is zero the record

is not needed. While the MARK format can be more compact it is less flexible in modifying the group

structure. The RMark data formatcan be created from the MARK formatwith the functionconvert.inp.

The function call for this example would be:

multigroup=convert.inp("multi_group",

group.df=data.frame(sex=c(rep("Female",2),rep("Male",2)),

Colony=rep(c("Good","Poor"),2)))

Here is the format of the RMark dataframe for same multi_group.inp data file.

history frequency sex colony

0010 150 female good

0011 200 female good

0100 213 female good

0101 14 female good

0010 145 female poor

0011 205 female poor

0100 198 female poor

0101 26 female poor

0010 171 male good

0011 179 male good

0100 131 male good

0101 32 male good

0010 167 male poor
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0011 183 male poor

0100 77 male poor

0101 50 male poor

The function argument group.df specifies the factor variables that will be used to define the 4 groups

in the .inp file. It is a dataframe and it must contain a record for each group in the left to right order

they are given in the .inp file. In this file the first 2 groups are for females and the last 2 are for males

and the colony type alternates (good, poor, good, poor). Let’s dissect the value assigned to group.df:

data.frame(sex=c(rep("Female",2),rep("Male",2)),colony=rep(c("Good","Poor"),2))

The call to function data.frame creates an R dataframe with 2 columns named sex and colony. The

names can be any valid name and the order in the dataframe is not relevant. Had there been more fields

they could have been added by assigning more columns in the dataframe. What does matter is that the

columns are all of the same length and for this particular dataframe the order of the rows must match

the order of the columns in the MARK .inp file.

sex=c(rep("Female",2),rep("Male ",2))

creates a vector of length 4 that is “Female", “Female", "Male", "Male". The function rep() creates a vector

by repeating the first argument value ("Female” or “Male") the number of times specified as the second

argument value (2 in this case). The function c() concatenates (pastes) together its arguments in the

order they are specified. So it sticks together the 2 vectors each with 2 elements into a single vector of

length 4.

The code

colony=rep(c("Good","Poor"),2)

repeats the vectorc("Good","Poor") twice to yield a vector with 4 elements “Good","Poor","Good", “Poor”

which is the order we want.

The resulting group.df looks as follows:

sex Colony

1 Female Good

2 Female Poor

3 Male Good

4 Male Poor

Notice that the values are not shown in quote marks as they were specified. When columns in a

dataframe are specified with character strings they are coerced into factor variables by default and that

is what we want in this case. What is stored in the dataframe is actually an index to a factor level

(numerically 1 or 2 in this case) and what is shown is the label for the factor. This is apparent if we ask

for a summary of the fields (columns) or look at just a single column:

> summary(group.df)

sex Colony

Female:2 Good:2

Male :2 Poor:2

> group.df$sex

[1] Female Female Male Male Levels: Female Male.
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By default, levels of a factor variable are assigned in alphabetical order.

These variables are then assigned to the matching capture history and frequency to create a record

in the resulting RMark dataframe which has been named multigroup in this example. The resulting

dataframe multigroupwould look like the representation of the table above if it were sorted by sex and

colony for the first four records.

If the MARK .inp file also contains individual covariates, the names of these are specified in the

covariates argument of convert.inp. For example, the call to convert.inp for the example file indcov1

from chapter 11 is:

indcov1=convert.inp("indcov1",covariates=c("cov1","cov2"))

The call specifies that the two covariates should be named cov1 and cov2 in the RMark dataframe.

In this example, there was only a single group, so group.df was not specified.

The final argument for convert.inp is use.comments which can be either TRUE or FALSE (default).

Comments in MARK .inp files are given as values between /* and */ and these are ignored in the

conversion if they span several lines or the whole line is a comment. However, in some cases the comment

is used to specify a label for each capture history (e.g., a tag number for the animal) and it may be useful

to retain its value in the RMark dataframe. If the values of the comments are unique, you can specify

use.comments=TRUE and it will use the value for the row name of the dataframe. This is shown using

the blckduck.inp file that accompanies MARK:

> bd=convert.inp("blckduck",covariates=c("age","weight","winglen","ci"),

use.comments=TRUE)

The first 5 records of the resulting dataframe show the row names as 01, 04, · · · , 07 as follows:

> bd[1:5,]

ch freq age weight winglen ci

01 1100000000000000 1 1 1.16 27.7 4.19

04 1011000000000000 1 0 1.16 26.4 4.39

05 1011000000000000 1 1 1.08 26.7 4.04

06 1010000000000000 1 0 1.12 26.2 4.27

07 1010000000000000 1 1 1.14 27.7 4.11

If you do not have an existing MARK .inp file, an RMark dataframe can be constructed from a space

or tab-delimited text file using the function import.chdata. The function specification is:

> import.chdata(filename, header = TRUE, field.names = NULL, field.types = NULL)

The argument filename specifies the path (if not in directory with workspace) and name (with

extension) of a text file. The first field in the file should be the capture history string. It cannot contain

any spaces or other delimiting characters and it must be named “ch". All other fields can be in any order.

The group frequency is not needed if each record specifies the data for a single animal. If frequency is

in the file, it should be named "freq". The first record in the file can be the names of the fields. If the

fields are named, the first field must be named ch (for capture history) and if frequency is specified it

must be named freq. All other field names for individual covariates can be given any valid name. If the

first line contains the field names then the argument header should be specified as the default of TRUE.

If the first line in the file does not contain the field names, then they should be specified as a vector

of strings with the argument field.names. Fields other than “ch” should be given a specified field type
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unless all fields should be treated as factor variables. The possible field types are “f","n” and “s” for

factor, numeric and the last specifies that the field should be skipped and not imported.

The following are function calls to import the text files for 3 of the examples accompanying RMark.

The files can be found in Rdata.zip in C:\Program Files\R\R-v.vv\library\RMark\data where v.vv is

the R version number.

> example.data<-import.chdata("example.data.txt",field.types=c("n","f","f","f"))}

> edwards.eberhardt<-import.chdata("EdwardsandEberhardt.txt",field.names="ch",

header=FALSE)

> dipper<-import.chdata("dipper.txt",field.names=c("ch","sex"),header=FALSE)

The first imports example.data with 4 fields beyond the capture history. The first field is numeric

(weight) and the last 3 are factor variables (age,sex,region) that are used as grouping variables. The first

6 lines of the file are as follows:

ch weight age sex region

1011101 8.3095857 1 M 1

1110000 11.1449917 1 M 2

1000000 4.0252345 1 M 3

1000000 8.6503865 1 M 4

1010000 9.4225103 1 M 1

The field names are on the first line of the data file so they are not specified with the field.names

argument. The next function call is for the Edwards-Eberhardt rabbit data and it has a single field

(the capture history) which is not named on the first line, so it is specified with field.names="ch" and

header=FALSE. The last example imports the familiar dipper data which has 2 fields (capture history

and sex) which are specified with the field.names=c("ch","sex") and since sex is a factor variable,

the field.types argument need not be specified, but header=FALSE is included because the first line

does not include field labels.

The above data format and input functions work for most of the models supported by RMark with

one exception. They do not work with the nest survival model which does not have an encounter history

field (ch) and requires a much different data format. See the mallard and killdeer datasets for examples

of data entry for the nest survival model. For models with an encounter history, the format for ch

depends on the type of model. For a description of the relevant format see the example(s) provided

for each model supported by RMark or the model structure description in MARK. When the data are

processed with the process.data function, it checks to make sure that ch only contains values that are

valid for the chosen analysis model. For example, for CJS models, each digit in ch can be either a “0”,

“1” or “.” where “.” implies a missing value. In contrast, ch for Multistrata models can contain either

“0” or an alphabetic character which represents the stratum in which it was observed.

C.13. A more organized approach

So far we have introduced RMark by typing various commands into R and storing the model results in

the workspace and then aggregating them into a list. This is a reasonable way to introduce the material

but it is not the way we recommend that you conduct your analyses. In this section we will suggest an

alternative approach that uses scripts with functions. We recommend this approach for the following

reasons:
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1. the R statements can be stored in a separate text script that canbe easily documented

2. the analysis can be easily repeated with the script

3. functions provide an easy way to create a set of models quickly and avoid acciden-

tally aggregating models from different data sets or model types. We will use the

swift data set (aa.inp) from Chapter 4 as the example.

begin sidebar

Using R functions to ease the workload

R statements can be typed into a text script file and “sourced” into R with the “File | Source R code” menu
selection. R expects the script file to have an extension of .R so it is easiest to use it. You can enter and edit

the script file with any text editor but you may find it more convenient to work with an editor like TINN-R

(https://sourceforge.net/projects/tinn-r) which was designed to work with R. Such an editor has several
advantages including built-in help with R, syntax checking and highlighting which helps identify mismatched

braces, brackets and parentheses, and automatic sending of scripts or parts of scripts to R for execution.

Scripts can contain any valid R statements and function calls. So you could simply enter a sequence of statements

like we demonstrated in the previous sections. However, we recommend creating a function to define and run the
models and then the script contains the definition of the function and the statements to import data and run

the function. We recommend using functions because of some of the limitations of collect.models and to take
advantage of the function mark.wrapper that we have not introduced yet. But first we will give a brief description

of functions in R.

An R function is a set of R statements that can accept arguments and can return a single value. The RMark

package is simply a collection of R functions with associated help files. All of the built-in R functions are in packages
but functions can live outside of packages so you can create functions and store them in scripts or in workspaces.

So what is the difference between scripts and functions? A script is a collection of R statements that can be sourced

in and they are interpreted in the context of the workspace (.Rdata) as if you were typing them at the keyboard. A
function is subtly different because when a function is executed it effectively creates its own local workspace (called

a frame in R-speak) which contains variables and objects that are defined within the function. The function can use
the values of its arguments, the objects it creates and the function can reference any objects from the frame in which

it was defined. We will create a simple function that demonstrates this using the ls(). A function is composed of a

name, an argument list and the body of the function contained in a set of braces ({}). Below we define a very simple
function which we call myls which has no arguments (no values listed between the parentheses) and the body of

the function is a single statement which calls ls():

myls=function() { ls() }

To illustrate the concept of frames we will call ls() and then myls()which calls ls()within the function.

[1] "aa" "aa.models" "aa.results"

[4] "df" "dipper" "dipper.cjs.results"

[7] "dipper.ddl" "dipper.mod.avg" "dipper.mod.avg.adj"

[10] "dipper.Phi.mod.avg" "dipper.process" "model.table"

[13] "myls" "p.dot" "p.effort.plus.sex"

[16] "p.Flood" "p.time" "p.Time"

[19] "p.time.fixed" "p.Timeplussex" "Phi.ageclass.plus.sex"

[22] "Phi.dot" "Phi.Flood" "Phi.sex"

[25] "Phi.sex.plus.age" "Phi.sexplusage" "Phi.time"

[28] "summary.mark"

> myls()

character(0)

The call to ls() shows the contents of the workspace but the call to ls()within myls() contains no objects because
there have been no objects defined within the function. For further illustration we will give myls() an argument,

define an object and print out some results to show how objects are referenced within functions.

myls=function(x) {

cat(paste("p.dot = ",p.dot,"\n"))

y=x+1

p.dot=y

cat("p.dot = ",p.dot,"\n") ls()

}
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> p.dot

$formula ~1

> myls(1)

p.dot = ~1

p.dot = 2

[1] "p.dot" "x" "y"

> p.dot

$formula ~1

The function was designed to show that p.dot from the workspace which we defined earlier could be referenced

from within the function but once a value was assigned to p.dot within the function it became an object with its
own definition within the function that was independent and did not change the p.dot in the workspace. The call

to ls()within the function shows that there are 3 objects within the local function “workspace” named x (the value
of the calling argument) and y and p.dot defined in the function. Functions return the value of the object in the

last line of the body of the function (e.g., result of ls() in this case) or more specifically a return() statement can

be used and multiple values can be returned via a list(). Functions can modify objects in the workspace with the
use of the <<− assignment operator but it is not a recommended programming practice.

Because ls() only operates on objects defined within the function – functions like collect.models() and

mark.wrapper() can be limited to that range of objects for selection. The function collect.models() is not

particularly clever and it is possible for it to unknowingly aggregate analyses from different data sets if they have
the same name. It does recognize when it is aggregating models of different type (e.g., CJS and POPAN) and will issue

a warning. It will also issue a warning if the name of the processed data varies between models being collected but

if the data are different but use the same object name it does not discriminate. However, if the models are collected
within a function it will only collect those defined within the function preventing any unforeseen problems. Also,

mark.wrapperworks well within functions to define the set of models to run and we will demonstrate it here with
the analysis of the swift data set from chapter 4.

end sidebar

We will use the swift dataset (Chapter 4) to demonstrate the use of scripts with functions. In the swift

example, ! is thought to vary by colony, by time, or by colony and time (colony*time) because one

colony has been classified as poor and the other as good. Capture probability ? is thought to be either

constant or vary by time. All of the pairings are considered for a total of 6 models to evaluate. Such a

scheme is exactly how mark.wrapper was designed to operate. A set of specifications is given for each

parameter andall possible combinations of the specifications of the parameters in the model (e.g.,! and

? for CJS) are created for analysis. A function create.model.list identifies the model specifications by

collecting any object named with a parameter name from the particular model followed by a period and

any text description can follow the period. This is why we chose to name parameter specifications like

Phi.time and p.dot as we did. Because it will collect any such objects it is best to use create.model.list

within a function such that it will only collect those defined within the function.

Below we define the script that we created to analyze the swift data. The script imports the data,

creates and runs the models, adjusts for over-dispersion and model averages the parameters. We have

used comments identified by text following a # sign to document our analysis. We recommend liberal

use of comments to help you understand what you were doing and thinking at the time that you created

an analysis.

# Swift.R

#

# CJS analysis of the swift data from Chapter 4 of Cooch and White

#

# Import data (aa.inp) and convert it from the MARK inp file format to the \textbf{RMark}

# format using the function convert.inp It is defined with 2 groups:

# Poor and Good to describe the quality of the colony. This structure is defined

# with the group.df argument of convert.inp. It expects that the file aa.inp is
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# in the same directory as the current workspace.

#

aa=convert.inp("aa",group.df=data.frame(colony=c("Poor","Good")))

#

# Next create the processed dataframe and the design data. We’ll use a group

# variable for colony so it can be used in the set of models for Phi. Factor

# variables (covariates with a small finite set of values) are best handled by using

# them to define groups in the data.

#

aa.process=process.data(aa,model="CJS",groups="colony")

aa.ddl=make.design.data(aa.process)

#

# Next create the function that defines and runs the set of models and returns

# a marklist with the results and a model.table. It does not have any arguments

# but does use the aa.process and aa.ddl objects created above in the workspace

# The function create.model.list is the function that creates a dataframe of the

# names of the parameter specifications for each parameter in that type of model.

# If none are given for any parameter, the default specification will be used for

# that parameter in mark. We used the adjust=FALSE argument because we know that

# the models time in Phi and p have extra parameters so we will accept the parameter

# counts from MARK and not adjust them. The first argument of mark.wrapper is the

# model list of parameter specifications. Remaining arguments that are passed to

# mark must be specified using the argument=value specification because the arguments

# of mark were not repeated in mark.wrapper so they must be passed using the

# argument=value syntax.

#

aa.models=function()

{

Phi.colony=list(formula=~colony)

Phi.time=list(formula=~time)

Phi.colony.time=list(formula=~time*colony)

p.dot=list(formula=~1)

p.time=list(formula=~time)

cml=create.model.list("CJS")

results=mark.wrapper(cml,data=aa.process,ddl=aa.ddl,adjust=FALSE)

return(results)

}

#

# Next run the function to create the models and store the results in

# aa.results which is a marklist.

#

aa.results=aa.models()

#

# Adjust for estimated overdispersion of chat=1.127

#

aa.results=adjust.chat(1.127,aa.results)

#

# Compute model averaged parameters

#

aa.model.avg.p=model.average(aa.results,"p",vcv=TRUE)

aa.model.avg.Phi=model.average(aa.results,"Phi",vcv=TRUE)

The table of model results is the same as that shown in chapter 4.
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> aa.results

model npar QAICc DeltaQAICc weight QDeviance chat

2 Phi(~colony)p(~time) 9 330.2689 0.000000 7.058575e-01 99.08106 1.127

1 Phi(~colony)p(~1) 3 332.1239 1.855043 2.791898e-01 113.75240 1.127

5 Phi(~time)p(~1) 8 338.1891 7.920167 1.345472e-02 109.19262 1.127

6 Phi(~time)p(~time) 13 342.8825 12.613639 1.287360e-03 102.69603 1.127

3 Phi(~time * colony)p(~1) 15 346.6140 16.345062 1.992654e-04 101.78298 1.127

4 Phi(~time * colony)p(~time) 20 352.3334 22.064458 1.141513e-05 95.44214 1.127

As well the model averaged capture probabilities shown in Chapter 4 are given below and the results

are accurate to 7 places to the right of the decimal. Note that RMark only provides the unconditional

standard error and the confidence interval based on it and does not provide the percentage due to model

uncertainty.

> aa.model.avg.p$estimates[1:2,]

par.index estimate se lcl ucl fixed group cohort age time Cohort Age Time colony

1 57 0.7502636 0.12064459 0.4698781 0.9732465 Good 1 1 2 0 1 0 Good

2 58 0.7230819 0.09321616 0.5118358 0.8667183 Good 1 2 3 0 2 1 Good

begin sidebar

Automating annual survey analyses

The swift example with the models we defined above is not a particularly involved analysis and it does not require

much additional work with the standard MARK interface because each of the models we used are within the
pre-defined set of models. However, even in this case, the RMark interface does have an advantage if the data set

is routinely updated with an additional year of data. If you add a year of data with the standard MARK interface,

you have to start from scratch to re-create the MARK project and the defined set of models; whereas, with the
RMark interface it would only require re-running the script after changing the data. In some cases, it may be

necessary to modify the script but in most cases even that will not be necessary because the PIM and design data
structure are recreated automatically with the new data structure that adds another occasion. R has numerous

ways of importing data including packages that provide direct access into EXCEL and ACCESS databases. This

enables creating a script that requires no user intervention after the data are updated in the appropriate database.
The ability to run R in batch mode with scripts opens the door to developing an interactive user interface that

would run RMark with R and automate the script development. Such a system is currently being used with an R

package for distance sampling analysis.

end sidebar

C.14. Defining groups with more than one variable

So far the examples we have shown did not really expand on the pre-defined models in the MARK

interface except for the use of age and cohort. The pre-defined models in MARK include group (g)

as one of the factors but what happens when groups are composed of two or more factor variables?

Consider the multi_group.inp example described in Chapter 6 which has 6 sampling occasions and

groups defined by colony and sex. If you include g in a model for these data, it will fit 4 parameters

for Poor-Female, Good-Female, Poor-Male, and Good-Male. Fitting g is equivalent to fitting ∼colony*sex

which is the full interaction model for colony and sex. Within the pre-defined models in MARK there

is no capacity to fit any of the sub-models: ∼colony, ∼sex, and ∼colony+sex and to fit those models you

need to create a design matrix which is described in chapter 6. When you jump to g*t models, fitting

sub-models becomes even more important. What if capture probability varied by time and colony and

survival varied by sex and time? Both of these are sub-models of the g*t pre-defined model and require

a design matrix.
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This is where the formula notation and automatic design matrix development starts to become quite

useful. Once the group variables are defined, creating the full interaction model and the sub-models

requires no more work than any of the other models that we have developed so far.

Below is a script that provides an analysis with a variety of models:

# Multi_group.R

#

# CJS analysis of the multi_group data from Chapter 6 of Cooch and White

#

# Import data (multi_group.inp) and convert it from the MARK inp file format to the RMark

# format using the function convert.inp It is defined with 4 groups:

# Poor-Female, Good-Female, Poor-Male and Good-Male to describe the q

# quality of the colony and 2 sexes. This structure is defined

# with the group.df argument of convert.inp which has 4 rows and 2 fields sex and colony

#

multigroup=convert.inp("multi_group",

group.df=data.frame(sex=c(rep("Female",2),rep("Male",2)),colony=rep(c("Good","Poor"),2)))

#

# Next create the processed dataframe and the design data. We’ll use a group

# variable for colony so it can be used in the set of models for Phi. Factor

# variables (covariates with a small finite set of values) are best handled by using

# them to define groups in the data.

#

multigroup.process=process.data(multigroup,model="CJS",groups=c("sex","colony"))

multigroup.ddl=make.design.data(multigroup.process)

#

# Next create the function that defines and runs the set of models and returns

# a marklist with the results and a model.table.

#

multigroup.models=function()

{

Phi.colony=list(formula=~colony)

Phi.sex=list(formula=~sex)

Phi.sex.plus.colony=list(formula=~sex+colony)

Phi.sex.time.plus.colony=list(formula=~sex*time+colony)

p.time=list(formula=~time)

p.colony.plus.sex=list(formula=~colony+sex)

p.colony.time=list(formula=~time*colony)

cml=create.model.list("CJS")

results=mark.wrapper(cml,data=multigroup.process,ddl=multigroup.ddl)

return(results)

}

#

# Next run the function to create the models and store the results in

# multigroup.results which is a marklist.

#

multigroup.results=multigroup.models()

#

# Compute model averaged parameters

#

multigroup.model.avg.p=model.average(multigroup.results,"p")

multigroup.model.avg.Phi=model.average(multigroup.results,"Phi")
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The results table from the run is:

> multigroup.results

model npar AICc DeltaAICc weight Deviance

12 Phi(~sex * time + colony)p(~time) 13 15440.75 0.000000 0.95888873 100.41075

11 Phi(~sex * time + colony)p(~time * colony) 17 15447.95 7.198505 0.02622000 99.58174

10 Phi(~sex * time + colony)p(~colony + sex) 12 15449.08 8.330000 0.01489127 110.74725

9 Phi(~sex + colony)p(~time) 7 15907.94 467.182000 0.00000000 579.62086

8 Phi(~sex + colony)p(~time * colony) 11 15912.68 471.927000 0.00000000 576.34862

6 Phi(~sex)p(~time) 6 15936.95 496.191000 0.00000000 610.63318

5 Phi(~sex)p(~time * colony) 10 15938.44 497.686000 0.00000000 604.11265

3 Phi(~colony)p(~time) 6 15996.61 555.860000 0.00000000 670.30226

2 Phi(~colony)p(~time * colony) 10 16000.36 559.606000 0.00000000 666.03275

7 Phi(~sex + colony)p(~colony + sex) 6 16004.56 563.801000 0.00000000 678.24333

4 Phi(~sex)p(~colony + sex) 5 16031.57 590.818000 0.00000000 707.26243

1 Phi(~colony)p(~colony + sex) 5 16079.25 638.493000 0.00000000 754.93785

There is quite a jump in ΔAIC2 (DeltaAICc) from model 10 to model 9. This could be from exclusion

of *time in !8 or may be due to lack of convergence. Because model 9 is simpler than models 10-12,

the latter is unlikely but we will use this as an opportunity to show how you can easily re-run a model

using initial values from another model. The following uses the function rerun.mark to re-run model

9 using initial values from model 12 and stores the result back into the marklist in position 9:

> multigroup.results[[9]]=rerun.mark(multigroup.results[[9]],

data=multigroup.process,ddl=multigroup.ddl,initial=multigroup.results[[12]])

A quick look at the summary output reveals the identical AIC2 values so the model converged to the

same values. If the value had changed, we would have had to reconstruct the model.table as shown

later. When we use model.average to obtain model-averaged real parameters we get a warning message

that model 11 was dropped because some of the beta variances were negative:

> multigroup.model.avg.p=model.average(multigroup.results,"p")

Model 11 dropped from the model averaging because one or more beta variances

are not positive

> multigroup.model.avg.Phi=model.average(multigroup.results,"Phi")

Model 11 dropped from the model averaging because one or more beta variances

are not positive

Negative variances for the �’s are symptomatic of something amiss so those models are dropped by

default primarily as a way to draw attention to the issue. Negative variances are set to zero in MARK so

they show up with an SE=0.00000 in the output and this behavior is mimicked in RMark, In this case,

the negative variances occur because one of the parameters is at a boundary. ! for females at time 4 is

1 and this probably occurs because of confounding between ! and ? for time 4. MARK reported 16 of

the 17 parameters were estimable and that beta 5 (female time 4) was singular. We can either re-run this

model and set adjust=FALSE or we can use the function adjust.parameter.count to reset the count to

16 as follows:

> multigroup.results[[11]]=adjust.parameter.count(multigroup.results[[11]],16)

Number of parameters adjusted from 17 to 16

Adjusted AICc=15445.94

Unadjusted AICc = 15445.95
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Once the number of parameters has been adjusted the model of table results must be recalculated:

multigroup.results$model.table=model.table(multigroup.results)

multigroup.results

model npar AICc DeltaAICc weight Deviance

12 Phi(~sex * time + colony)p(~time) 13 15440.75 0.000000 0.91731475 100.41075

11 Phi(~sex * time + colony)p(~time * colony) 16 15445.94 5.190998 0.06843961 99.58174

10 Phi(~sex * time + colony)p(~colony + sex) 12 15449.08 8.330000 0.01424564 110.74725

9 Phi(~sex + colony)p(~time) 7 15907.94 467.182000 0.00000000 579.62086

8 Phi(~sex + colony)p(~time * colony) 11 15912.68 471.927000 0.00000000 576.34862

6 Phi(~sex)p(~time) 6 15936.95 496.191000 0.00000000 610.63318

5 Phi(~sex)p(~time * colony) 10 15938.44 497.686000 0.00000000 604.11265

3 Phi(~colony)p(~time) 6 15996.61 555.860000 0.00000000 670.30226

2 Phi(~colony)p(~time * colony) 10 16000.36 559.606000 0.00000000 666.03275

7 Phi(~sex + colony)p(~colony + sex) 6 16004.56 563.801000 0.00000000 678.24333

4 Phi(~sex)p(~colony + sex) 5 16031.57 590.818000 0.00000000 707.26243

1 Phi(~colony)p(~colony + sex) 5 16079.25 638.493000 0.00000000 754.93785

The parameters can be model averaged across all models by using drop=FALSE as follows:

> multigroup.model.avg.p=model.average(multigroup.results,"p",drop=FALSE)

Warning message:

Improper V-C matrix for beta estimates. Some variances non-positive.

in: get.real(model.list[[i]], parameter, design = model.list[[i]]$design.matrix,

> multigroup.model.avg.Phi=model.average(multigroup.results,"Phi",drop=FALSE)

Warning message:

Improper V-C matrix for beta estimates. Some variances non-positive.

in: get.real(model.list[[i]], parameter, design = model.list[[i]]$design.matrix,

A warning message is given about the negative variances and clearly it does not make sense to

consider model averaged estimates of ! for time 4 and p for time 5 but the remaining real parameters

are unaffected.

C.15. More complex examples

Now we will consider some more complex examples that require more knowledge about designing

formulas in situations where the factors are not fully crossed which means that some interactions do

not exist in the data structure. We will use the example from Chapter 7 that uses age.inp. These data

were derived from a study in which only young were marked and released (CJS design) but the young

were then recaptured through time as they aged. With such a design not all ages are represented in all

years so these factors are not fully crossed. A fully crossed design would have data for each combination

of factors. In year 1 of the experiment there are only young birds that were just banded. In year 2 there

are birds that are ages 0 and 1, in year 3 there are birds of ages 0 to 2, etc. The general solution to this

type of problem is to create dummy variables (numeric 0/1 coding) and create interactions of effects

using the : operator which includes the interactions without the main effects. This a very useful tool

because it allows you to limit the range of an effect to the subset of parameters that have a value of 1

for the dummy variable. To understand this fully, look at the PIM chart in section 7.1.1 which shows an

age by time model in which age is limited to 2 classes of young (age 0) and adult (age 1+). The structure
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shows time varying probabilities for young with indices 1 to 6 and time varying probabilities for adults

with indices 7 to 11. There are no adults at time 1 so there are only 5 survival probabilities for adults

and 6 for young.

The PIM chart in 8.1.1 can be created with a formula by creating a 0/1 dummy variable for each

age grouping. For example, let’s assume that we created a dummy variable called young that is 1 for

a young animal and 0 for an adult and then another variable called adult that is 1 for adult and 0 for

young. If you construct a formula with the interaction of young and time (a factor variable), it will create

a parameter for each time for young animals (indices 1 to 6) and by default it creates an intercept. To

demonstrate this we will convert the input file, process the data and create the design data we need:

> #

> # Import data from age.inp file with convert.inp

> #

> age=convert.inp("age")

> #Process data for CJS model

> age.process=process.data(age,model="CJS")

> #Make default design data

> age.ddl=make.design.data(age.process)

> #

> # Add a young/adult age field to the design data for Phi which we have named ya.

> # It uses right=FALSE so that the intervals are 0 (young) and 1 to 7 (adult).

> #

> age.ddl=add.design.data(age.process,age.ddl,"Phi","age",bins=c(0,1,7),right=FALSE,name="ya")

> #

> # Add a field to the Phi design data that is equivalent except that it is a numeric

> # dummy coding variable with value 1 for young and 0 for adult; field is named young

> #

> age.ddl$Phi$young=0

> age.ddl$Phi$young[age.ddl$Phi$age==0]=1

> #

> # Likewise add an adult 0/1 numeric field to the Phi design data

> # which is simply =1-young

> age.ddl$Phi$adult=1-age.ddl$Phi$young

Notice that we were able to create the adult field from the young field by subtraction. Now, let’s show

what model.matrix does with the formula ∼young:time to give you a more complete understanding.

First we will look at the non-simplified PIMS for ! by wrapping the default mark model call within a

call to PIMS:

> PIMS(mark(age,output=F),"Phi",simplified=F)

group = Group 1

1 2 3 4 5 6

1 1 2 3 4 5 6

2 7 8 9 10 11

3 12 13 14 15

4 16 17 18

5 19 20

6 21
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That shows there are 21 possible different parameters for ! which will match the number of rows in

the following design matrix created by model.matrix:

> model.matrix(~young:time,age.ddl$Phi)

(Intercept) young:time1 young:time2 young:time3 young:time4 young:time5 young:time6

1 1 1 0 0 0 0 0

2 1 0 0 0 0 0 0

3 1 0 0 0 0 0 0

4 1 0 0 0 0 0 0

5 1 0 0 0 0 0 0

6 1 0 0 0 0 0 0

7 1 0 1 0 0 0 0

8 1 0 0 0 0 0 0

9 1 0 0 0 0 0 0

10 1 0 0 0 0 0 0

11 1 0 0 0 0 0 0

12 1 0 0 1 0 0 0

13 1 0 0 0 0 0 0

14 1 0 0 0 0 0 0

15 1 0 0 0 0 0 0

16 1 0 0 0 1 0 0

17 1 0 0 0 0 0 0

18 1 0 0 0 0 0 0

19 1 0 0 0 0 1 0

20 1 0 0 0 0 0 0

21 1 0 0 0 0 0 1

attr(,"assign")

[1] 0 1 1 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$time

[1] "contr.treatment"

The resulting design matrix is rather simple and with the exception of the intercept it is an identity

matrix for indices (rows) 1,7,12,16,19,21 which are the ! parameters for young. The intercept is the

! parameter (� in link space) for adults and the time dependent probabilities for the young are the

intercept plus the appropriate column for each time. So let’s do the same with the adult field:

> model.matrix(~adult:time,age.ddl$Phi)

(Intercept) adult:time1 adult:time2 adult:time3 adult:time4 adult:time5 adult:time6

1 1 0 0 0 0 0 0

2 1 0 1 0 0 0 0

3 1 0 0 1 0 0 0

4 1 0 0 0 1 0 0

5 1 0 0 0 0 1 0

6 1 0 0 0 0 0 1

7 1 0 0 0 0 0 0

8 1 0 0 1 0 0 0

9 1 0 0 0 1 0 0

10 1 0 0 0 0 1 0

11 1 0 0 0 0 0 1

12 1 0 0 0 0 0 0

13 1 0 0 0 1 0 0

14 1 0 0 0 0 1 0

15 1 0 0 0 0 0 1
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16 1 0 0 0 0 0 0

17 1 0 0 0 0 1 0

18 1 0 0 0 0 0 1

19 1 0 0 0 0 0 0

20 1 0 0 0 0 0 1

21 1 0 0 0 0 0 0

attr(,"assign")

[1] 0 1 1 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$time

[1] "contr.treatment"

Notice that the second column in the matrix is all zeros because there are no design data for an adult

at time 1. The code in RMark simply removes any column containing all zeroes because it is not needed.

For the matrix above, that would create 6 parameters for a model that had one constant young survival

and 5 time dependent probabilities for adults; whereas ∼young:time had 7 parameters with a constant

adult survival and 6 time dependent probabilities for young.

So what happens if we use ∼young:time + adult:time to try and construct the equivalent to the

PIM chart in 8.1.1? To save space we won’t show the entire design matrix but will show the following

summaries:

> dim(model.matrix(~young:time + adult:time,age.ddl$Phi))

[1] 21 13

> colSums(model.matrix(~young:time + adult:time,age.ddl$Phi))

(Intercept) young:time1 young:time2 young:time3 young:time4 young:time5 young:time6

21 1 1 1 1 1 1

time1:adult time2:adult time3:adult time4:adult time5:adult time6:adult

0 1 2 3 4 5

After deleting the one column of all zeroes, the resulting design matrix will still have 12 columns

but there are only 11 unique parameters as shown in the 8.1.1 PIM chart. The solution is to remove the

intercept which can be done by adding -1 to the formula. Below we show the same summaries using

the correct formula:

> dim(model.matrix(~-1+ young:time + adult:time,age.ddl$Phi))

[1] 21 12

> colSums(model.matrix(~-1+young:time + adult:time,age.ddl$Phi))

young:time1 young:time2 young:time3 young:time4 young:time5 young:time6 time1:adult

1 1 1 1 1 1 0

time2:adult time3:adult time4:adult time5:adult time6:adult

1 2 3 4 5

After deleting the zero-sum column it will have the appropriate 11 parameters for the design matrix.

Let’s fit this model and examine the simplified PIM structure and design matrix.

> Phi.yaxtime=list(formula=~-1+young:time+adult:time)

> p.dot=list(formula=~1)

> age.Phi.yaxtime.p.dot=mark(age.process,age.ddl,model.parameters=list(Phi=Phi.yaxtime,

p=p.dot),output=FALSE)

> PIMS(age.Phi.yaxtime.p.dot,"Phi")

group = Group 1
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1 2 3 4 5 6

1 1 2 3 4 5 6

2 7 3 4 5 6

3 8 4 5 6

4 9 5 6

5 10 6

6 11

> age.Phi.yaxtime.p.dot$design.matrix[,1:11]

Phi:young:time1 Phi:young:time2 Phi:young:time3 Phi:young:time4 Phi:young:time5 Phi:young:time6

Phi g1 c1 a0 t1 "1" "0" "0" "0" "0" "0"

Phi g1 c1 a1 t2 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a2 t3 "0" "0" "0" "0" n "0" "0"

Phi g1 c1 a3 t4 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a4 t5 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a5 t6 "0" "0" "0" "0" "0" "0"

Phi g1 c2 a0 t2 "0" "1" "0" "0" "0" "0"

Phi g1 c3 a0 t3 "0" "0" "1" "0" "0" "0"

Phi g1 c4 a0 t4 "0" "0" "0" "1" "0" "0"

Phi g1 c5 a0 t5 "0" "0" "0" "0" "1" "0"

Phi g1 c6 a0 t6 "0" "0" "0" "0" "0" "1"

p g1 c1 a1 t2 "0" "0" "0" "0" "0" "0"

Phi:time2:adult Phi:time3:adult Phi:time4:adult Phi:time5:adult Phi:time6:adult p:(Intercept)

Phi g1 c1 a0 t1 "0" "0" "0" "0" "0" "0"

Phi g1 c1 a1 t2 "1" "0" "0" "0" "0" "0"

Phi g1 c1 a2 t3 "0" "1" "0" "0" "0" "0"

Phi g1 c1 a3 t4 "0" "0" "1" "0" "0" "0"

Phi g1 c1 a4 t5 "0" "0" "0" "1" "0" "0"

Phi g1 c1 a5 t6 "0" "0" "0" "0" "1" "0"

Phi g1 c2 a0 t2 "0" "0" "0" "0" "0" "0"

Phi g1 c3 a0 t3 "0" "0" "0" "0" "0" "0"

Phi g1 c4 a0 t4 "0" "0" "0" "0" "0" "0"

Phi g1 c5 a0 t5 "0" "0" "0" "0" "0" "0"

Phi g1 c6 a0 t6 "0" "0" "0" "0" "0" "0"

p g1 c1 a1 t2 "0" "0" "0" "0" "0" "1"

The numbering of the PIM is different but the structure is identical to the PIM chart in 8.1.1, Also, by

rearranging the rows of the design matrix you could make it into an identity matrix because each row

and each column have only a single 1.

Below is the script that we wrote to do the analysis above and fit other models for comparison. It

includes models other than those fitted in Chapter 7.

# markyoung_age.R - script for fitting models for age.inp in which only young are marked

#

#

# Import data from age.inp file with convert.inp

#

age=convert.inp("age")

#Process data for CJS model

age.process=process.data(age,model="CJS")

#Make default design data

age.ddl=make.design.data(age.process)

#

# Add a young/adult age field to the design data for Phi which we have named ya.

# It uses right=FALSE so that the intervals are 0 (young) and 1 to 7 (adult).

#

age.ddl=add.design.data(age.process,age.ddl,"Phi","age",bins=c(0,1,7),right=FALSE,name="ya")

#
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# Add a field to the Phi design data that is equivalent except that it is a numeric

# dummy coding variable with value 1 for young and 0 for adult; field is named young

#

age.ddl$Phi$young=0

age.ddl$Phi$young[age.ddl$Phi$age==0]=1

#

# Likewise add an adult 0/1 numeric field to the Phi design data which is simply =1-young

#

age.ddl$Phi$adult=1-age.ddl$Phi$young

markyoung_age.models=function()

{

#Create formulas for Phi

# A constant survival model

Phi.dot=list(formula=~1)

# A fully age depdendent but time invariant survival model

Phi.age=list(formula=~age)

# A limited age model (young/adult) but time invariant survival model

Phi.ya=list(formula=~ya)

# Limited age-time interaction survival model; young vary by time but adult

# survival is time invariant. The intercept is the adult value

Phi.yxtime.a=list(formula=~young:time)

# Fully age (young/adult) and time varying survival model with the time effect

# interacting with age. We cannot use ya*time because there are no adults for time1

# The -1 removes the intercept which is not needed because the young:time creates a

# parameter for each time for the young animals and the adult:time creates a parameter

# for each time that has adults. It is equivalent to a PIM coding for the problem

# but still uses a design matrix.

Phi.yaxtime=list(formula=~-1+young:time+adult:time)

#Create formulas for p

p.dot=list(formula=~1)

p.time=list(formula=~time)

#Create model list

cml=create.model.list("CJS")

#Run and return complete set of models

return(mark.wrapper(cml,data=age.process,ddl=age.ddl))

}

# Run analysis function and store in marklist

> markyoung_age.results=markyoung_age.models()

Below is the model results table:

> markyoung_age.results

model npar AICc DeltaAICc weight Deviance

9 Phi(~young:time)p(~1) 8 5050.502 0.000000 0.57098900 139.7729

7 Phi(~-1 + young:time + adult:time)p(~1) 12 5051.756 1.254100 0.30500249 132.9714

10 Phi(~young:time)p(~time) 13 5053.875 3.372900 0.10573331 133.0730

8 Phi(~-1 + young:time + adult:time)p(~time) 17 5057.385 6.883649 0.01827521 128.5015

5 Phi(~ya)p(~1) 3 5169.603 119.101100 0.00000000 268.9136

1 Phi(~age)p(~1) 7 5170.234 119.731864 0.00000000 261.5153

2 Phi(~age)p(~time) 12 5174.617 124.114840 0.00000000 255.8321

6 Phi(~ya)p(~time) 8 5175.432 124.930200 0.00000000 264.7031

4 Phi(~1)p(~time) 7 5385.402 334.900600 0.00000000 476.6840

3 Phi(~1)p(~1) 2 5418.139 367.637300 0.00000000 519.4538
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> #get summary of model 8 to see how it denotes parameter counts and AICc

> summary(markyoung_age.results[[8]])

Output summary for CJS model

Name : Phi(~-1 + young:time + adult:time)p(~time)

Npar : 17 (unadjusted=16)

-2lnL: 5023.183

AICc : 5057.385 (unadjusted=5055.3628)

Beta

estimate se lcl ucl

Phi:young:time1 -1.2946578 0.1785905 -1.6446952 -0.9446205

Phi:young:time2 0.2484213 0.1388986 -0.0238200 0.5206626

Phi:young:time3 0.1464425 0.1308574 -0.1100380 0.4029230

Phi:young:time4 -0.8908855 0.1337821 -1.1530983 -0.6286726

Phi:young:time5 -0.8497168 0.1327969 -1.1099988 -0.5894348

Phi:young:time6 -0.9103939 0.0000000 -0.9103939 -0.9103939

Phi:time2:adult 0.2003894 0.3472809 -0.4802813 0.8810600

Phi:time3:adult 1.1011872 0.2531575 0.6049984 1.5973760

Phi:time4:adult 1.0734292 0.2089632 0.6638612 1.4829971

Phi:time5:adult 0.8498674 0.1874681 0.4824300 1.2173048

Phi:time6:adult 1.2672109 0.0000000 1.2672109 1.2672109

p:(Intercept) 0.4519732 0.3418917 -0.2181345 1.1220810

p:time3 0.0452004 0.3796693 -0.6989513 0.7893522

p:time4 0.1410901 0.3679322 -0.5800569 0.8622371

p:time5 0.1825269 0.3691351 -0.5409778 0.9060316

p:time6 0.4714351 0.3766168 -0.2667339 1.2096041

p:time7 0.3346337 0.0000000 0.3346337 0.3346337

Real Parameter Phi

1 2 3 4 5 6

1 0.2150655 0.5499304 0.7504825 0.7452485 0.7005393 0.7802649

2 0.5617879 0.7504825 0.7452485 0.7005393 0.7802649

3 0.5365453 0.7452485 0.7005393 0.7802649

4 0.2909271 0.7005393 0.7802649

5 0.2994923 0.7802649

6 0.2869192

Real Parameter p

2 3 4 5 6 7

1 0.6111083 0.6217949 0.6440677 0.6535092 0.7157361 0.6871023

2 0.6217949 0.6440677 0.6535092 0.7157361 0.6871023

3 0.6440677 0.6535092 0.7157361 0.6871023

4 0.6535092 0.7157361 0.6871023

5 0.7157361 0.6871023

6 0.6871023

> # show model.table using parameter counts from MARK

> model.table(markyoung_age.results[1:10],adjust=F)

model npar AICc DeltaAICc weight Deviance
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9 Phi(~young:time)p(~1) 8 5050.502 0.0000 0.55330256 139.7729

7 Phi(~-1 + young:time + adult:time)p(~1) 12 5051.756 1.2541 0.29555501 132.9714

10 Phi(~young:time)p(~time) 13 5053.875 3.3729 0.10245821 133.0730

8 Phi(~-1 + young:time + adult:time)p(~time) 16 5055.363 4.8611 0.04868422 128.5015

1 Phi(~age)p(~1) 6 5168.224 117.7226 0.00000000 261.5153

5 Phi(~ya)p(~1) 3 5169.603 119.1011 0.00000000 268.9136

2 Phi(~age)p(~time) 11 5172.601 122.0989 0.00000000 255.8321

6 Phi(~ya)p(~time) 8 5175.432 124.9302 0.00000000 264.7031

4 Phi(~1)p(~time) 7 5385.402 334.9006 0.00000000 476.6840

3 Phi(~1)p(~1) 2 5418.139 367.6373 0.00000000 519.4538

This final results table has the same values as the equivalent table in Chapter 7 except that it contains

more models including the best models.

Now let’s take the next step presented in chapter 7 and consider the situation in which both young

and adults are marked and released. The primary goal of this exercise is to evaluate whether adult

survival differs for the 2 groups: marked as young versus marked as adult.

age_ya=convert.inp("age_ya",group.df=data.frame(age=c("Young","Adult")))

# Process data for CJS model; an initial age is defined as 1 for adults and 0

# for young. They are assigned in that order because they are assigned in order of

# the factor variable which is alphabetical with adult before young. It does not

# matter that adults could be a mixture of ages because we will only model young (0)

# and adult (1+).

age_ya.process=process.data(age_ya,group="age",initial.age=c(1,0))

# Make the default design data

age_ya.ddl=make.design.data(age_ya.process)

#

# Add a young/adult age field to the design data for Phi which we have named ya.

# It uses right=FALSE so that the intervals are 0 (young) and 1 to 7 (adult).

#

age_ya.ddl=add.design.data(age_ya.process,age_ya.ddl,"Phi","age",bins=c(0,1,7),

right=FALSE,name="ya")

#

# Next create a dummy field called marked.as.adult which is 0 for the group

# marked as young and 1 for the group marked as adults.

#

age_ya.ddl$Phi$marked.as.adult=0

age_ya.ddl$Phi$marked.as.adult[age_ya.ddl$Phi$group=="Adult"]=1

Look through the design data for ! so you understand how each of the added fields are defined. Pay

particular attention to the difference between the ya field and marked.as.adult. The field ya represents

age classes and they change over time for an individual marked and released as young whereas the

marked.as.adult is a dummy variable for the grouping and it is static.

> age_ya.ddl$Phi

group cohort age time Cohort Age Time initial.age.class ya marked.as.adult

1 Adult 1 1 1 0 1 0 Adult [1,7] 1

2 Adult 1 2 2 0 2 1 Adult [1,7] 1

3 Adult 1 3 3 0 3 2 Adult [1,7] 1

4 Adult 1 4 4 0 4 3 Adult [1,7] 1

5 Adult 1 5 5 0 5 4 Adult [1,7] 1

6 Adult 1 6 6 0 6 5 Adult [1,7] 1

7 Adult 2 1 2 1 1 1 Adult [1,7] 1

8 Adult 2 2 3 1 2 2 Adult [1,7] 1
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9 Adult 2 3 4 1 3 3 Adult [1,7] 1

10 Adult 2 4 5 1 4 4 Adult [1,7] 1

11 Adult 2 5 6 1 5 5 Adult [1,7] 1

12 Adult 3 1 3 2 1 2 Adult [1,7] 1

13 Adult 3 2 4 2 2 3 Adult [1,7] 1

14 Adult 3 3 5 2 3 4 Adult [1,7] 1

15 Adult 3 4 6 2 4 5 Adult [1,7] 1

16 Adult 4 1 4 3 1 3 Adult [1,7] 1

17 Adult 4 2 5 3 2 4 Adult [1,7] 1

18 Adult 4 3 6 3 3 5 Adult [1,7] 1

19 Adult 5 1 5 4 1 4 Adult [1,7] 1

20 Adult 5 2 6 4 2 5 Adult [1,7] 1

21 Adult 6 1 6 5 1 5 Adult [1,7] 1

22 Young 1 0 1 0 0 0 Young [0,1) 0

23 Young 1 1 2 0 1 1 Young [1,7] 0

24 Young 1 2 3 0 2 2 Young [1,7] 0

25 Young 1 3 4 0 3 3 Young [1,7] 0

26 Young 1 4 5 0 4 4 Young [1,7] 0

27 Young 1 5 6 0 5 5 Young [1,7] 0

28 Young 2 0 2 1 0 1 Young [0,1) 0

29 Young 2 1 3 1 1 2 Young [1,7] 0

30 Young 2 2 4 1 2 3 Young [1,7] 0

31 Young 2 3 5 1 3 4 Young [1,7] 0

32 Young 2 4 6 1 4 5 Young [1,7] 0

33 Young 3 0 3 2 0 2 Young [0,1) 0

34 Young 3 1 4 2 1 3 Young [1,7] 0

35 Young 3 2 5 2 2 4 Young [1,7] 0

36 Young 3 3 6 2 3 5 Young [1,7] 0

37 Young 4 0 4 3 0 3 Young [0,1) 0

38 Young 4 1 5 3 1 4 Young [1,7] 0

39 Young 4 2 6 3 2 5 Young [1,7] 0

40 Young 5 0 5 4 0 4 Young [0,1) 0

41 Young 5 1 6 4 1 5 Young [1,7] 0

42 Young 6 0 6 5 0 5 Young [0,1) 0

>

Before we go too far with this example, we’ll show the simplified PIMS for the ∼ya*timemodel which

we could not fit in the previous example but we can fit now because adults were marked at time 1.

> PIMS(mark(age_ya.process,age_ya.ddl,model.parameters=list(Phi=list(formula=~ya*time)),

output=F),"Phi")

group = ageAdult

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 4 5 6

3 3 4 5 6

4 4 5 6

5 5 6

6 6

group = ageYoung

1 2 3 4 5 6

1 7 2 3 4 5 6
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2 8 3 4 5 6

3 9 4 5 6

4 10 5 6

5 11 6

6 12

The numbering is slightly different than what is shown in the second and final sets of PIMS from

section 8.1.2, but if you look closely you’ll see that the structure is identical with survival varying over

time and interacting with age as defined by young/adult age classes. Hmm, that is quite close to what

we want for the structure to evaluate whether adult survival is different between the 2 groups. All we

really need to do is add marked.as.adult to the formula. Let’s fit that model for ! and the sub-model

given above and assume that capture probability varies by group but is time-invariant:

age_ya.models=function() {

Phi.ya.time.plus.marked.as.adult=list(formula=~ya*time+marked.as.adult)

Phi.ya.time=list(formula=~ya*time)

p.marked.as.adult=list(formula=~marked.as.adult)

cml=create.model.list("CJS")

results=mark.wrapper(cml,data=age_ya.process,ddl=age_ya.ddl,output=FALSE)

return(results) }

age_ya.results=age_ya.models()

Variable marked.as.adult used in formula is not defined in data

Error in make.mark.model(data.proc, title = title, covariates =

covariates, :

Variable marked.as.adult used in formula is not defined in data

Error in make.mark.model(data.proc, title = title, covariates =

covariates, :

No mark models found Error in collect.models() :

What did we do wrong? We defined marked.as.adult and the spelling and punctuation is correct.

You will make this mistake which is why we showed it. The error message could be made better because

itdoes not tellyou where the problem occurs,but remember thatdesign data is specific to eachparameter

and we only defined the marked.as.adult field for ! but we just used it above for the formula for p.

That is the problem. One solution would be to use ∼group for the formula for p because that will give

the same model with a slightly different parameterization. Another solution is to create the design data

as follows and re-run the analysis:

> age_ya.ddl$p$marked.as.adult=0

> age_ya.ddl$p$marked.as.adult[age_ya.ddl$p$group=="Adult"]=1

> age_ya.results=age_ya.models()

> age_ya.results

model npar AICc DeltaAICc weight Deviance

2 Phi(~ya * time + marked.as.adult)p(~marked.as.adult) 15 13846.48 0.000 0.5304622 274.5737

1 Phi(~ya * time)p(~marked.as.adult) 14 13846.72 0.244 0.4695378 276.8261
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Did we get the models and parameter counts correct? With the ∼ya*time model shown in the final

set of PIMS in 8.1.2 there are 12 parameters for ! and for our model with p there are 2 parameters (one

for each group) so that is 14 and it matches the count for model 1. Our model 2 adds a single parameter

for ! so that makes 15 also matching the results. If we look at the simplified PIMS for ! with model 2

we see that the structure matches the PIMS laid out for this problem with 17 indices, but they are not

numbered in the same order:

> PIMS(age_ya.results[[2]],"Phi")

group = ageAdult

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 3 4 5 6

3 3 4 5 6

4 4 5 6

5 5 6

6 6

group = ageYoung

1 2 3 4 5 6

1 7 8 9 10 11 12

2 13 9 10 11 12

3 14 10 11 12

4 15 11 12

5 16 12

6 17

The design matrix also does not match the one shown in 8.1.2 because the rows are ordered differently

and the effects are parameterized differently so the betas will be different but the real parameters would

be the same. The design matrix shown below is a cosmetically edited version of the contents contained

in age_ya.results[[2]]$design.matrix to make it more visually apparent. The design matrix is stored

as a matrix of strings so the "" were removed, the marked.as.adult column was moved over, the column

headers were renamed to use adult rather than the factor ya:[1,7]. The intercept (the first column) is

for young- time1 which is apparent when you see that row 7 (the index for this parameter) is the one

with a single 1 in the row. The second column is the additive age-effect for adult survival and the third

column is the marked.as.adult effect which is 1 for only the first 6 rows (indices 1-6). Columns 4-8 are

baseline time effects for times 2 to 6. Finally, columns 9-13 are the interaction of time with age for adults.

All of these columns would be the same for model 1 except that column 3 would not be included.

Adult Adult 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Adult Adult 2 1 1 1 1 0 0 0 0 1 0 0 0 0

Adult Adult 3 1 1 1 0 1 0 0 0 0 1 0 0 0

Adult Adult 4 1 1 1 0 0 1 0 0 0 0 1 0 0

Adult Adult 5 1 1 1 0 0 0 1 0 0 0 0 1 0

Adult Adult 6 1 1 1 0 0 0 0 1 0 0 0 0 1

Young Young 7 1 0 0 0 0 0 0 0 0 0 0 0 0

Young Adult 8 1 1 0 1 0 0 0 0 1 0 0 0 0

Young Adult 9 1 1 0 0 1 0 0 0 0 1 0 0 0

Young Adult 10 1 1 0 0 0 1 0 0 0 0 1 0 0

Young Adult 11 1 1 0 0 0 0 1 0 0 0 0 1 0

Young Adult 12 1 1 0 0 0 0 0 1 0 0 0 0 1

Young Young 13 1 0 0 1 0 0 0 0 0 0 0 0 0
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Young Young 14 1 0 0 0 1 0 0 0 0 0 0 0 0

Young Young 15 1 0 0 0 0 1 0 0 0 0 0 0 0

Young Young 16 1 0 0 0 0 0 1 0 0 0 0 0 0

Young Young 17 1 0 0 0 0 0 0 1 0 0 0 0 0

It is also useful to distinguishhere between TSM (time since marking) andage models.This distinction

is made based on the initial age that is assigned to groups. If the initial ages for the groups are identical

(and technically 0) then age in the design data is really TSM. Age and TSM are the same when everything

is the same age at marking like in the example when only young were marked. If you assign different

initial ages to groups to represent actual age, you can still define a TSM field in the design data as

age-initial age but make sure to use numeric values like Age or convert factors to numeric values to do

the calculation.

Let’s go back to the dipper data to show some more complications that can arise when the design is

not fully crossed. In this case, we will assume that dippers are all released at age 0 and we expect that

survival is time dependent for young (age 0) but not for all adults (1+). Also, we expect age differences

in adult survival and we expect that the age differences might be different for males and females. Also,

we expect that adult capture probability changes when they reach age 2 for females and age 3 for males.

This is most likely bogus for dippers but then again it is just an example. So how do we go about building

a set of models? First, we need to set up the design data that we need for the structure that we have

identified. The following code processes the data, makes the default design data and then creates fields

adult (0/1) and young (0/1) in the # design data and the variable shift (0/1) in ? which was defined

to create a sex-specific timing of a shift in capture probability possibly associated with the onset of

breeding age.

> dipper.processed=process.data(dipper,begin.time=1980,groups="sex")

> dipper.ddl=make.design.data(dipper.processed)

> dipper.ddl$Phi$adult=0

> dipper.ddl$Phi$adult[dipper.ddl$Phi$age>=1]=1

> dipper.ddl$Phi$adult[dipper.ddl$Phi$Age>=1]=1

> dipper.ddl$Phi$young=1- dipper.ddl$Phi$adult

> dipper.ddl$Phi

> dipper.ddl$p$shift=0

> dipper.ddl$p$shift[dipper.ddl$p$Age>=3&dipper.ddl$p$sex=="Male"]=1

> dipper.ddl$p$shift[dipper.ddl$p$Age>=2&dipper.ddl$p$sex=="Female"]=1

> dipper.ddl$p

With these fields defined we can consider how to construct formula for various models that we

propose. First we will consider the ! models and we will use the R functions model.matrix and colSums

to examine how the model is constructed. Using model.matrix within colSums will show the columns

in the design matrix and if they are non-zero. For example, if we want time dependent survival for the

young we could do as follows:

> colSums(model.matrix(~young:time,dipper.ddl$Phi))

(Intercept) young:time1980 young:time1981 young:time1982 young:time1983 young:time1984 young:time1985

42 2 2 2 2 2 2

This formula would create 6 parameters for young survival and then an intercept which would apply

to adults which would have a constant survival. If we wanted to add an age and sex dependent survival

for adults it would look as follows:

> colSums(model.matrix(~young:time+adult:age:sex,dipper.ddl$Phi))

(Intercept) young:time1980 young:time1981 young:time1982 young:time1983
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42 2 2 2 2

young:time1984 young:time1985 adult:age0:sexFemale adult:age1:sexFemale adult:age2:sexFemale

2 2 0 5 4

adult:age3:sexFemale adult:age4:sexFemale adult:age5:sexFemale adult:age0:sexMale adult:age1:sexMale

3 2 1 0 5

adult:age2:sexMale adult:age3:sexMale adult:age4:sexMale adult:age5:sexMale

4 3 2 1

However, it has 17 non-zero columns but we only need 16 parameters (6 for age 0 and 5 each for the

ages 1-5 for both male and female). The solution as noted above was to use the -1 to remove the intercept

to get 16 parameters:

> colSums(model.matrix(~-1+young:time+adult:age:sex,dipper.ddl$Phi))

young:time1980 young:time1981 young:time1982 young:time1983 young:time1984

2 2 2 2 2

young:time1985 adult:age0:sexFemale adult:age1:sexFemale adult:age2:sexFemale adult:age3:sexFemale

2 0 5 4 3

adult:age4:sexFemale adult:age5:sexFemale adult:age0:sexMale adult:age1:sexMale adult:age2:sexMale

2 1 0 5 4

adult:age3:sexMale adult:age4:sexMale adult:age5:sexMale

3 2 1

Now, what if we wanted a model with age effects and an additive sex effect solely for adults:

> colSums(model.matrix(~-1+young:time+adult:age+adult:sex,dipper.ddl$Phi))

young:time1980 young:time1981 young:time1982 young:time1983 young:time1984 young:time1985 adult:age0

2 2 2 2 2 2 0

adult:age1 adult:age2 adult:age3 adult:age4 adult:age5 adult:sexMale

10 8 6 4 2 15

That works as expected with 12 non-zero columns for the 12 parameters (6 for young, 5 for ages and

1 additive sex effect (male) for the adult age classes.

However, if we wanted an additive sex effect for each age including young, things go awry:

> colSums(model.matrix(~-1+young:time+adult:age+sex,dipper.ddl$Phi))

sexFemale sexMale young:time1980 young:time1981 young:time1982 young:time1983 young:time1984

21 21 2 2 2 2 2

young:time1985 adult:age0 adult:age1 adult:age2 adult:age3 adult:age4 adult:age5

2 0 10 8 6 4 2

because the -1 does not remove the intercept and it simply changes the design matrix to have separate

intercepts for each sex and we end up with 13 parameters instead of 12 as above. Although it will

not affect model.matrix, the solution for RMark is to set the argument remove.intercept=TRUE in the

parameter specification as shown below. That will force removal of the intercept and can always be used

in place of the -1 in a formula. If you use remove.intercept=TRUE, do not use the -1 in the formula.

On the next page is the script for this analysis which examines a sequence of models for ! including

those above and a sequence for p including the shift in p. Given that this example was contrived it

should be surprising that these imaginary models were not particularly good ones, but we show the

results to demonstrate that the number of parameters were correct.

do.complicated.dipper.models=function()

{

# retrieve data, process it for CJS model and make default design data

data(dipper)

dipper.processed=process.data(dipper,begin.time=1980,groups="sex")

dipper.ddl=make.design.data(dipper.processed)

# create additional Phi fields adult and young

dipper.ddl$Phi$adult=0
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dipper.ddl$Phi$adult[dipper.ddl$Phi$Age>=1]=1

dipper.ddl$Phi$young=1- dipper.ddl$Phi$adult

# create additional p field for sex-specific shift in p at "breeding" age

dipper.ddl$p$shift=0

dipper.ddl$p$shift[dipper.ddl$p$Age>=3&dipper.ddl$p$sex=="Male"]=1

dipper.ddl$p$shift[dipper.ddl$p$Age>=2&dipper.ddl$p$sex=="Female"]=1

# define models for Phi

Phi.dot=list(formula=~1)

Phi.ytime=list(formula=~young:time)

Phi.ytime.plus.adultxagexsex=list(formula=~young:time+adult:age:sex,remove.intercept=TRUE)

Phi.ytime.plus.adultxage.plussex=list(formula=~young:time+adult:age+sex,remove.intercept=TRUE)

Phi.ytime.plus.adultxage.plusadultxsex=list(formula=~young:time+adult:age+adult:sex,

remove.intercept=TRUE)

# define models for p

p.dot=list(formula=~1)

p.time=list(formula=~time)

p.shift=list(formula=~shift)

p.shiftxsex=list(formula=~shift*sex)

# create model list

cml=create.model.list("CJS")

# run and return models

return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))

}

complicated.results=do.complicated.dipper.models()

complicated.results

model npar AICc DeltaAICc weight Deviance

1 Phi(~1)p(~1) 2 670.8660 0.000000 5.877454e-01 84.36055

2 Phi(~1)p(~shift) 3 672.8926 2.026520 2.133713e-01 84.35857

5 Phi(~young:time)p(~1) 8 674.6677 3.801640 8.783621e-02 75.84524

3 Phi(~1)p(~shift * sex) 5 675.9918 5.125757 4.530490e-02 83.37182

6 Phi(~young:time)p(~shift) 9 676.7273 5.861220 3.136472e-02 75.81745

4 Phi(~1)p(~time) 7 678.7481 7.882080 1.141872e-02 82.00306

9 Phi(~young:time + adult:age + adult:sex)p(~1) 13 679.7517 8.885695 6.913294e-03 70.39112

7 Phi(~young:time)p(~shift * sex) 11 680.1781 9.312101 5.585887e-03 75.06334

13 Phi(~young:time + adult:age + sex)p(~1) 13 681.2700 10.403965 3.235913e-03 71.90939

10 Phi(~young:time + adult:age + adult:sex)p(~shift) 14 681.7379 10.871858 2.560916e-03 70.23888

8 Phi(~young:time)p(~time) 13 682.5149 11.648835 1.736508e-03 73.15426

14 Phi(~young:time + adult:age + sex)p(~shift) 14 683.3693 12.503268 1.132763e-03 71.87029

17 Phi(~young:time + adult:age:sex)p(~1) 17 684.4892 13.623220 6.470601e-04 66.51214

11 Phi(~young:time+adult:age+adult:sex)p(~shift*sex) 16 684.9887 14.122623 5.040812e-04 69.18147

18 Phi(~young:time + adult:age:sex)p(~shift) 18 686.5849 15.718830 2.269283e-04 66.42716

15 Phi(~young:time + adult:age + sex)p(~shift * sex) 16 687.0127 16.146713 1.832209e-04 71.20556

12 Phi(~young:time + adult:age + adult:sex)p(~time) 18 687.9284 17.062380 1.159152e-04 67.77071

16 Phi(~young:time + adult:age + sex)p(~time) 18 689.2101 18.344070 6.106960e-05 69.05240

19 Phi(~young:time + adult:age:sex)p(~shift * sex) 20 689.8623 18.996264 4.407607e-05 65.31111

20 Phi(~young:time + adult:age:sex)p(~time) 22 692.6151 21.749106 1.112835e-05 63.62686
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C.16. Individual covariates

As promised,we will now divulge the fourth trick in RMark which was needed to encompass individual

covariates. You do not need to know how this trick works to use RMark and we are only describing

it here in case someone wanted to use it in another similar application. If you look through the help

file for make.mark.model you will see that there are arguments for a parameter specification called

component and component.name. These arguments were included before the fourth trick was discovered

and included. Now they are no longer needed. Those arguments were used to create additional columns

that were pasted onto the design matrix to include individual covariates. This was done because

individual covariates are entered into the design matrix for MARK as a string which contains the name

of the covariate rather than 0 or 1 or other numeric value. There is no direct way to use model.matrix

to do add these covariate names - thus the trick.

When RMark encounters an individual covariate (a name not in the design data), it creates a dummy

variable in the design data for that covariate. The covariate name is used for the dummy variable name

and it is given the value 1 for each row in the design data. Then the entire formula with the individual

covariate and the modified design data is passed to model.matrix to create the design matrix which is

only partially complete. RMark then processes the design matrix further to add the covariate names for

MARK. Any columns with names that contain any individual covariate are modified in the following

way: 1) any 0 values are left as is, 2) any value of 1 is changed to a string with the name of the covariate,

and 3) if the value is neither 1 or 0, then it uses the product construct used in MARK design matrices

and the value is replaced with the string “product(value,covariate_name)". The final step enables the

use of formula containing interactions of individual covariates and design data covariates.

There is actually one more step that RMark does to enable time-varying covariates. If you use an

individual covariate name that does not exist in the data, then it will look for variables that have that

name as the prefix and a sequence of suffixes that match the values of the time variable in the design data

for that particular parameter. This means that the variable names have to be constructed in a fashion

that is consistent with the value chosen for begin.time and which is consistent with the labeling of times

which is different for interval parameters such as ! and occasion parameters like p. If RMark finds a set

of covariates that are properly named, then it constructs the design matrix using the covariate names

that are appropriate for each row in the design matrix based on the value of the time field for that

specific parameter.

Well with that said there is not much more to say about individual covariates except to show some

examples that demonstrate how they are used in formula and how covariate-specific real parameter

estimates can be computed after the model is fitted. To do that, we will continue to abuse the dipper

data and create some imaginary weight data which was the weight of the bird at the time of first capture.

We will fit models in which weight affects survival for all times for both sexes ( weight) and then with a

sex effect and sex-weight interaction ( sex*weight). We will also show how the affect of the covariate can

be limited to the first survival post-capture ( young:weight). The following is the script that examines

these and other models. Comments are given to explain each ! model.

# retrieve data, create some imaginary weight data using a random normal

> data(dipper)

> dipper$weight=rnorm(294,10,2)

> do.dipper.covariate.example=function()

{

# process the data for CJS model and make default design data

dipper.processed=process.data(dipper,begin.time=1980,groups="sex")

dipper.ddl=make.design.data(dipper.processed)

# create additional Phi fields adult and young
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dipper.ddl$Phi$adult=0

dipper.ddl$Phi$adult[dipper.ddl$Phi$Age>=1]=1

dipper.ddl$Phi$young=1- dipper.ddl$Phi$adult

# define models for Phi

Phi.dot=list(formula=~1)

# weight only for all survivals

Phi.weight=list(formula=~weight)

# sex and sex-dependent slope for weight

Phi.weight.x.sex=list(formula=~weight*sex)

# same intercept for male/female with a sex-dependent slope for weight

Phi.weight.sex=list(formula=~weight:sex)

# effect of weight only for first time post-capture; if you exclude the

# adult term, then an adult would have the intercept survival which would

# be the value for weight=0

Phi.weight.plus.sex=list(formula=~adult + young:weight)

# define models for p

p.dot=list(formula=~1)

p.time=list(formula=~time)

# create model list

cml=create.model.list("CJS")

# run and return models

return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))

}

> covariate.results=do.dipper.covariate.example()

The results really do not matter because the example and data are bogus, but it is useful to examine

the resulting design matrix that was constructed for some of these models. You can look at the simplified

design matrix easily as follows:

> covariate.results[[3]]$design.matrix

Phi:(Intercept) Phi:weight p:(Intercept)

Phi gFemale c1980 a0 t1980 "1" "weight" "0"

p gFemale c1980 a1 t1981 "0" "0" "1"

> covariate.results[[5]]$design.matrix

Phi:(Intercept) Phi:adult Phi:young:weight p:(Intercept)

Phi gFemale c1980 a0 t1980 "1" "0" "weight" "0"

Phi gFemale c1980 a1 t1981 "1" "1" "0" "0"

p gFemale c1980 a1 t1981 "0" "0" "0" "1"

> covariate.results[[7]]$design.matrix

Phi:(Intercept) Phi:weight:sexFemale Phi:weight:sexMale p:(Intercept)

Phi gFemale c1980 a0 t1980 "1" "weight" "0" "0"

Phi gMale c1980 a0 t1980 "1" "0" "weight" "0"

p gFemale c1980 a1 t1981 "0" "0" "0" "1"

> covariate.results[[9]]$design.matrix

Phi:(Intercept) Phi:weight Phi:sexMale Phi:weight:sexMale p:(Intercept)

Phi gFemale c1980 a0 t1980 "1" "weight" "0" "0" "0"

Phi gMale c1980 a0 t1980 "1" "weight" "1" "weight" "0"

p gFemale c1980 a1 t1981 "0" "0" "0" "0" "1"
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These are the simplified design matrices which are used after the PIMS have been recoded from

all-different to the unique values. The non-simplified design matrix would contain 42 rows for ! and

42 rows for ?. Notice that the resulting number of rows in the simplified design matrix depends on the

formulas used which determine the unique number of parameters required.

It is useful to examine the design matrix to make sure you get the model you think that you specified

with the formula. Even though RMark creates the PIMS and design matrix for you, it does not mean

that you can shut off your brain and stop thinking. As an example, it would be very easy to make

a mistake and specify the one model as ∼young:weight. At first glance that might seem to do what

you want to restrict the effect of weight to the first capture ! and it does do that but it also stupidly

assigns adult survival to the intercept which is the value where weight=0. Even though RMark removes

the drudgery of creating design matrices, it does not eliminate the possibility of making a mistake by

incorrect specification of the model. Examining the design matrix and using model.matrix (if there are

no individual covariates) is the best way to prevent those mistakes.

Once you have fitted models using individual covariates, you will often want to compute predicted

values at one or more covariate values. There are several functions to do this including compute.real

but the most complete and easiest to use is covariate.predictions. Below we compute the value of

survival for young in 1980 (index=1) for a range of values for weight and then plot the predicted values

with confidence intervals as a function of weight. Because we used covariate.results (a marklist of

models) the predictions are averaged over the models in the list and the estimates of precision include

model uncertainty. See the help file for detailed information about covariate.predictions. Note that

the names of the fields in the dataframe must match the names of covariates that you used in the model

(e.g., weight).

> minmass=min(dipper$weight)

> maxmass=max(dipper$weight)

> mass.values=minmass+(0:30)*(maxmass-minmass)/30

> Phibymass=covariate.predictions(covariate.results,data=data.frame(weight=mass.values),indices=c(1))

# Plot predicted model averaged estimates by weight with pointwise confidence intervals

> plot(Phibymass$estimates$covdata, Phibymass$estimates$estimate,

type="l",lwd=2,xlab="Mass(kg)",ylab="Survival",ylim=c(0,1))

> lines(Phibymass$estimates$covdata, Phibymass$estimates$lcl,lty=2)

> lines(Phibymass$estimates$covdata, Phibymass$estimates$ucl,lty=2)

Now let’s consider time-varying individual covariates. RMark contains a pre-programmed time-

varying covariate which is either age or TSM (time-since-marking) but it is handled via the parameter

structure rather than with an individual covariate with the data. But it is a good example, because it

illustrates that the value of time-varying covariates need to be known for each animal at each occasion

regardless of whether it was caught or not at the occasion. Thus, the time-varying covariate cannot be

one that requires capturing and handling of the animal. Beyond, age an obvious candidate for a time-

varying individual covariate for the CJS model is a trap-dependence covariate. The idea here is that

animals that were caught on a previous occasion are more likely to be caught on the next occasion. If 48
is the value of the capture history at occasion i, then it becomes the time varying covariate for modeling

?8+1. In a CJS model only ?2 , . . . , ?: are estimated for a history with k occasions, so the time varying

covariates are 41 , . . . , 4:−1 for those parameters. Below with the dipper data we construct a sequence of

covariates labeled C31981, . . . , C31986 that contain the capture history entry for the years 1980 to 1985 for

each dipper. They are labeled with the 1981 to 1986 suffix because those will be the times for the capture

probabilities if we use begin.time=1980. Had we not included the assignment of begin.time, the times

would default to begin at 1,and the variables would have to be namedtd2,. . . ,td7 to be properly handled

by the formula. First we start with a function that creates the trap dependence variable. It was written

as a function because it is general and could be used elsewhere; although it would have to be changed

if the time intervals between occasions were not 1.
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> create.td=function(ch,varname="td",begin.time=1)

#

# Arguments:

# ch - capture history vector (0/1 values only)

# varname - prefix for variable name

# begin.time - time for first occasion

#

# Value:

# returns a datframe with trap-dependent variables

# named varnamet+1,...,varnamet+nocc-1

# where t is begin.time and nocc is the

# number of occasions

#

{

# turn vector of capture history strings into a vector of characters

char.vec=unlist(strsplit(ch,""))

# test to make sure they only contain 0 or 1

if(!all(char.vec %in% c(0,1)))

stop("Function only valid for CJS model without missing values")

else

{

# get number of occasions (nocc) and change it into a matrix of numbers

nocc=nchar(ch[1])

tdmat=matrix(as.numeric(char.vec),ncol=nocc,byrow=TRUE)

# remove the last column which is not used

tdmat=tdmat[,1:(nocc-1)]

# turn it into a dataframe and assign the field (column) names

tdmat=as.data.frame(tdmat)

names(tdmat)=paste(varname,(begin.time+1):(begin.time+nocc-1),sep="")

return(tdmat)

}

}

Next we follow with the script that adds the variables to the dipper data and then uses the time-

varying covariate in a few models. Note that you only use the prefix (e.g., td) in the formula and

RMark adds the relevant suffix for the parameter.

> do.dipper.td=function()

{

# get data and add the td time-varying covariate, process the data

# and create the design data

data(dipper)

dipper=cbind(dipper,create.td(dipper$ch,begin.time=1980))

dipper.processed=process.data(dipper,begin.time=1980)

dipper.ddl=make.design.data(dipper.processed)

# create additional p field adult

dipper.ddl$p$adult=0

dipper.ddl$p$adult[dipper.ddl$p$Age > 1]=1

# define models for Phi

Phi.dot=list(formula=~1)
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# define models for p

p.td=list(formula=~td)

p.td.adult=list(formula=~td:adult)

p.td.time=list(formula=~td:time)

p.time.plus.td=list(formula=~time+td)

# create model list

cml=create.model.list("CJS")

# run and return models

return(mark.wrapper(cml,data=dipper.processed,ddl=dipper.ddl))

}

> td.results=do.dipper.td()

Rather than focusing on the results, let’s look at the design matrices for the models involving the

time-varying covariate. In the first model (∼td), we see that it added each covariate that matched the

correct time dependent covariate that matched the parameter for 1981 to 1986 which we can see with

the call to PIMS are indices 2 through 7.

> td.results[[1]]$design.matrix

Phi:(Intercept) p:(Intercept) p:td

Phi g1 c1980 a0 t1980 " 1" "0" "0"

p g1 c1980 a1 t1981 "0" "1" "td1981"

p g1 c1980 a2 t1982 "0" "1" "td1982"

p g1 c1980 a3 t1983 "0" "1" "td1983"

p g1 c1980 a4 t1984 "0" "1" "td1984"

p g1 c1980 a5 t1985 "0" "1" "td1985"

p g1 c1980 a6 t1986 "0" "1" "td1986"

> PIMS(td.results[[1]],"p")

group = Group 1

1981 1982 1983 1984 1985 1986

1980 2 3 4 5 6 7

1981 3 4 5 6 7

1982 4 5 6 7

1983 5 6 7

1984 6 7

1985 7

Now, if the experiment was one in which the animals were released we might not want to have a trap

dependence for the first occasion after the initial release because it might not reflect trap dependence.

We can limit the effect to occasions other than the first after release by interacting td with the adult

design covariate (∼adult:td). Note that parameter 2 does not have the trap-dependence effect and thus

td1981 is not used.

> td.results[[2]]$design.matrix

Phi:(Intercept) p:(Intercept) p:td:adult

Phi g1 c1980 a0 t1980 "1" "0" "0"

p g1 c1980 a1 t1981 "0" "1" "0"

p g1 c1980 a2 t1982 "0" "1" "td1982"

p g1 c1980 a3 t1983 "0" "1" "td1983"

p g1 c1980 a4 t1984 "0" "1" "td1984"
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p g1 c1980 a5 t1985 "0" "1" "td1985"

p g1 c1980 a6 t1986 "0" "1" "td1986"

> PIMS(td.results[[2]],"p")

group = Group 1

1981 1982 1983 1984 1985 1986

1980 2 3 4 5 6 7

1981 2 4 5 6 7

1982 2 5 6 7

1983 2 6 7

1984 2 7

1985 2

Now, if you thought that the trap dependence effect might vary by time, you could interact timewith

td(∼time:td). Note that here the time effect is only for those caught on the previous occasion. Bit of a

strange model without the main effect for time.

> td.results[[3]]$design.matrix

Phi:(Intercept) p:(Intercept) p:td:time1981 p:td:time1982 p:td:time1983 p:td:time1984 p:td:time1985 p:td:time1986

Phi g1 c1980 a0 t1980 "1" "0" "0" "0" "0" "0" "0" "0"

p g1 c1980 a1 t1981 "0" "1" "td1981" "0" "0" "0" "0" "0"

p g1 c1980 a2 t1982 "0" "1" "0" "td1982" "0" "0" n "0" "0"

p g1 c1980 a3 t1983 "0" "1 "0" "0" "td1983" "0" "0" "0"

p g1 c1980 a4 t1984 "0" n "1" "0" n "0" "0" "td1984" "0" "0"

p g1 c1980 a5 t1985 "0" n "1" "0" "0" "0" "0" "td1985" "0"

p g1 c1980 a6 t1986 "0" "1" "0" "0" "0" "0" "0" "td1986"

Finally, another model might be one with a time effect and an additive trap dependence effect

(∼time+td).

> td.results[[4]]$design.matrix

Phi:(Intercept) p:(Intercept) p:time1982 p:time1983 p:time1984 p:time1985 p:time1986 p:td

Phi g1 c1980 a0 t1980 "1" "0" "0" "0" "0" "0" "0" "0"

p g1 c1980 a1 t1981 "0" "1" n "0" "0" "0" "0" "0" "td1981"

p g1 c1980 a2 t1982 "0" "1" "1" "0" "0" "0" "0" "td1982"

p g1 c1980 a3 t1983 "0" "1" "0" "1" "0" "0" "0" "td1983"

p g1 c1980 a4 t1984 "0" "1" "0" "0" "1" "0" "0" "td1984"

p g1 c1980 a5 t1985 "0" "1" "0" "0" "0" "1" "0" "td1985"

p g1 c1980 a6 t1986 "0" "1" "0" "0" "0" "0" "1" "td1986"

> PIMS(td.results[[4]],"p",simplified=F)

group = Group 1

1981 1982 1983 1984 1985 1986

1980 22 23 24 25 26 27

1981 28 29 30 31 32

1982 33 34 35 36

1983 37 38 39

1984 40 41

1985 42

When RMark runs MARK with an individual covariate model, it does not standardize the covariates

(MARK does this on the fly) and MARK computes the real parameter estimates using the mean

of the covariate value which may not be particularly useful. We’ll again demonstrate the use of

covariate.predictions to show how you can get the predicted values of p with td=0 and 1 using

this final model 4. This is a useful example to show how you limit predictions for covariates to specific

parameters because in this case each covariate only applies to one parameter. To do so, the dataframe

that is passed to the function should contain a field named indexwhich is the parameter index for the
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non-simplified PIM which is shown above. We want to compute a value of ? for td=0 and td=1 for each

time which can be specified with indices 22 through 27. The following 3 commands create the necessary

dataframe as we can tell from the output:

> cov.df=data.frame(rbind(diag(rep(1,6)),diag(rep(0,6))))

> names(cov.df)=paste("td",1981:1986,sep="")

> cov.df$index=rep(22:27,2)

> cov.df

td1981 td1982 td1983 td1984 td1985 td1986 index

1 1 0 0 0 0 0 22

2 0 1 0 0 0 0 23

3 0 0 1 0 0 0 24

4 0 0 0 1 0 0 25

5 0 0 0 0 1 0 26

6 0 0 0 0 0 1 27

7 0 0 0 0 0 0 22

8 0 0 0 0 0 0 23

9 0 0 0 0 0 0 24

10 0 0 0 0 0 0 25

11 0 0 0 0 0 0 26

12 0 0 0 0 0 0 27

The following gets the predicted values and plots them for td=1 and td=0 as 2 different lines:

> p.est=covariate.predictions(td.results[[4]],data=cov.df)

> plot(1981:1986,p.est$estimates$estimate[1:6],type="b",ylim=c(0,1),xlab="Time",

ylab="Capture probability",pch=1)

> lines(1981:1986,p.est$estimates$estimate[7:12],type="b",pch=2)

> legend(x=1984,y=.2,legend=c("td=1","td=0"),pch=1:2)

C.17. Multi-strata example

So far we have only used the CJS model in describing the RMark package. Now we switch to giving

some examples with some of the other models supported by RMark (Table C.1). In general, there is

little difference in using any of the models within RMark except for differences in the model parameters

and some subtle differences due to the model structure. Each of the models in RMark comes with an

example data set which shows a sample of analyses which often mimic the results in the sample MARK

.dbf for that model.

We start off with the Multistrata model because it is a fairly useful model and it follows naturally

from a discussion of time-varying covariates. The strata in the Multistratum model can be viewed

as a time-varying factor variable for each animal except that the stratum (state) for each animal need

not be known at each occasion. For the Multistrata model we use the mstrata data that corresponds

to the mssurv example that accompanies MARK. For the Multistrata model there are 3 parameters:

# (transition), S (survival) and p (capture). There are additional design data for these parameters to

accommodate the strata. The strata labels are determined by the alphabetic characters used in the

encounter history and need not be A to C like in this example. Below we show summaries for the

design data for # and ? (S is similar) for this example:
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> data(mstrata)

> mstrata.processed=process.data(mstrata,model="Multistrata")

> mstrata.ddl=make.design.data(mstrata.processed)

> summary(mstrata.ddl$Psi)

group cohort age time stratum tostratum Cohort Age Time

1:36 1:18 0:18 1: 6 A:12 A:12 Min. :0.0000 Min. :0.0000 Min. :0.000

2:12 1:12 2:12 B:12 B:12 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:1.000

3: 6 2: 6 3:18 C:12 C:12 Median :0.5000 Median :0.5000 Median :1.500

Mean :0.6667 Mean :0.6667 Mean :1.333

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:2.000

Max. :2.0000 Max. :2.0000 Max. :2.000

A B

Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000

Mean :0.3333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000

C toA toB toC

Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000

Mean :0.3333 Mean :0.3333 Mean :0.3333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000

> summary(mstrata.ddl$p)

group cohort age time stratum Cohort Age Time A

1:18 1:9 1:9 2:3 A:6 Min. :0.0000 Min. :1.000 Min. :0.000 Min. :0.0000

2:6 2:6 3:6 B:6 1st Qu.:0.0000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:0.0000

3:3 3:3 4:9 C:6 Median :0.5000 Median :1.500 Median :1.500 Median :0.0000

Mean :0.6667 Mean :1.667 Mean :1.333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:2.000 3rd Qu.:1.0000

Max. :2.0000 Max. :3.000 Max. :2.000 Max. :1.0000

B C

Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000

Mean :0.3333 Mean :0.3333

3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000

For all of the parameters, a stratum factor variable is included in the design data and a dummy

variable (0/1) is included and named with the stratum label. For# parameters which describe transition

from one stratum to another stratum, there are bothstratum and tostratum factor and dummy variables.

Additional design data can be added with merge_design.covariates which can add data based on

group and time variables. But if you want to add design data that is specific to particular strata then

you’ll need to write your own code. You can use the R function merge or if it is just one or two covariates

you can use specific R statements that add the covariate as in the following example that adds a distance

covariate to the mstrata example.
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> run.mstrata=function()

{

# Process data

mstrata.processed=process.data(mstrata,model="Multistrata")

# Create default design data

mstrata.ddl=make.design.data(mstrata.processed) # Add distance covariate

mstrata.ddl$Psi$distance=0

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="A"&mstrata.ddl$Psi$tostratum=="B"]=12

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="A"&mstrata.ddl$Psi$tostratum=="C"]=5

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="B"&mstrata.ddl$Psi$tostratum=="C"]=2

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="B"&mstrata.ddl$Psi$tostratum=="A"]=12

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="C"&mstrata.ddl$Psi$tostratum=="A"]=5

mstrata.ddl$Psi$distance[mstrata.ddl$Psi$stratum=="C"&mstrata.ddl$Psi$tostratum=="B"]=2

# Create formula

Psi.distance=list(formula=~distance)

Psi.distance.time=list(formula=~distance+time)

p.stratum=list(formula=~stratum)

S.stratum=list(formula=~stratum)

model.list=create.model.list("Multistrata")

mstrata.results=mark.wrapper(model.list,data=mstrata.processed,ddl=mstrata.ddl)

return(mstrata.results)

}

> mstrata.results=run.mstrata()

> mstrata.results

The code that creates the models in the MARK example (mssurv) can be found by typing ?mstrata

in RMark or can be run by typing example(mstrata). Constructing models for the Multistrata

parameters is essentially the same as with the CJS model with the exception of # which is different

due to its unique structure. For each stratum, there are transition parameters to the other strata and

the probability of remaining in the stratum is computed by subtraction. Thus, for the mstrata example

there is a transition from A to B and A to C and A to A is computed by subtraction. The same holds for

the other strata. Thus, the stratum and tostratum factors are not fully crossed by default.

> table(mstrata.ddl$Psi[,c("stratum","tostratum")])

tostratum

stratum A B C

A 0 6 6

B 6 0 6

C 6 6 0

Thus, to specify the interaction of stratum and tostratum to estimate each # parameter without

restriction you would use Psi.s=list(formula=∼-1+stratum:tostratum) and to fit the model with

time varying transitions the model the # specification would be

> Psi.sxtime=list(formula=~-1+stratum:tostratum:time)

The transition that is computed by subtraction can be changed with the subtract.stratum argument

of the make.design.data function. For this example the default call is equivalent to:

> mstrata.ddl=make.design.data(mstrata.processed,parameters=

list(Psi=list(subtract.stratum=c("A","B","C"))))
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but they can also be set such that the same stratum is computed by subtraction for all stratum:

> mstrata.ddl=make.design.data(mstrata.processed,parameters=

list(Psi=list(subtract.stratum=c("B","B","B"))))

which does provide fully-crossed stratum and tostratum factors.

> table(mstrata.ddl$Psi[,c("stratum","tostratum")])

tostratum

stratum A C

A 6 6

B 6 6

C 6 6

But, that may not be the best reason for the choice of setting the subtract.stratum. Sometimes the

choice may be decided based on model convergence. Some choices will yield better convergence if one

or more of the # parameters is at a boundary.

In some cases, you may want to choose the subtract.stratum because you want to specify some

# values to be set to zero. The easiest way to constrain specific # to zero is to delete the design data

because that is the default value. However, the # that you want to set so zero cannot be computed by

subtraction, so you need to set the subtract.stratum appropriately. For example, what if you wanted

to set PsiAA=PsiBB=PsiCC=0? That could be done with the following code for the mstrata example:

> mstrata.ddl=make.design.data(mstrata.processed,parameters=

list(Psi=list(subtract.stratum=c("B","A","A"))))

> mstrata.ddl$Psi=mstrata.ddl$Psi[!(mstrata.ddl$Psi$stratum==

"A"&mstrata.ddl$Psi$tostratum=="A"),]

> mstrata.ddl$Psi=mstrata.ddl$Psi[!(mstrata.ddl$Psi$stratum==

"B"&mstrata.ddl$Psi$tostratum=="B"),]

> mstrata.ddl$Psi=mstrata.ddl$Psi[!(mstrata.ddl$Psi$stratum==

"C"&mstrata.ddl$Psi$tostratum=="C"),]

> mymodel=mark(mstrata.processed,mstrata.ddl)

> summary(mymodel,show.fixed=T)

Real Parameter Psi

Stratum:A To:A

1 2 3

1 0 0 0

2 0 0

3 0

Stratum:A To:C

1 2 3

1 0.5014851 0.5014851 0.5014851

2 0.5014851 0.5014851

3 0.5014851

Stratum:B To:B

1 2 3
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1 0 0 0

2 0 0

3 0

Stratum:B To:C

1 2 3

1 0.5014063 0.5014063 0.5014063

2 0.5014063 0.5014063

3 0.5014063

Stratum:C To:B

1 2 3

1 0.4999394 0.4999394 0.4999394

2 0.4999394 0.4999394

3 0.4999394

Stratum:C To:C

1 2 3

1 0 0 0

2 0 0

3 0

In other cases, the choice may be determined based on the ability to restrict equality for specific

transitions. For example, if you had an example with 2 strata (A & B) and you wanted to set PsiAB=PsiBB

you could do that by setting subtract.stratum=c("A","A") and fitting the intercept(constant)model

for #. That gets more difficult with 3 or more strata. However, sometimes you can use design data to

create constraints. For example, with the mstrata data, if you wanted to fit PsiAB=PsiBA=PsiCA and

PsiAC=PsiBC=PsiCC, then you could use the following subtract.stratum and formula:

> data(mstrata)

> mstrata.processed=process.data(mstrata,model="Multistrata")

> mstrata.ddl=make.design.data(mstrata.processed,parameters

=list(Psi=list(subtract.stratum=c("A","B","B"))))

> mark(mstrata.processed,mstrata.ddl,model.parameters=list(Psi=list(formula=~toC)))

<...>

Real Parameter Psi

Stratum:A To:B

1 2 3

1 0.2175964 0.2175964 0.2175964

2 0.2175964 0.2175964

3 0.2175964

Stratum:A To:C

1 2 3

1 0.2132953 0.2132953 0.2132953

2 0.2132953 0.2132953

3 0.2132953
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Stratum:B To:A

1 2 3

1 0.2175964 0.2175964 0.2175964

2 0.2175964 0.2175964

3 0.2175964

Stratum:B To:C

1 2 3

1 0.2132953 0.2132953 0.2132953

2 0.2132953 0.2132953

3 0.2132953

Stratum:C To:A

1 2 3

1 0.2175964 0.2175964 0.2175964

2 0.2175964 0.2175964

3 0.2175964

Stratum:C To:C

1 2 3

1 0.2132953 0.2132953 0.2132953

2 0.2132953 0.2132953

3 0.2132953

Now because the other parameters are computed by subtraction, it also set PsiAA=PsiBB=PsiCB.

What if you only wanted to set PsiBC=PsiCC? First, you could define a dummy variable bc.toC that

was 1 for strata B and C for the transitions to C as follows:

> mstrata.ddl$Psi$bc.toC=0

> mstrata.ddl $Psi$bc.toC [mstrata.ddl $Psi$stratum%in%c("B","C")&

mstrata.ddl $Psi$tostratum=="C"]=1

Then using the same subtract.stratum values you would naturally try:

mark(mstrata.processed,mstrata.ddl,model.parameters=list(Psi=list(formula=~bc.toC)))

Real Parameter Psi

Stratum:A To:B

1 2 3

1 0.222929 0.222929 0.222929

2 0.222929 0.222929

3 0.222929

Stratum:A To:C

1 2 3

1 0.222929 0.222929 0.222929

2 0.222929 0.222929

3 0.222929
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Stratum:B To:A

1 2 3

1 0.1731952 0.1731952 0.1731952

2 0.1731952 0.1731952

3 0.1731952

Stratum:B To:C

1 2 3

1 0.3962874 0.3962874 0.3962874

2 0.3962874 0.3962874

3 0.3962874

Stratum:C To:A

1 2 3

1 0.1731952 0.1731952 0.1731952

2 0.1731952 0.1731952

3 0.1731952

Stratum:C To:C

1 2 3

1 0.3962874 0.3962874 0.3962874

2 0.3962874 0.3962874

3 0.3962874

You might have been expecting that PsiAB=PsiBA=PsiCA=PsiAC but now we get PsiAB=PsiAC and

PsiCA=PsiBA but the pairs differ. From the design matrix with just 2 columns you would not expect to

get 3 different estimates. To understand what is happening you need to understand the mlogit link and

how it relates to the �’s. Below are the equations for each of the above # parameters using �0 as the

intercept and �1 as the value for bc.toC:

#��
= #��

=
exp(�0)

1 + exp(�0) + exp(�0)

#��
= #��

=
exp(�0)

1 + exp(�0) + exp(�0 + �1)

#��
= #��

=
exp(�0 + �1)

1 + exp(�0) + exp(�0 + �1)

Due to the way the mlogit link is constructed, if you restrict parameters across a partial subset of the

strata, then it may not be possible to construct the model you want. The solution is to change the link

function to logit as shown below.

> mark(mstrata.processed,mstrata.ddl,model.parameters

=list(Psi=list(formula=~bc.toC,link="logit")))

Real Parameter Psi

Stratum:A To:B

1 2 3
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1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:A To:C

1 2 3

1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:B To:A

1 2 3

1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:B To:C

1 2 3

1 0.3990723 0.3990723 0.3990723

2 0.3990723 0.3990723

3 0.3990723

Stratum:C To:A

1 2 3

1 0.1993645 0.1993645 0.1993645

2 0.1993645 0.1993645

3 0.1993645

Stratum:C To:C

1 2 3

1 0.3990723 0.3990723 0.3990723

2 0.3990723 0.3990723

3 0.3990723

Why not use the logit link all of the time? You can do that but the mlogit link was chosen as the

default for RMark because it provides a natural constraint to make sure the real values sum to 1. If

you choose to use the logit link, then just beware that MARK enforces the constraint by penalizing the

likelihood and that may not be as stable numerically. Clearly, to build some models you may be required

to use the logit link. Make sure to look at the penalty value in the MARK output to make sure that the

penalty value is 0. The logit link does have the additional advantage that the PIMS can be simplified

whereas they cannot be simplified with the mlogit link. But, beware that some of the RMark code for

computation on the results from MARK has been written specifically for the mlogit link.

The # estimates for the subtract.stratum are not given by MARK. Obviously, computing the point

estimate is simple by summing the other values and subtracting from 1. However, computing the

standard error and confidence interval is more tedious. To avoid doing this by hand, the function

TransitionMatrix was created to compute each real parameter, standard error and confidence interval.

See the help file for that function and get.real for more details. The following will run the example

code for mstrata and then compute the transition matrix.
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> example(mstrata)

> Psilist=get.real(mstrata.results[[1]],"Psi",vcv=T)

> Psivalues=Psilist$estimates

> TransitionMatrix(Psivalues[Psivalues$time==1,],vcv.real=Psilist$vcv.real)

$TransitionMat

A B C

A 0.6020772 0.1993450 0.1985778

B 0.1993452 0.6020771 0.1985777

C 0.2003789 0.2003787 0.5992424

> $se.TransitionMat

A B C

A 0.01863979 0.01412477 0.01413614

B 0.01412478 0.01863984 0.01413616

C 0.01422173 0.01422172 0.01871430

> $lcl.TransitionMat

A B C

A 0.5650384 0.1730952 0.1723155

B 0.1730954 0.5650382 0.1723153

C 0.1739486 0.1739485 0.5620711

> $ucl.TransitionMat

A B C

A 0.6379827 0.2284757 0.2277414

B 0.2284760 0.6379827 0.2277414

C 0.2297083 0.2297081 0.6353057

C.18. Nest survival example

The nest survival model is quite different than most of the other models in MARK because it is not

based on an encounter history. At present, neither convert.inp nor import.chdata will handle data

entry for nest survival data. The data must be imported into an R dataframe and certain fields must be

included with specific names. Two examples are provided in RMark. The killdeer example is the data

that accompanies MARK and the mallard example provided by Jay Rotella is documented in

Rotella, J. J., S. J. Dinsmore, T. L. Shaffer. 2004. Modeling nest-survival data: a comparison of

recently developed methods that can be implemented in MARK and SAS. Animal Biodiver-

sity and Conservation 27:187-204.

The dataframe must contain the following variables with these names:

• FirstFound: day the nest was first found
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• LastPresent: last day that a chick was present in the nest

• LastChecked: last day the nest was checked

• Fate: fate of the nest; 0=hatch and 1=depredated

It can also contain a field Freq which is the frequency of nests with this data. If it is always 1 then it

is not needed. The dataframe can also contain any number of other covariate or identifier fields. If your

dataframe contains a variable AgeDay1, which is the age of the nest on the first occasion then you can

use a variable called NestAge in the formula which will create a set of time-dependent covariates named

NestAge1,NestAge2,. . . ,NestAge(nocc-1) which will provide a way to incorporate the age of the nest in

the model. The use of AgeDay1 and NestAgewas added because the age covariate in the design data for

the parameter S (survival) assumes all nests are the same age and is not particularly useful. This effect

could be incorporated by using the add() function in the design matrix but RMark does not have any

capability for doing that and it is easier to create a time-dependent covariate to do the same thing.

The file killdeer.inp and mallard.txt come with RMark. The code below provides examples for

importing and setting up nest survival data for RMark. Modify the path to Rmark as needed.

# EXAMPLE CODE FOR CONVERSION OF .INP TO NECESSARY DATA STRUCTURE

# read in killdeer.inp file

> killdeer=scan("C:/Program Files/R/R-2.6.0/library/RMark/data/killdeer.inp",

what="character",sep="\n")

# strip out ; and write out all but first 2 lines which contain comments

> write(sub(";","",killdeer[3:20]),"killdeer.txt")

# read in as a dataframe from tab-delimited text file and assign names

> killdeer=read.table("killdeer.txt")

> names(killdeer)=c("id","FirstFound","LastPresent","LastChecked",

"Fate","Freq")

# Read in data, which are in a simple text file that

# looks like a MARK input file but (1) with no comments or semicolons and

# (2) with a 1st row that contains column labels

> mallard=read.table("C:/Program Files/R/R-2.6.0/library/RMark/data/mallard.txt",

header=TRUE)

The help files for killdeer and mallard provide example code for analysis of nest survival data. In

particular, the script in the mallard help file is a nice example constructed by Jay Rotella. It demonstrates

the benefits of RMark and provides a useful model for scripting an entire analysis from model building

to prediction and plotting. It uses an alternative approach with find.covariates, fill.covariates

and compute.real functions which were created before covariate.predictions. We have extended

this example further here to include a 3-D plot:

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Example of use of RMark for modeling nest survival data - Mallard nests example #

# The example runs the 9 models that are used in the Nest Survival chapter #

# of the Gentle Introduction to MARK and that appear in Table 3 (page 198) of #

# Rotella, J.J., S. J. Dinsmore, T.L. Shaffer. 2004. Modeling nest-survival data: #

# a comparison of recently developed methods that can be implemented in MARK and SAS. #

# Animal Biodiversity and Conservation 27:187-204. #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> data(mallard)

# Treat dummy variables for habitat types as factors

> mallard$Native=factor(mallard$Native)

> mallard$Planted=factor(mallard$Planted)
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> mallard$Wetland=factor(mallard$Wetland)

> mallard$Roadside=factor(mallard$Roadside)

# Examine a summary of the dataset

> summary(mallard)

# Write a function for evaluating a set of competing models

> run.mallard=function()

{

# 1. A model of constant daily survival rate (DSR)

Dot=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~1)))

# 2. DSR varies by habitat type - treats habitats as factors

# and the output provides S-hats for each habitat type

Hab=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~Native+Planted+Wetland)),

groups=c("Native","Planted","Wetland"))

# 3. DSR varies with vegetation thickness (Robel reading)

# Note: coefficients are estimated using the actual covariate

# values. They are not based on standardized covariate values.

Robel=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~Robel)))

# 4. DSR varies with the amount of native vegetation in the surrounding area

# Note: coefficients are estimated using the actual covariate

# values. They are not based on standardized covariate values.

PpnGr=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~PpnGrass)))

# 5. DSR follows a trend through time

TimeTrend=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~Time)))

# 6. DSR varies with nest age

Age=mark(mallard,nocc=90,model="Nest",model.parameters=list(S=list(formula=~NestAge)))

# 7. DSR varies with nest age & habitat type

AgeHab=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~NestAge+Native+Planted+Wetland)),

groups=c("Native","Planted","Wetland"))

# 8. DSR varies with nest age & vegetation thickness

AgeRobel=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~NestAge+Robel)))

# 9. DSR varies with nest age & amount of native vegetation in surrounding area

AgePpnGrass=mark(mallard,nocc=90,model="Nest",

model.parameters=list(S=list(formula=~NestAge+PpnGrass)))

#

# Return model table and list of models

#

return(collect.models() )

}
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> mallard.results=run.mallard() # This runs the 9 models above and takes a minute or 2

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine table of model-selection results #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results # print model-selection table to screen

> options(width=100) # set page width to 100 characters

> sink("results.table.txt") # capture screen output to file

> print.marklist(mallard.results) # send output to file

> sink() # return output to screen

> system("notepad results.table.txt",invisible=FALSE) # view results in notepad

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine output for constant DSR model #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results$Dot # print MARK output to designated text editor

> mallard.results$Dot$results$beta # view estimated beta for model in R

> mallard.results$Dot$results$real # view estimated DSR estimate in R

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine output for ’DSR by habitat’ model #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results$Hab # print MARK output to designated text editor

> mallard.results$Hab$design.matrix # view the design matrix that was used

> mallard.results$Hab$results$beta # view estimated beta for model in R

> mallard.results$Hab$results$beta.vcv # view variance-covariance matrix for beta’s

> mallard.results$Hab$results$real # view the estimates of Daily Survival Rate

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

# Examine output for best model #

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#

> mallard.results$AgePpnGrass # print MARK output to designated text editor

> mallard.results$AgePpnGrass$results$beta # view estimated beta’s in R

> mallard.results$AgePpnGrass$results$beta.vcv # view estimated var-cov matrix in R

# To obtain estimates of DSR for various values of ’NestAge’ and ’PpnGrass’

# some work additional work is needed.

# First, a simpler name for the object containing the preferred model results

> AgePpnGrass=mallard.results$AgePpnGrass

# Build design matrix with ages and ppn grass values of interest

> fc <- find.covariates(AgePpnGrass,mallard)

# iterate through sequence of ages and proportion grassland

# values to build prediction surfaces

> seq.ages <- seq(2, 26, by=2)

> seq.ppn <- seq(0.01,0.99,length=89)

> point <- matrix(nrow=89, ncol=length(seq.ages))

> lower <- matrix(nrow=89, ncol=length(seq.ages))

> upper <- matrix(nrow=89, ncol=length(seq.ages))

> colnum <- 0

> for (iage in seq.ages) {

fc$value[1:89]=iage # assign sequential age

colnum <- colnum + 1

fc$value[fc$var=="PpnGrass"]=seq.ppn # assign range of values to PpnGrass

design=fill.covariates(AgePpnGrass,fc) # fill design matrix with values
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point[,colnum] <- compute.real(AgePpnGrass,design=design)[,"estimate"]

lower[,colnum] <- compute.real(AgePpnGrass,design=design)[,"lcl"]

upper[,colnum] <- compute.real(AgePpnGrass,design=design)[,"ucl"]

}

# Predicted surfaces shown in a window that can be rotated and zoomed by user

# left mouse button=rotate, right mouse=zoom

> library(rgl)

> open3d()

> bg3d("white")

> material3d(col="black")

> persp3d(seq.ppn, seq.ages, point, aspect=c(1, 1, 0.5), col = "lightblue",

xlab = "grass", ylab = "age", zlab = "DSR", zlim=range(c(upper,lower)),

main="Daily survival rate (with CI)", sub="for model ’age and proportion grassland’")

> persp3d(seq.ppn, seq.ages, upper, aspect=c(1, 1, 0.5), col = "yellow", add=TRUE)

> persp3d(seq.ppn, seq.ages, lower, aspect=c(1, 1, 0.5), col = "yellow", add=TRUE)

> grid3d(c("x","y+","z"))

# see rgl.snapshot(file="snapshot.png") for creating png image of generated surfaces

The script fits 9 models to the data, then goes on to examine the best model and produce predicted

point estimates and confidence intervals for a grid of values for the covariates (proportion native

vegetation, and nest age). The 3 surfaces are then graphed, using a dynamic graphics library available

in R, named rgl. This permits viewing of the surface by rotating and tilting, then capturing the most

illuminating view of the surfaces (shown below).

C.19. Occupancy examples

The occupancy models are more similar to the encounterhistory models in MARK than the nest survival

example but the histories relate to sites rather than animals and the values are presence(1)/absence(0)

or counts of animals at a site.

At present there are 13 different occupancy models in MARK that are supported by RMark:
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Occupancy, OccupHet, RDOccupEG, RDOccupPE, RDOccupPG, RDOccupHetEG, RDOccupHetPE,

RDOccupHetPG, OccupRNPoisson, OccupRNNegBin, OccupRPoisson, OccupRNegBin, MSOccupancy.

Hetmeans it uses the Pledger mixture for the detection probability model and those with RD are the

robust design models. The 2 letter designations for the RD models are shorthand for the parameters

that are estimated: 1) for EG,#, &, and � are estimated, 2) for PE,� is dropped and 3) for PG, & is dropped.

For the latter 2 models, # can be estimated for each primary occasion.

The last 5 models include the Royle/Nichols count (OccupRPoisson, OccupRNegBin) and presence

(OccupRNPoisson, OccupRNNegBin) models with Poisson and Negative Bionomial versions and the

multi-state occupancy model (MSOccupancy). Each of the models and parameters are shown in Table

C.1.

Example datasets are provided with RMark for each of the models. See the example datasets

salamander and weta for Occupancy and OccupHet, Donovan.7 for an example of OccupRNPoisson and

OccupRNNegBin, Donovan.8 for an example of OccupRPoisson and OccupRNegBin, RDSalamander for

an example of the robustdesign models andNicholsMSOccupancy foran example ofMSOccupancy. Here

we provide more in-depth description and examples for the Occupancy and MSOccupancy models.

Imagine a scenario in which you wanted to model species-habitat dependent occupancy with detec-

tion probability dependent on effort which varied by occasion and site.

An example dataset (mydata.txt) might look as follows in a tab-delimited file with the variable names

in the first row:

ch freq Species Habitat Effort1 Effort2 Effort3 Effort4 Effort5

00111 1 LGB Forest 5 2 14 2 5

00111 1 LGB Forest 5 3 16 3 5

10011 1 LGB Forest 4 2 11 2 4

10110 1 LGB Forest 5 3 15 3 5

00.00 1 LBB Forest 5 3 16 3 5

00000 1 LBB Forest 6 3 19 3 6

00010 1 LBB Forest 3 1 8 1 3

000.0 1 LBB Forest 5 3 16 3 5

00000 1 LBB Forest 4 2 13 2 4

00111 1 LBB Forest 4 2 12 2 4

00000 1 LBB Forest 5 2 14 2 5

00111 1 LBB Forest 3 2 10 2 3

00000 1 LBB Grassland 4 2 11 2 4

00000 1 LBB Grassland 3 2 10 2 3

00000 1 LBB Grassland 4 2 12 2 4

00000 1 LBB Grassland 2 1 6 1 2

00100 1 LGB Grassland 5 2 15 2 5

00100 1 LGB Grassland 4 2 13 2 4

Note the use of “.” for cases in which as site was not visited. The file could be imported with the

command

> CovOccup=import.chdata("mydata.txt",field.types=c("n","f","f","n","n","n","n","n"))

which denotes that freq is a numeric field ("n"), Species and Habitat are factor variables ("f") and

Effort1 → Effort5 are numeric. A field.type is not given for ch because it is always assumed to

be a character string and must always be the first field in each record. The naming of Effort1→ Effort5
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assumes that you’ll use the default of begin.time=1 because it is a time-varying covariate. An example

run in RMark could be as follows:

# fit an additive Species+Habitat Psi model and Effort model for p

> mark(CovOccup,model="Occupancy",group=c("Species","Habitat"),

model.parameters=list(Psi=list(formula=~Species+Habitat),p=list(formula=~Effort)))

Time-varying covariates are particularly useful for occupancy models because they relate to the site

so they should always be known for each time (occasion). In most cases the time-varying covariates

would be values like effort, weather, number of observers for detection probability but they could also

be used for #. If the time-varying covariates are factor variables then you will need to create a dummy

variable for the levels. For example, let’s say you had 2 different observers doing the site visits and you

thought that one observer might be more diligent than the other at searching. A factor variable with :

levels requires :−1 dummy variables. In this case, : = 2, so we only need one dummy variable that we’ll

assign to observer2. If the site was visited by observer2 on occasion 9 then the variable observer2j

would be assigned a 1 and a 0 otherwise. You would need observer21→ observer2n if you had n visits

(occasions) to each site.

Some example data might look as follows in which observer 2 visited site 1 on occasions 2 and 4, and

site 2 on occasions 1 and 5:

ch freq Species Habitat Observer21 Observer22 Observer23 Observer24 Observer25

00111 1 LGB Forest 0 1 0 1 0

00111 1 LGB Forest 1 0 0 0 1

The variable Observer2 could be used in place of Effort in the example formulas shown above.

If the factor covariate had more levels then you would have to add additional variables and they

would also be included in the formula. You can think of those variables as you would columns

in a design matrix except that their values would vary across sites/occasions. However, if you get

many levels of the factor variable and many site visits, it is rather onerous to create all of those

variables. Therefore, with a slightly clever usage of model.matrix, we created and added a function

called make.time.factor to convert time-varying factor variables into a set of time-varying dummy

variables. We demonstrate its usage with the weta dataset which is analyzed in MacKenzie et al.

(2006) on pg 116-122, and which accompanies the program PRESENCE (which can be obtained from

http://www.mbr-pwrc.usgs.gov/software/presence.html). From their Excel file we constructed the

text file weta.txtwhich is in the data subdirectory of the RMark package. The following is the first few

lines of the data:

ch Browse Obs1 Obs2 Obs3 Obs4 Obs5

0000. 1 1 3 2 3 .

0000. 1 1 3 2 3 .

0001. 1 1 3 2 3 .

0000. 0 1 3 2 3 .

0000. 1 1 3 2 3 .

The variables Obs1→ Obs5 contain the number of the observer that conducted the visit 1 to 5 and a

“.” if the site was not visited.
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Each variable is read in as a factor variable with the following call to import.chdata:

> weta=import.chdata("weta.txt",field.types=c(rep("f",6)))

Each observer factor has 3 levels: 1,2,3 (excluding "."). To construct, dummy variables from a factor

variable, one level is chosen as an intercept (observer 3 in this case) and you need : − 1 (3-1=2)

dummy variables for each time (visit). As with the time-varying effort variable above, these time-

varying covariates have a suffix that creates a linkage with the time (visit). The following call to

make.time.factor, creates those dummy variables (Obs11,. . . ,Obs15,Obs21,. . . ,Obs25) from 1 → 5 and

replaces them in the data frame:

> summary(weta)

ch Browse Obs1 Obs2 Obs3 Obs4 Obs5

Length:72 0:37 .:19 .:15 .:12 .:24 .:28

Class :character 1:35 1:21 1:17 1:20 1:18 1:15

Mode :character 2:12 2:20 2:20 2:15 2:14

3:20 3:20 3:20 3:15 3:15

> weta=make.time.factor(weta,"Obs",1:5,intercept=3)

> summary(weta)

ch Browse Obs11 Obs21 Obs12 Obs22

Length:72 0:37 Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000

Class :character 1:35 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000

Mode :character Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000

Mean :0.2917 Mean :0.1667 Mean :0.2361 Mean :0.2778

3rd Qu.:1.0000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000

Obs13 Obs23 Obs14 Obs24 Obs15

Min. :0.0000 Min. :0.0000 Min. :0.00 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.00 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000 Median :0.00 Median :0.0000 Median :0.0000

Mean :0.2778 Mean :0.2778 Mean :0.25 Mean :0.2083 Mean :0.2083

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:0.25 3rd Qu.:0.0000 3rd Qu.:0.0000

Max. :1.0000 Max. :1.0000 Max. :1.00 Max. :1.0000 Max. :1.0000

Obs25

Min. :0.0000

1st Qu.:0.0000

Median :0.0000

Mean :0.1944

3rd Qu.:0.0000

Max. :1.0000

Then the phrase Obs1+Obs2 can be used in a formula to include an observer effect. See the help for

weta or use example(weta) to explore the example further.

If by chance or design, a single observer was used for all sites on each occasion but the observers

varied with occasion, then it isn’t necessary to use a time-varying covariate and you can simply assign

the observer level to the design data and use it in a model as follows (do not expect reasonable results

with just 2 lines of data):

mydata.txt contents:
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ch freq Species Habitat

00111 1 LGB Forest

00111 1 LGB Forest

> CovOccup=import.chdata("mydata.txt",field.types=c("n",rep("f",2)))

> CovOccup.process=process.data(CovOccup,model="Occupancy")

> CovOccup.ddl=make.design.data(CovOccup.process)

> CovOccup.ddl$p=merge_design.covariates(CovOccup.ddl$p,

df=data.frame(time=1:5,observer=c("2","3","1","2","3")))

> CovOccup.ddl$p

group age time Age Time observer

1 1 0 1 0 0 2

2 1 1 2 1 1 3

3 1 2 3 2 2 1

4 1 3 4 3 3 2

5 1 4 5 4 4 3

> mark(CovOccup.process,CovOccup.ddl,model.parameters=list(p=list(formula=~observer)))

For this simple case, we could have simply used an assignment statement to create observer, but

had there been groups of sites, then merge_design.covariates is a better approach. Also, note the

use of quote marks for the observer value to create a factor variable. If the quotes had not been used,

the variable would have been improperly treated as a numeric variable (i.e., observer 2 effect is twice

observer 1 effect).

Next, we’ll move onto an example analysis of the MSOccupancy model that can be compared to the

results in the manuscript by Nichols et al. (2007). We chose this model to demonstrate the relatively rare

situation where parameters can share columns in the design matrix. As described in section C.3, most

parameters do not share columns in the design matrix and for the exceptions, the argument share=TRUE

or FALSE was added to the formula for the dominant parameter which was specified arbitrarily (?1 in

this case). In this case, ?1 and ?2 are detection probabilities for states 1 and 2 and often we will want

to fit models where these parameters are equated or share covariate values. When share=TRUE, only a

formula for the dominant parameter is specified but if share=FALSE, then a formula for both parameters

are expected.

Nichols et al. (2007) specified 4 different models for detection probability: 1) variation in time but not

by state (1/2), 2) time-invariant and ?1 = ?2 , 3) time-invariant but ?1 ≠ ?2, and 4) time and state varying.

For the first 2 models, ?1 and ?2 share columns in the design matrix and in the last 2 they do not share

columns. The parameter specifications for these models are:

1. p1=list(formula=∼time,share=TRUE)

2. p1=list(formula=∼1,share=TRUE)

3. p1=list(formula=∼1,share=FALSE)

p2=list(formula=∼1)

4. p1=list(formula=∼time,share=FALSE)

p2=list(formula=∼time)

The script with these formulas that replicates the results of Nichols et al. (2007) is shown below. Note

that there are some very minor differences in the AIC values which may be due to rounding.
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# To create the data file use:

# NicholsMSOccupancy=convert.inp("NicholsMSOccupancy.inp")

#

# Create a function to fit the 12 models in Nichols et al (2007).

> do.MSOccupancy=function()

{

# Get the data

data(NicholsMSOccupancy)

# Define the models; default of Psi1=~1 and Psi2=~1 is assumed

# p varies by time but p1t=p2t

p1.p2equal.by.time=list(formula=~time,share=TRUE)

# time-invariant p p1t=p2t=p1=p2

p1.p2equal.dot=list(formula=~1,share=TRUE)

#time-invariant p1 not = p2

p1.p2.different.dot=list(p1=list(formula=~1,share=FALSE),p2=list(formula=~1))

# time-varying p1t and p2t

p1.p2.different.time=list(p1=list(formula=~time,share=FALSE),p2=list(formula=~time))

# delta2 model with one rate for times 1-2 and another for times 3-5; delta2 defined below

Delta.delta2=list(formula=~delta2)

Delta.dot=list(formula=~1) # constant delta

Delta.time=list(formula=~time) # time-varying delta

# Process the data for the MSOccupancy model

NicholsMS.proc=process.data(NicholsMSOccupancy,model="MSOccupancy")

# Create the default design data

NicholsMS.ddl=make.design.data(NicholsMS.proc)

# Add a field for the Delta design data called delta2.

# It is a factor variable with 2 levels: times 1-2, and times 3-5.

NicholsMS.ddl=add.design.data(NicholsMS.proc,NicholsMS.ddl,

"Delta",type="time",bins=c(0,2,5),name="delta2")

# Create a list using the 4 p models and 3 delta models (12 models total)

cml=create.model.list("MSOccupancy")

# Fit each model in the list and return the results

return(mark.wrapper(cml,data=NicholsMS.proc,ddl=NicholsMS.ddl))

}

# Call the function to fit the models and store it in MSOccupancy.results

> MSOccupancy.results=do.MSOccupancy()

# Print the model table for the results

> print(MSOccupancy.results)

# Adjust model selection by setting chat=1.74 used in the paper

> MSOccupancy.results=adjust.chat(chat=1.74,MSOccupancy.results)

# Print the adjusted model selection results table

> print(MSOccupancy.results)

The script also illustrates how to use add.design.data to accommodate their use of delta2 and it
also shows a feature that was recently added to create.model.list and mark.wrapper. These functions
were originally designed to construct all possible combinations of parameter specifications. However,
this example shows how those functions can now cope with lists that include more than one parameter
specification. For example, the ?2 formula here will only be paired with the ?1 formula contained in the
list

> p1.p2.different.time=list(p1=list(formula=~time,share=FALSE),p2=list(formula=~time))

and not with other ?1 formula where it would not be appropriate (i.e., share=TRUE).
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C.20. Known fate example

The known fate model (model="Known") has only one parameter S for survival. It uses the LD format

for data entry. Below is the data description from the MARK help file (see also Chapters 2 and 16):

"The data coding for the known fate model requires a 1 in the L part of the encounter history for every occasion

that the animal is alive at the start of the interval and its fate is known through the interval. A 10 means the

animal lived through the interval, and a 11 means the animal died during the interval. There is no code of 01

allowed in the known fate model – this means that the animal was not alive at the start of the interval, so could not

have died. To censor an animal for an interval where you don’t know what was happening, use the 00 code. Thus,

the encounter history 00101000101100means that the animal lived through intervals 2 and 3, was censored for

interval 4, lived through 5, and died in interval 6.”

We will use the Blackduck known-fate example that accompanies MARK and RMark and using

example(Blackduck) to run some of the models that are in the Blckduck.dbf/.fpt files with MARK.

Our main focus in this section will be to show some of the flexibility in RMark for handling time and

age that can be useful with analysis of known fate data that span several years and ages with possibly

overlapping time intervals. We will use (and likely abuse) the Blackduck example by arbitrarily dividing

the data in half with the first half initiated 1 Jan 2000 and the second half in 1 Jan 2001. We’ll also pretend

that each occasion represents 0.25 years, so the 8 occasions represent 2 years. Thus, the data for 2000

will span 1 Jan 2000 - 31 Dec 2001 and the data for 2001 will span 1 Jan 2001 to 31 Dec 2002. Also, we’ll

have birds that were initially age 0 and age 1, so they can range in ages from 0 to 3 throughout the course

of the data. The following code retrieves and defines the data with year and BirdAge changed to factor

variables show they can be used to define groups:

data(Blackduck)

Blackduck$year=c(rep(2000,24),rep(2001,24))

Blackduck$year=factor(Blackduck$year)

Blackduck$BirdAge=factor(Blackduck$BirdAge)

Next we want to process the data and set the parameters to define the group, time and age structure

that we have created. The group structure is defined with groups=c("year","BirdAge") and age.var=2

specifies that the second group variable ("BirdAge") should be treated as the factor for variable for

defining initial ages. The age of the animals at the time of release for the 2 age groups were specified

with initial.age=c(0,1). They could have been different from the values of BirdAge. Next, the time

intervals between occasions are set at 0.25 for each occasion. Finally, the initial time of release for each

of the 4 groups is specified with begin.time=c(2000,2001,2000,2001). Had the ordering of the group

variables been swapped then it would have been specified as begin.time=c(2000,2000,2001,2001)

with age.var=1.

> Blackduck.process=process.data(Blackduck,model="Known",groups=c("year","BirdAge"), age.var=2,

initial.age=c(0,1), time.intervals=rep(.25,8), begin.time=c(2000,2001,2000,2001))

Now let’s create and examine the design data to understand what has been done.

> Blackduck.ddl=make.design.data(Blackduck.process)

> Blackduck.ddl

$S

group age time Age Time year BirdAge

1 20000 0.25 2000.25 0.25 0.00 2000 0
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2 20000 0.5 2000.5 0.50 0.25 2000 0

3 20000 0.75 2000.75 0.75 0.50 2000 0

4 20000 1 2001 1.00 0.75 2000 0

5 20000 1.25 2001.25 1.25 1.00 2000 0

6 20000 1.5 2001.5 1.50 1.25 2000 0

7 20000 1.75 2001.75 1.75 1.50 2000 0

8 20000 2 2002 2.00 1.75 2000 0

9 20010 0.25 2001.25 0.25 1.00 2001 0

10 20010 0.5 2001.5 0.50 1.25 2001 0

11 20010 0.75 2001.75 0.75 1.50 2001 0

12 20010 1 2002 1.00 1.75 2001 0

13 20010 1.25 2002.25 1.25 2.00 2001 0

14 20010 1.5 2002.5 1.50 2.25 2001 0

15 20010 1.75 2002.75 1.75 2.50 2001 0

16 20010 2 2003 2.00 2.75 2001 0

17 20001 1.25 2000.25 1.25 0.00 2000 1

18 20001 1.5 2000.5 1.50 0.25 2000 1

19 20001 1.75 2000.75 1.75 0.50 2000 1

20 20001 2 2001 2.00 0.75 2000 1

21 20001 2.25 2001.25 2.25 1.00 2000 1

22 20001 2.5 2001.5 2.50 1.25 2000 1

23 20001 2.75 2001.75 2.75 1.50 2000 1

24 20001 3 2002 3.00 1.75 2000 1

25 20011 1.25 2001.25 1.25 1.00 2001 1

26 20011 1.5 2001.5 1.50 1.25 2001 1

27 20011 1.75 2001.75 1.75 1.50 2001 1

28 20011 2 2002 2.00 1.75 2001 1

29 20011 2.25 2002.25 2.25 2.00 2001 1

30 20011 2.5 2002.5 2.50 2.25 2001 1

31 20011 2.75 2002.75 2.75 2.50 2001 1

32 20011 3 2003 3.00 2.75 2001 1

As you can see, each of the 4 groups (year-age) has 8 S parameters and it assigns the proper time

and age values; although it is labeling based on the end of the interval unlike with !. This allows easy

modeling of age and time effects even though the cohorts overlap and start at different times and ages.

While it is possible to do the same with MARK, the pre-defined models are not setup correctly and the

necessary bookkeeping with the PIMS is even more difficult because the time is not the same for each

column in the PIM. In RMark, we can easily create Age and Timemodels as follows:

> mark(Blackduck.process,Blackduck.ddl,model.parameters=list(S=list(formula=~Time)))

<...>

Real Parameter S

1 2 3 4 5

Group:year2000.BirdAge0 0.4662898 0.5396722 0.6113742 0.6785598 0.7390873

Group:year2001.BirdAge0 0.7390873 0.7917159 0.8360831 0.8725213 0.9018106

Group:year2000.BirdAge1 0.4662898 0.5396722 0.6113742 0.6785598 0.7390873

Group:year2001.BirdAge1 0.7390873 0.7917159 0.8360831 0.8725213 0.9018106

6 7 8
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Group:year2000.BirdAge0 0.7917159 0.8360831 0.8725213

Group:year2001.BirdAge0 0.9249493 0.9429801 0.9568809

Group:year2000.BirdAge1 0.7917159 0.8360831 0.8725213

Group:year2001.BirdAge1 0.9249493 0.9429801 0.9568809

mark(Blackduck.process,Blackduck.ddl,model.parameters=list(S=list(formula=~Age)))

<...>

Real Parameter S

1 2 3 4 5

Group:year2000.BirdAge0 0.8116342 0.8024874 0.7930097 0.7832001 0.7730587

Group:year2001.BirdAge0 0.8116342 0.8024874 0.7930097 0.7832001 0.7730587

Group:year2000.BirdAge1 0.7730587 0.7625866 0.7517865 0.7406622 0.7292189

Group:year2001.BirdAge1 0.7730587 0.7625866 0.7517865 0.7406622 0.7292189

6 7 8

Group:year2000.BirdAge0 0.7625866 0.7517865 0.7406622

Group:year2001.BirdAge0 0.7625866 0.7517865 0.7406622

Group:year2000.BirdAge1 0.7174632 0.7054034 0.6930490

Group:year2001.BirdAge1 0.7174632 0.7054034 0.6930490

mark(Blackduck.process,Blackduck.ddl,model.parameters=list(S=list(formula=~Age+Time)))

<...>

Real Parameter S

1 2 3 4 5

Group:year2000.BirdAge0 0.6781671 0.6936336 0.7086762 0.7232748 0.7374130

Group:year2001.BirdAge0 0.9380706 0.9421129 0.9459066 0.9494650 0.9528010

Group:year2000.BirdAge1 0.2809199 0.2956494 0.3108173 0.3264028 0.3423816

Group:year2001.BirdAge1 0.7374130 0.7510774 0.7642580 0.7769480 0.7891434

6 7 8

Group:year2000.BirdAge0 0.7510774 0.7642580 0.7769480

Group:year2001.BirdAge0 0.9559270 0.9588550 0.9615962

Group:year2000.BirdAge1 0.3587260 0.3754053 0.3923856

Group:year2001.BirdAge1 0.8008429 0.8120479 0.8227619

C.21. Exporting to MARK interface

Not all of the features in MARK are in RMark (e.g., median-2̂), so it is useful to be able to export from

RMark and import into the MARK interface. If you have read elsewhere (like in the previous version

of C.21 ) about using the function export.chdata and export.model to export data and models into

MARK interface, do not use that approach. Even though there was a warning in the help file about

making sure the structure was setup the same in MARK as in RMark, errors were made and confusion

and questions resulted because the results did not match when they were re-run in the MARK interface.

Thus, to avoid those problems and make it much easier, the function export.MARKwas implemented,

and Gary White added the ‘File | RMark Import’ menu item to the MARK interface. As an example,

the following will export the ubiquitous dipper data file and the models contained in dipper.results
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created in example(dipper).

> example(dipper)

> dipper.processed=process.data(dipper,groups=("sex"))

> export.MARK(dipper.processed, "dipperproject", dipper.results)

If only NULL is returned then everything worked fine. The above code will create dipperproject.Rinp

and dipperproject.inp and will rename all of the output files in dipper.results to have .tmp extensions

so the MARK interface will know they need to be imported.

Next, open the MARK interface and choose ‘File | RMark Import’ and browse to the location and

select dipperproject.Rinp. MARK will create a .dbf and .fpt files with the names dipperproject and

then populate with the models from dipper.results. Note that you must manually delete the .tmp files.

If you let them remain in the directory and try to import from another project it will try to import those

model results as well.

C.22. Using R for further computation and graphics

One of the nice side benefits of RMark is that all of the power of R is available for further computation

and plotting with the MARK output which is brought into the mark model object. We recommend

exploring the various online sources of help with R graphics.

In addition to graphics, the entire R environment is available for further computation with the results.

Some of this has already been done for you with functions like covariate.predictions (C.16) and

TransitionMatrix (C.17) but there are always different computations that can follow once an analysis

is completed. The most important feature about the choice of R for a statistical environment and the

reason for its expansive growth is that it is open source. There is literally a worldwide collection of

programmers who are continually developing and adding code to the R environment. R as an open

source environment has at least 4 important consequences for the R user:

1. cutting edge analysis techniques are always being added to the environment

2. anything you probably need for computation has already been written so search before

you write new code

3. all of the source code (including RMark) is available for you to examine so you can

learn from other R programmers, modify it for your own needs and you can see how

the code works

4. as a user it is up to you to make sure you are using it properly and to verify that the

results are accurate or at least make sense.

This last point applies equally to commercial software but the advantage with open source software

is that you can look at the code. We’ll finish this paragraph with one last bit of soapbox commentary

about science and software. The R environment is a useful model for the scientific community because

it is open source and thus transparent and available to anyone willing to learn.

Enough of that! So let’s explore an example that frequently appears on the MARK support forum

which is the computation of a Delta method variance. Appendix B provides a thorough explanation

of the underlying theory, and how a Delta method variance can be constructed ‘by hand’. While it is

obviously important to understand how the calculations are done, and the general limits of the method,

once you have done one or two by hand there is little gain in learning. So once the learning is done

why not automate what you need? Not surprisingly there is R code available to construct Delta method
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variances/covariances. As part of the msmpackage foranalysis of multi-state Markov and hidden Markov

processes, C. H. Jackson of the MRC Biostatistics Unit at Cambridge University provided a function

called deltamethod for computation of Delta method variances of any function that can be differentiated

with the R function deriv for symbolic differentiation of simple expressions. The code is quite simple

because most of the work is in working out the derivatives and that is handled by the deriv function:

> deltamethod<- function (g, mean, cov, ses = TRUE)

{

cov <- as.matrix(cov)

n <- length(mean)

if (!is.list(g))

g <- list(g)

if ((dim(cov)[1] != n) || (dim(cov)[2] != n))

stop(paste("Covariances should be a ", n, " by ", n,

" matrix"))

syms <- paste("x", 1:n, sep = "")

for (i in 1:n) assign(syms[i], mean[i])

gdashmu <- t(sapply(g, function(form) {

as.numeric(attr(eval(deriv(form, syms)), "gradient"))

}))

new.covar <- gdashmu %*% cov %*% t(gdashmu)

if (ses) {

new.se <- sqrt(diag(new.covar))

new.se

}

else new.covar

}

If you install the R package msm (use Packages/Install Packages) from CRAN, then you can issue

the command library(msm) to load the package and make the function deltamethod available in the R

environment. In this example of using deltamethod we will compute the variances (or standard error,

its square root) and covariances of ! and ? from the Phi(∼1)p(∼1) model of the dipper data using

the �’s and their variances and covariances. This is not a particularly useful "further computation” but

we chose it to show how MARK constructs these values and also to show that computation with the

deltamethod function agrees with the MARK output. We start by fitting the model, displaying the

summary with standard errors shown for the unique real parameters and extracting and displaying the

� estimates:

> data(dipper)

> mymodel=mark(dipper,brief=TRUE)

Model: Phi(~1)p(~1) npar= 2 lnl = 666.83766 AICc = 670.86603

> summary(mymodel,se=TRUE,showall=FALSE)

Output summary for CJS model

Name : Phi(~1)p(~1)

Npar : 2

-2lnL: 666.8377
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AICc : 670.866

Beta

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890516 2.8634801

Real Parameters

estimate se lcl ucl fixed

Phi g1 c1 a0 t1 0.5602430 0.0251330 0.5105493 0.6087577

p g1 c1 a1 t2 0.9025835 0.0285857 0.8304826 0.9460113

> betas=summary(mymodel)$beta

> betas

estimate se lcl ucl

Phi:(Intercept) 0.2421484 0.1020127 0.0422035 0.4420933

p:(Intercept) 2.2262658 0.3251093 1.5890516 2.8634801

We can see the confidence intervals for �’s are simple normal 95% confidence intervals:

> beta.lcl=betas$estimate-1.96*betas$se

> beta.lcl

[1] 0.04220351 1.58905157

> beta.ucl=betas$estimate+1.96*betas$se

> beta.ucl

[1] 0.4420933 2.8634800

Now let’s compute the confidence intervals for the real parameters which are the inverse logit (in

general inverse of the chosen link function) of the lower and upper limits on the �’s.

> exp(beta.lcl)/(1+exp(beta.lcl))

[1] 0.5105493 0.8304826

> exp(beta.ucl)/(1+exp(beta.ucl))

[1] 0.6087577 0.9460113

We can individually compute the standard errors for the real parameters with calls to deltamethod

using the inverse logit function where x1 refers to beta:

> deltamethod(~exp(x1)/(1+exp(x1)),mean=betas$estimate[1],cov=betas$se[1]^2)

[1] 0.02513295

> deltamethod(~exp(x1)/(1+exp(x1)),mean=betas$estimate[2],cov=betas$se[2]^2)

[1] 0.02858573

We can get the same results with a single call to deltamethod by using a list of functions and the

variance-covariance matrix for betawhich is in results$beta.vcv:

> deltamethod(list(~exp(x1)/(1+exp(x1)),~exp(x2)/(1+exp(x2))),

mean=betas$estimate,mymodel$results$beta.vcv)

[1] 0.02513295 0.02858573
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or we can get the variance-covariance matrix of the real parameters by setting ses=FALSE:

> deltamethod(list(~exp(x1)/(1+exp(x1)),~exp(x2)/(1+exp(x2))),

mean=betas$estimate,mymodel$results$beta.vcv,ses=FALSE)

[,1] [,2]

[1,] 0.0006316653 -0.0001842868

[2,] -0.0001842868 0.0008171439

For closed population modeling, the R package WiSP (Wildlife Simulation Package, available from

http://www.ruwpa.st-and.ac.uk/estimating.abundance/WiSP/index.html) can be used to simulate

populations and sampling designs. Data simulated by WiSP can be converted into a form usable by

RMark using a conversion function transform.to.rmark() found in the WiSP package. This enables

the examination of estimator performance prior to the conduct of field experiments.

C.23. Problems and errors

The RMark code includes some error traps but there are a number of errors that can occur if the models

or data are not setup properly. In no particular order, we give some errors that can occur, an explanation,

and some possible fixes. We do not discuss R syntax errors which can occur easily if improper syntax

is used.

As part of minimizing/checking erors, we suggest that you use an editor like Tinn-R (available from

https://sourceforge.net/projects/tinn-r) that provides R syntax checking to develop scripts.

1. The following error message or one like it that occurs when mark.exe is running or

afterwards, occurs when something is amiss with the data, model setup for MARK

or you interrupted the job:

Error in if (x4 > x2) { : argument is of length zero

********Following model failed to run : [name of model]**************

S.dot.p.dot.Psi.dot

Error in extract.mark.output(out, model, adjust) :

MARK did not run properly. If error message was not shown, re-run

MARK with invisible=FALSE

Solution: Look at the most current input and output files in the directory to

see if you can discern what happened. Error messages and the output will

often move across the screen too quickly to read but you can always look at

them with a text editor to discover the reason for the problem. The obtuse

error above occurs because the output file is incomplete and the function

extract.mark.output cannot find relevant fields in the output file.

2. The following error message occurs when a variable used in a formula cannot be

found in the design data or as an individual covariate:

Variable marked.as.adult used in formula is not defined in data

Error in make.mark.model(data.proc, title = title, covariates = covariates,

Solution: Check your the spelling of your variable name. Remember that R

is case specific so check capitalization. If you added design data, make sure

that you added the data to the design data for parameter that is generating
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the error for this variable. If it is a time-varying covariate make sure that

the times match the prefixes of the covariate names.

3. If you get an error like the following, you have created an incomplete factor variable

in the design data.

Error in make.mark.model(data.proc, title = title, covariates = covariates, :

Problem with design data. It appears that there are NA values

in one or more variables in design data for p

Make sure any binned factor completely spans range of data

Solution: Examine the design data identified in the error message and

redefine the factor variable.

4. If you get either of these error messages, there is a problem with the individual

covariate that you have specified in the formula.

The following individual covariates are not allowed because

they are factor variables:

The following individual covariates are not allowed because

they contain NA:

Solution: Use summary(data) where data is the dataframe containing your

data. Examine the variable it names to see where it contains NA or if it is a

factor variable. A factor variable cannot be used as an individual covariate.

It is best to use factor variables in the group structure definition. If you

want to use a factor variable as an individual covariate you need to create

numeric dummy variables (0/1). See section C.16.

5. The following error occurs when you attempt to fix real parameters and the number

of values does not match the number of indices.

Lengths of indices and values do not match for fixed parameters for p

Solution: Refer to section C.11 to review how real parameters can be fixed

at specific values.

6. The following error occurs when you specify a vector of initial values but the the

number of values does not match the number of �’s (number of columns in the

design matrix).

Length of initial vector doesn’t match design matrix

Solution: Use another existing model to specify the initial values. or use

model.matrix to compute the number of parameters will be fit. If the model

has already run, extract the � estimates into a vector to verify the count or

edit it and use as the initial values.

7. The following error occurs when you specify a formula that manages to create a

design matrix which has all zeros for one or more real parameters (rows). This will

most likely occur with the incorrect specification of interactions and the intercept

is removed.

One or more formulae are invalid because the design matrix has all

zero rows for the following non-fixed parameters
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Solution: Use model.matrix with the formula and design data and review

the way you are constructing the formula.

8. The following errorwilloccur if you pass the wrong data argument tomake.design.data

Error in if (model == "CJS") par.list = c("Phi", "p") :

argument is of length zero

Solution: Use the processed dataframe and not the original dataframe in

the call the make.design.data.

It is reasonable to check an RMark model by creating it with the MARK interface and compare the

results. If you do that, recognize that both interfaces use the same mark.exe to fit the model to the data.

Thus, if there is a difference then it results from a difference in either the data or the model structure.

Presumably, you are using the same data but it doesn’t hurt to check the output from each model to see

that it used the same data. A difference in the model is the most likely reason for any difference. If the

deviance and the real parameters match but the �’s are different, that is not a real concern because the

same model can be fit with different beta structures. The differences in the �’s can occur if different link

functions are chosen or a different structure for the design matrix was used. However, if the deviances

or real parameters are different then it should be investigated further. A difference in the link function

can create difference in the real parameters if there is a problem with convergence of one of the models.

However, the most likely difference is an error in the PIM structure or design matrix. Only a tedious

search of the PIMS and design matrices will identify the problem. While it is always possible that there

is an error in the RMark code, numerous examples have been tested in both pieces of software to check

agreement.

C.24. A (very) brief R primer

There are a numberofvery goodbooks and tutorials for learning R. See the R home page athttp://www.r-

project.org/ and browse the links under Documentation on the left panel. If you have questions, refer

to the FAQ or use the Search utility. They are available from R Homepage or from within R under the

Help menu. There is a phenomenal amount of material on the web that can help you get started with

R. If you have problems and cannot find the answer with the materials on the web, a very active user

group can be found on the R-help list server (see Mailing Lists on the home page). If you subscribe

and post messages, please read the posting guide! The search utilities will search the R-help list server.

There is a good chance your question has already been answered, so please read the FAQ and search

before you post a question.

We have no intention of producing a full R tutorial here but we will provide some very beginner

concepts and some others that are particularly relevant to using RMark. You can start R with the R icon

or by double-clicking a .Rdata file which is an R workspace where everything is stored by R. If you

start R with the icon, it will use the default .Rdata workspace located where you installed R (typically

c:/Program Files/R/Rvvvvv, where vvvvv represents the version). You will most likely want to have

more than one .Rdata workspace and there are many ways to create them, but the simplest is to use

Windows to copy the default workspace and to paste it in whatever directory you choose. When you

then double-click that particular .Rdata file, it will open it with R.

To avoid manually entering the command each time you initiate R, you can edit and enter the

library(RMark) command into the file named "RProfile.site” with any text editor. It is located in

the directory

C:\Program Files\R\R-v.v.v\etc\

Appendix C. RMark – an alternative approach to building linear models in MARK



C.24. A (very) brief R primer C - 105

where v.v.v represents the R version. If you add the library(RMark) command to rprofile.site, the

RMark package will be loaded anytime you start R.The RProfile.site file is also a good place to make

generic customizations to R. For example, adding the command options(chmhelp=TRUE)will mean that

the help commandwilluse the compiledhelp tool forwindows. Oryou can use options (htmlhelp=TRUE)

to use the non-compiled html help. Either of those is better than using the default which does not allow

hyperlinks. If you set up either help option you can enter “?mark” to see all the help categories for

RMark. If you chose to use htmlhelp, click on index to see the complete list. The “rprofile.site” file

is also a good place to change options like the default editor etc. See help for “options” and “Startup”

from within R.

To avoid making changes to RProfile.site each time you update R, you can use the Windows

ControlPanel and select System/Advanced/EnvironmentVariables to create an environment variable

named R_PROFILE. For example, you can create a subdirectory,

C:\Program Files\R\RProfile\

and then copy your edited Rprofile.site to that subdirectory. Then define the environment variable

R_PROFILE with the value

C:\Program Files\R\RProfile\RProfile.site

and it will always be used for each R session even if you update R.

You quit R with the command q() and it will ask whether you want to save the workspace image.

If you select No, then any R objects you created/deleted/changed during the session will not be saved.

You can save the workspace during the session with the File/Save Workspace or using the disk icon on

the toolbar. This is not a bad idea to avoid losing work.

R is case-sensitive. Q and q are not the same. Some functions (e.g., rowSums) will even mix cases in

the function name so be aware. Object names can have mixed cases, periods and underscore to improve

readability (e.g., my.list, squirrel_results, DipperModels).

The symbol # is used for comments and anything to the right of the # is ignored in a line. You’ll see

them in examples below and in the help files for RMark and other help files.

The parentheses after q are necessary. Try typing qwithout the parentheses and what you’ll get is a

listing of the function “q". However when you type q(), it executes the function “q", and “()” represents

the arguments for the function which happens to be empty in this case.

Almost everything you do in R will be executing functions that accept arguments and return a value.

The functions and the values returned by executing functions can all be stored as named objects in the

workspace. Assignment of function values to an object is done with the assignment operator which can

be either <- or = (or <<- for global assignment within functions). Typing x=1+1 or x <- 1+1, assigns

the numeric result 2 to the object named x. Typing x=mean(1:50), assigns the mean of the sequence of

numbers from 1 to 50 to x. The definition of a function is an assignment of R code to an object with

a specific function name. You can see a listing of the names of the objects in the workspace by typing

ls().

If you execute a function and do not assign the result (if any) to an object, a default print function for

that object will display it on the screen or to a file (if you use the sink function) and nothing becomes of

it. The function ls() is a good example. As it says in the help file for ls, the function returns a vector of

character strings giving the names of the objects in the specified environment. That vector of character

strings can be assigned to an object but if you simply type ls(), the character string is printed (displayed)

on the screen.

Within R you can get help for any function by simply typing ? followed by the function name. For

example, ?ls. If you don’t know the name of the function but have some keywords to describe it, use the
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function help.search("my key words") or browse through the help manuals which can be accessed

from the Help menu. A reference card of commonly used R functions can also be useful - see

http://cran.r-project.org/doc/contrib/Short-refcard.pdf

You can access the fullhelp file forRMark by opening the file RMark.chm (compiledhelp file) contained

in the install directory c:/Program Files/R/Rvvvvv/library/RMark/chm (where vvvvv represents the

R version number). If you only want to know the arguments of a function, you can use the function

args(function) to list the argument names and default values of the function. For example, type

args(ls) to see that the ls function does have arguments but the default values are typically used,

so you only need to type ls().

Values for function arguments can be assigned by their order in the function call and by specifying

argument=value. The advantage of the latter format is that it is not order-specific. Both formats can be

used in the same function call and it is a typical choice to specify the first few common arguments by

order and then specifying less often used arguments by name. As an example, we will use the function

rnorm which generates random values from a normal distribution. If you type args(rnorm), you’ll

see the following: function (n, mean = 0, sd = 1). This means that the function has 3 arguments

named n, mean and sd. The latter 2 have default values of 0 and 1, so if you don’t specify values for

those arguments they will be assigned 0 and 1 respectively. The argument “n” is the number of random

values to be generated and its value must be given because it has no default. By typing rnorm(100), you

will generate = = 100 random values from a standard normal distribution with mean 0 and standard

deviation 1. If you don’t assign them to an object they will simply be displayed on the screen. If you

wanted an sd of 5, you could do that by either of the following calls: rnorm(100,,5) or rnorm(100,sd=5).

The first form assigns the argument values solely by position in the argument list and the second uses

both formats with n being assigned 100 because of its first position and sd is assigned 5 with a named

value. Naming arguments does make the code more readable and you could choose to specify all the

arguments by name with rnorm(n=100, mean=0, sd=5) and that is perfectly suitable. If you forget to

assign a value to an object which does not have a default, an error will be issued. For example, you may

see something like the following:

> rnorm(mean=2)

Error in rnorm(mean = 2) : argument ‘‘n’’ is missing, with no default

You can write your own functions that are stored in the workspace,but most functions you will use are

in base R packages or other contributed packages that can be optionally installed with R. The multitude

of contributed packages on CRAN (Comprehensive R Archive network) can be found from the R home

page. While most contributed packages are on CRAN, there are other supported packages such as

RMark that can be found on the web. Packages must be installed and then loaded with the library()

function as described above for RMark. Once you have installed RMark and used the library(RMark)

function you can access the help and use the functions. Remember that R is case-sensitive so RMark is

not the same as Rmark.

There are several different kinds of data structures in R. The most basic is a vector and while most

objects in R are generalizations of vectors, here we are referring to a vector as an ordered collection

of items of the same type. For example, c(4,2,1) is a numeric vector with the first item being 4, the

second 2 and the third being 1. As you might expect, c() is a function - the concatenate function that

puts together items of the same type or coerces them to the same type. Numeric vectors can be created

with sequences such as 1:5 which is the sequence from 1 to 5 and by various functions (e.g., seq, rep).

Vectors can also contain character or logical values. For example, c("apple","orange","grape") is a

vector of character strings of fruit names. Logical vectors are typically created by comparison operators
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such as equality (==), not equal (!=), less than (<), greater than (>), not greater than (<=), and not less

than (>=). Both of the following commands create a logical vector of length 5 with different values:

> 1:5 ==2

[1] FALSE TRUE FALSE FALSE FALSE

> 1:5 >2

[1] FALSE FALSE TRUE TRUE TRUE

Logical values (vector of length 1) can also be created with the %in% operator:

> "orange" %in% c("apple","orange","grape")

[1] TRUE

> "pineapple" %in% c("apple","orange","grape")

[1] FALSE

Other data structures include matrices, arrays, dataframes (tables) and lists. Matrices are rectangular

structures with each element restricted to be the same type (e.g., numeric, character, logical) and arrays

are generalizations of matrices to higher dimensions. While matrices are used in RMark (e.g., design

matrix), the primary data structures are lists and dataframes. You need to know how to construct and

manipulate both types of data structures to be able to run models other than the most rudimentary

ones.

Lists are the most predominant data structure in RMark because they are used to specify argument

values and most functions return lists. Dataframes are special cases of lists, so we’ll start by describing

lists. A list is a collection of data structures that are not restricted to be the same type/structure. A list

can contain numeric vectors, character vectors, a matrix, other lists and so on and so forth. It is a truly

generic structure that lets you paste together different kinds of data structures. A list is often the value

returned from a function because a function can only return a single object and often it is the only way

to return many different types of values by pasting them into a single list. Likewise, lists can be used to

paste together different types of data (e.g, character, numeric, logical) that are related to be passed as

value for a function argument.

Everyone is familiar with grocery and "to do” lists so we’ll use them as examples. To create a very

strange grocery list in R called groceries you would use the list() function:

> groceries=list(fruits=c("oranges","apples","grapes"),

meat=c("steak", "chicken"), milk=c(1,.5) )

If you wanted to see the contents of groceries it would look as follows:

> groceries

$fruits

[1] "oranges" "apples" "grapes"

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

The groceries list has length 3 as you can ascertain with the length function:

> length(groceries)

[1] 3
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It contains 3 vectors with the first being character vectors named "fruits” and "meat” and the third is

a numeric vector containing the size in gallons and named "milk". The first vector contains 3 elements,

and the second and third vectors each contain 2 elements. You can extract the meat vector in several

ways.

> groceries$meat

[1] "steak" "chicken"

>

> groceries[[2]]

[1] "steak" "chicken"

>

> groceries[["meat"]]

[1] "steak" "chicken"

The double-square brackets are used to extract a list element by number or name. What is returned is

the contents of the list element which is a character vector in this case. Now notice what happens when

you use single brackets instead:

> groceries[2]

$meat

[1] "steak" "chicken"

> groceries["meat"]

$meat

[1] "steak" "chicken"

Single brackets provide a subset of the list and the result is a list and not just the contents of the list.

The difference between the single and double brackets is shown below with the is.list function. With

single brackets the result is a list and with double brackets it is not a list.

> is.list(groceries["meat"])

[1] TRUE

> is.list(groceries[["meat"]])

[1] FALSE

In most cases with RMark you will use the [[]] to extract the contents of a single list element. On

some occasions, you would like to extract several list elements and this is done with the single brackets:

> groceries[c("meat","milk")]

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

> groceries[2:3]

$meat [

1] "steak" "chicken"

$milk

[1] 1.0 0.5
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In both cases above, a list with 2 elements is returned. If you try to extract more than one list element

with [[]], an error will result:

> groceries[[2:3]]

Error in groceries[[2:3]] : subscript out of bounds

> groceries[[c("meat","milk")]]

Error in groceries[[c("meat", "milk")]] : subscript out of bounds

In RMark, you’ll most often extract specific list elements either by name (groceries$meat) or by

position (groceries[[2]]).

Lists can contain lists as elements and while this can look rather bizarre at first, it is extremely handy.

Assume that we had a "to do” list as follows:

todo=list(for.wife=c("grocery","cut grass","dry cleaner"),

for.me=c("watch tv","drink beer", "nap"))

If we concatenate the lists it merges them into a single list with all the different elements:

> c(todo,groceries)

$for.wife

[1] "grocery" "cut grass" "dry cleaner"

$for.me

[1] "watch tv" "drink beer" "nap"

$fruits

[1] "oranges" "apples" "grapes"

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

Alternatively, we can also create a list of lists as follows:

> mylists=list(todo=todo,groceries=groceries)

> mylists

$todo

$todo$for.wife

[1] "grocery" "cut grass" "dry cleaner"

$todo$for.me

[1] "watch tv" "drink beer" "nap"

$groceries

$groceries$fruits

[1] "oranges" "apples" "grapes"
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$groceries$meat

[1] "steak" "chicken"

$groceries$milk

[1] 1.0 0.5

I can extract each sub-list as described previously:

> mylists$todo

$for.wife

[1] "grocery" "cut grass" "dry cleaner"

$for.me

[1] "watch tv" "drink beer" "nap"

> mylists$groceries

$fruits

[1] "oranges" "apples" "grapes"

$meat

[1] "steak" "chicken"

$milk

[1] 1.0 0.5

Lists of lists are used to provide a generic structure in RMark to accommodate varying parameters

within the different MARK models. Likewise, design data for the parameters is represented as a list of

dataframes.

That brings us to the final data structure we’ll discuss. A dataframe is a specialized list in which each

element is a named vector and each vector is of the same length but not necessarily of the same type.

A dataframe is rectangular like a matrix. In a dataframe, all the values in a column (the list element

vectors) are of the same type but one column can be numeric, the next column could be character and

another could be logical. It is easiest to conceptualize dataframes as similar to tables like in ACCESS or

any other database package.

We can show the link between lists and dataframes by using the as.data.frame function to convert

the todo list to a dataframe.

> todo.data=as.data.frame(todo)

> todo.data

for.wife for.me

1 grocery watch tv 2 cut grass drink beer 3 dry cleaner nap

The columns of the dataframe todo.data are the 2 vectors contained in the todo list. This worked

because each vector was of the same length. If we did the same conversion with the groceries list, an

error occurs because the vectors are of unequal length:

> as.data.frame(groceries)

Error in data.frame(fruits = c("oranges", "apples", "grapes"), meat

Appendix C. RMark – an alternative approach to building linear models in MARK



C.24. A (very) brief R primer C - 111

= c("steak", :

arguments imply differing number of rows: 3, 2

Notice that in the conversion from list to dataframe the quotation marks around the character strings

vanished. Dataframes were designed for analysis and character strings aren’t typically very useful for

analysis but character strings can be used to represent the names of factor variable levels. By default,

the character strings were coerced into a factor variable:

> todo.data$for.me

[1] watch tv drink beer nap Levels: drink beer nap watch tv

> is.factor(todo.data$for.me)

[1] TRUE

The columns (variables) of todo.data are factor variables and the names of the levels for the factor

variable for.me are "drink beer", "nap" and "watch tv". Note that the levels are alphabetized by default

and the numeric values of for.me are determined by the order of the levels:

> as.numeric(todo.data$for.me)

[1] 3 1 2

In RMark, dataframes are used for the capture history and related covariate data for animals. They

are also used for design data which describes the model structure.
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