Modeling Patterns and Dynamics of Species Occurrence Course 4.5-day Agenda

Day 1

Background

- Why, what and how
 - o why is there interest in the population
 - what to estimate
 - o how to estimate: basic principles
- Occupancy applications
 - o areas were such techniques could be useful
- Statistical methods
 - o concepts and notations
 - o probability
 - Maximum likelihood and Bayesian estimation
 - o logistic regression, covariate modelling and odds ratios
 - o hypothesis testing
 - o model comparison and multi-model inference
 - o computer exercises in Excel

Single-season model (part I)

- basic sampling situation (data type)
- model history and development
- missing observations
- covariates

Introduction to PRESENCE

- worked single-season example (no covariates)
- examination of the output
- results and interpretation

Day 2

Single-season model (part II)

- model assumptions
- dealing with heterogeneity
- small sample/finite population inference
- modelling spatial correlation in occupancy

Design matrices and fitting custom single-season models in PRESENCE

- worked single-season example (with covariates)
- examination of the output
- results and interpretation
- second worked example with covariates
- using results to develop species distribution maps with PRESENCE and R

Introduction to RPresence

fitting occupancy models with PRESENCE via R

Day 3

Single-season study design

- site selection
- allocation of effort
- design comparisons
- survey timing
- miscellaneous issues
- covariates
- GENPRES

Sample size exercises

Multiple-season model (part I)

- basic sampling situation (data type)
- model history and development
 - o implicit dynamics
 - o explicit dynamics
- missing observations
- covariates

Multiple-season models in PRESENCE

- worked multi-season example
- examination of the output
- results and interpretation

Day 4

Multiple-season model (part II)

- alternative parameterizations
- characterizing occupancy dynamics
- modelling spatial correlations in occupancy dynamics

Worked multiple-season examples and computer exercises

- incorporating hypotheses of occupancy dynamics into modelling
- worked example

- examination of the output
- results and interpretation
- alternative parameterizations
- second worked example
- creating maps of occupancy dynamics using PRESENCE and R

Multiple-season study design

- relationship with single-season designs
- long-term design
- adding sites over time

Advanced topics

- multi-state occupancy
- integrated habitat-occupancy dynamics
- modelling multiple 'species' simultaneously
- species richness and community dynamics
- species co-occurrence
- other extensions

Day 5 (until noon)

Summary and Discussion Consulting session

- analyze own data
- ask specific questions of the instructors
- address design issues