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WAS IT THERE? DEALING WITH IMPERFECT DETECTION
FOR SPECIES PRESENCE/ABSENCE DATA
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Summary

Species presence/absence surveys are commonly used in monitoring programs, metapop-
ulation studies and habitat modelling, yet they can never be used to confirm that a species
is absent from a location. Was the species there but not detected, or was the species gen-
uinely absent? Not accounting for imperfect detection of the species leads to misleading
conclusions about the status of the population under study. Here some recent modelling de-
velopments are reviewed that explicitly allow for the detection process, enabling unbiased
estimation of occupancy, colonization and local extinction probabilities. The methods are
illustrated with a simple analysis of presence/absence data collected on larvae and meta-
morphs of tiger salamander (Ambystoma tigrinum) in 2000 and 2001 from Minnesota farm
ponds, which highlights that misleading conclusions can result from naive analyses that do
not explicitly account for imperfect detection.

Key words: Ambystoma tigrinum; colonization; detection; local extinction; occupancy; presence/
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1. Introduction

Presence/absence surveys for species are commonly used in a wide variety of ecological
applications. In large-scale monitoring programs it is often infeasible to collect sufficient
information from the population to enable reasonable estimates of abundance or density to be
obtained; the costs may be prohibitive. Alternatively, the proportion of area occupied (PAO)
may be seen as a low-cost surrogate, assuming that this is an acceptable metric for manage-
ment/conservation purposes. Presence/absence surveys can be conducted at a number of sites
across a broad landscape, with records being kept of the number of locations where the species
is detected. In metapopulation studies, data collected on the presence/absence of a species at
discrete population ‘patches’ are often used to derive colonization and local extinction proba-
bilities (Hanski, 1992, 1994, 1997; Moilenan, 1999, 2002). Other quantities such as turnover
rate can also be calculated, and relationships between population persistence and patch char-
acteristics (such as patch size or habitat quality) are often postulated. In habitat modelling the
intent is often to build a model relating species distribution to certain habitat characteristics,
then infer whether the species exhibits particular habitat preferences, or identify other areas
of potentially suitable habitat.

However, in all such applications an observed species absence (or more correctly, the
non-detection of the species), does not imply the species is genuinely absent from a sampling
location. Frequently, a species can be present at an area but go undetected due to random
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chance. Such ‘false absences’ lead to incorrect inferences if the imperfect detection of the
species is not accounted for: PAO is underestimated; colonization and local extinction rates
are biased; and habitat relationships may well be misleading, particularly if detectability also
changes with different habitats (e.g. open forest vs scrubby undergrowth). Some may argue
that they are not interested in absolute measures, and that a relative index suffices; hence
detectability is not an issue. This argument is only valid if detectability is always constant,
and experience suggests that is not the case, especially given the dynamic nature of many
ecological systems, particularly those impacted upon by humans in some form.

This paper reviews some recently developed methods that explicitly incorporate imper-
fect detection into the modelling process, allowing unbiased estimation of the parameters of
interest. A requirement of these methods is that some locations are surveyed on more than
one occasion within a relatively short period of time. Below, the models are briefly detailed
and implications on the study designs are discussed.

2. Practical sampling situation

Presence/absence surveys are conducted at N sampling sites within the area of interest.
These sites may represent discrete patches of habitat, such as ponds or vegetation patches;
potential nesting sites; established monitoring stations; or some randomly chosen points from
a map. Naturally, the methods used to select the sites directly relate to the generality of the
results of subsequent modelling. The target species is detected or not detected during each
survey if present, and is never falsely detected when absent (through species misidentification).

Further, it is biologically reasonable to assume that for some appropriate time interval (a
‘season’) the area is closed to any changes with respect to occupancy of the sampling sites, i.e.
within a season sites are either always occupied or always unoccupied by the species (this may
be relaxed in some circumstances, see the section on model assumptions for details). Changes
in the occupancy state of sites may occur between seasons. Multiple presence/absence surveys
are conducted at each site within each season, with the series of detections and non-detections
for each site being recorded as a sequence of 1s and Os respectively: a detection history.

3. A single season model

There have been a number of different approaches to the problem of estimating the
fraction of sites occupied by a species that is imperfectly detected (Giessler & Fuller, 1987,
Azuma, Baldwin & Noon, 1990; MacKenzie et al., 2002; Tyre et al., 2003), although here the
method of MacKenzie et al. (2002) is reviewed as it allows for the simultaneous estimation
of occupancy and detectability, and associated variances and covariances. The independently
developed methods of Tyre et al. (2003) are closely related, but not as flexible.

MacKenzie et al. (2002) describe a method that allows for unbiased estimation of the
proportion of area occupied by a species in a single season, in scenarios where the species
cannot always be detected with certainty. They use straightforward probabilistic arguments
to describe the underlying processes that may have caused a given detection history to be
observed. They do so by defining the following parameters. Let iy denote the probability
a site is occupied by the species (constant across all sites), and p ; denote the probability of
detecting the species (given presence) in the jth survey of a site (g ;= 1- pj). For example,
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consider the detection history H; = 101 (denoting site i was surveyed three times, with the
species being detected in the first and third surveys). Clearly the species must be present; it
is detected in survey 1, not detected in survey 2, and detected in survey 3. The probability of
this history would therefore be

Pr(H; = 101) = ¥p 4,5 -

A similar expression can be obtained for all detection histories where the species is de-
tected in at least one survey, as there is only one possible process that generates an observed
history (insofar as we have defined them here). For sites where the species is never detected
(H; = 000, for example) there are two possibilities however. Either the species is present but
never detected (a ‘false absence’), or the species is genuinely absent from the site. In terms
of the model parameters, this can be written as

Pr(H; = 000) = Yq,9,93 + 1 —¥),

where the first term is the probability of a false absence, and the second term is the probability
of the site being unoccupied.

By deriving such an expression for each of the N observed detection histories, assuming
independent observations, the likelihood for the data is

N
L, p | Hy, Hy, ..., Hy) = l_[Pr(Hi), (1)

i=1

where p is a vector of detection probabilities.

4. A multiple season model

MacKenzie et al. (2003) extend the above single season model to multiple seasons by in-
troducing two additional parameters representing the processes of colonization (y,) and local
extinction (g,). These parameters are defined as follows: y, is the probability an unoccupied
site becomes occupied by the species between seasons ¢ and ¢ + 1; and ¢, is the probability
a site that was occupied by the species in season ¢ is unoccupied in ¢ + 1. As in the single
season model, the parameters are used to express the probability of observing any given de-
tection history, by considering the underlying dynamic processes. For example, consider the
detection history H; = 101 000 001, denoting the sequence of detections and non-detections
over three seasons, with three surveys per season. The species is detected twice in the first
season, never in the second season and once in the third. Assuming closure of the sites within
seasons, one of two distinct processes may have occurred. Either (i) the species has become
locally extinct at the site between seasons 1 and 2 (so is not there to be detected in the second
season), then recolonizes the site between seasons 2 and 3, or (ii) the species has not become
locally extinct between seasons 1 and 2, has gone undetected in the second season, and has
continued to occupy the site in the third season. Using the parameters defined above, the
probability of this occurring could be expressed as

Pr(H; = 101 000 001) = (%1’11‘1121’13)(317/2 + (1 = €)419293(1 — 82))(‘131‘132P33)v

where the term &y, + (1 — £/)¢,,4,,9,3(1 — &,) represents the two possible situations for
the site in the second season as described above.
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Often it is more convenient to consider the model using matrix notation, as the number of
possible explanations for a given detection history can be large, especially when the data have
been collected over a large number of seasons. Therefore, let (I)t (t = 1) denote a matrix that
determines the probability of a site transitioning between occupancy states, between seasons

tand r+ 1, e.g.
I —g g,
o=
yp _yt

and let ¢, denote a row vector that determines the initial occupancy state immediately before
the first survey of the first season, e.g.

¢0=[1/f1 1_1//1]-

In each case, columns represent the occupancy state in season ¢t + 1 (1 = occupied, 2 =
unoccupied), and rows represent the current occupancy state in season t. Also, let py, denote
a column vector, which contains the probability of observing the given sequence of detections
and non-detections in season #, conditional upon occupancy state. For example,

_ | 9192Ps d _ | 914912413
Poo1,r = 0 » o and. Pggg; = 1 .

Whenever the species is detected at least once during a season, the second element of py, is
always 0 as it is impossible to observe such a history if the site is in the unoccupied state.
Similarly, given the site is unoccupied the species is never detected at the site, and hence the
second element of p , is always 1.

The probability of observing the detection history H; can then be expressed as

T—1
Pr(H) = ) [ | Dpu)$,Pur -

t=1

where T is the total number of seasons and D(py,) is a diagonal matrix with the elements of
Py, along the main diagonal (top left to bottom right), zero otherwise. The model likelihood
is then defined as the product of all such terms for all sites, similar to (1).

The seasonal occupancy probability can be calculated using the relationship

Vv, =v,_I—¢_D+UA—=Y,_Dv_y,

and in some instances it may be advantageous to reparameterize the model in terms of ¥,
so that the seasonal occupancy probability can be modelled in terms of covariates directly.
Similarly, sometimes the rate of change in occupancy may be of interest (in fact in some
monitoring situations it may be of primary interest); it can be defined as

A = Vis1
v,

Again, the rate of change in occupancy may be derived or the model reparameterized so that
it can be estimated directly.

Under an assumption of perfect detection (as in a naive approach), &, could be estimated
as the fraction of sites apparently occupied in season ¢ that appear to be unoccupied in 7 + 1,
and y, could be estimated as the fraction of sites that appeared unoccupied in season ¢ which
appear occupiedin ¢ + 1.
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5. Estimation and modelling

MacKenzie et al. (2002) and MacKenzie et al. (2003) use standard maximum likeli-
hood techniques to obtain estimates of the model parameters. Alternatively, using the model
likelihoods defined above, we could take a Bayesian approach and define appropriate prior
distributions for the parameters. Posterior distributions could then be obtained (probably
a computer intensive method such as Markov chain Monte Carlo would be required), and
inferences could be drawn in the light of these results.

Regardless of how the estimation is done, researchers can develop a suite of models that
they wish to fit to the data, each representing a different hypothesis about the system under
study. The suite of models can then be compared using information-theoretic methods (such
as Akaike’s Information Criterion for example) to determine which model(s) best describes the
data. Alternatively, if the interest is in comparing two specific models representing competing
hypotheses, e.g. whether there is evidence that local extinction probabilities are affected by
El Nifio events, or where there is a desire to test the effect of a factor being investigated via
an appropriate experimental design, standard likelihood ratio tests can be used.

6. Extensions

Missing observations

A likely feature of many ecological studies is missing observations. In some instances it
might not be possible to collect the required data: weather conditions may prevent access to
some sites; vehicles may breakdown en route; or logistically it may not be possible to sample
all sites within a suitably small time frame. MacKenzie et al. (2002) and MacKenzie et al.
(2003) show that missing observations can easily be incorporated into the models described
above. In effect, the detection probability for the respective survey of a site is set to zero,
which fairly reflects the fact that the species could not be detected (even if present) as no survey
was conducted at that time. Essentially, this removes the detection probability parameter from
the model likelihood (with respect to the site in question). The ability of the model to handle
missing observations has important ramifications for study designs, as it enables different sites
to have different sampling intensities.

Incorporating covariates

Often researchers are interested in potential relationships between the model parameters
(occupancy, colonization, local extinction and detection probabilities) and characteristics of
the sites or generalized weather patterns (e.g. drought years). Further, the surveyors’ ability to
detect the species during any given survey may also be affected by localized conditions at the
sampling site (e.g. weather conditions or intensity of nearby traffic noise). Using the logistic
model (2),

g, — 0P @)

1 +exp(Y;B)
MacKenzie et al. (2002, 2003) detail how such covariate information can be incorporated. The
logistic model allows the relationship between the probability of interest for site i (6;) and
the covariates, Y, to be modelled, with B denoting the covariate coefficients to be estimated.
Analyses of this type could be considered as generalized logistic regression analyses, where
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allowance has been made for uncertainty in the binary observation of occupancy state (due to
imperfect detection).

The logistic model is not the only possible method for including covariate information;
other functional forms may be used if desired.

7. Model assumptions and consequences of their violation

There are two main assumptions related to the above models that could be violated in
practice: (i) the closure of sites with respect to changes in occupancy within the seasons; and
(i) the constancy of model parameters across sites (i.e. no heterogeneity).

The closure assumption is required for estimating detection probabilities correctly, so
that for those sites where the species is detected at least once during a season, a non-detection
means the ‘species is present, but undetected’; it is not necessary to also include the possibility
that during that particular survey the species may have been absent from the site. Kendall
(1999) investigated the effect of violating the closure assumption in mark—recapture studies,
and due to the strong similarities of mark—recapture models and the models reviewed above
we can make some educated guesses about the effect of violating the closure assumption in
the current situation. If the species occupies sites within a season in a random manner (i.e.
the species randomly ‘chooses’ which sites it will occupy on any given day), then parameter
estimates are unbiased although their interpretation must change. The occupancy parameter,
Y, should now be interpreted as the probability the species uses a site during a season, while
the detection probability, p, now relates to the probability that the species both occupies the
site and is detected in the survey. Other, more Markovian forms of movement between sites
within seasons may cause parameter estimates to be biased, and indeed if one thinks this might
be the case then a rethink of the study objectives and sampling design may be required. In
fact, it may be appropriate to apply the ‘multiple season model’ above, within a single year or
breeding season, where ‘seasons’ (as defined for the model) constitute a shorter time interval
where the closure assumption is more likely to hold.

One of the more likely violations of the assumptions would be heterogeneity in detec-
tion probability due to differing abundances of the species at different sites: usually (but not
always) the species is more detectable at sites with a higher abundance. This may or may not
be problematic. Again, based upon experience with mark-recapture methods, unmodelled
heterogeneity in detection probabilities causes occupancy probabilities to be underestimated
(which has been confirmed via trial simulations), yet the dynamic probabilities of colonization
and local extinction can be unbiased. Pollock et al. (1990) reviewed the literature available
at the time with respect to the degree of bias in the survival estimates of the Jolly—Seber
model caused by heterogeneous capture probabilities, with the consensus suggesting any bias
was small. The same may apply in the current situation although this needs to be formally
investigated.

Two important points need to be made. First, in many situations it might be possible to
model the heterogeneity. While we are not able to include information on the actual abun-
dances at each site (as these are unknown of course), there may be suitable covariates that could
be used as surrogates, such as quality of habitat, which could reflect that different abundances
are caused by different habitat qualities. Alternatively, Royle & Nichols (2003) suggest a
modification of the single season model that allows for heterogeneity caused by varying levels
of abundance, and also enables abundance to be estimated. Another approach would be to
use finite mixture models such as those used by Norris & Pollock (1996) and Pledger (2000)
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TABLE 1

Estimates (standard errors) of occupancy, local extinction and colonization probabilities for

tiger salamander larvae and metamorphs in 40 Minnesota farm ponds. The ‘Naive 1’ estimates

are based upon the outcome of only the first survey of each pond; ‘Naive 2’ estimates are based

upon the outcome of all surveys conducted at the sites; and the ‘Model’ estimates are obtained
from the described multiple-season model that explicitly accounts for detectability.

Method %2000 £2000 72000 Y2001

Naive I~ 0.08 (0.04)  0.00 (0.00) 0.11 (0.05) 0.18 (0.06)
Naive 2~ 0.20 (0.06)  0.25 (0.15)  0.16 (0.06)  0.28 (0.07)
Model 0.26 (0.09)  0.24 (0.16)  0.13 (0.08)  0.29 (0.08)*

*This estimate and standard error have been derived and are not
estimated directly from the model

in mark-recapture. Here the logic is that occupied sites consist of two (or more) different
unknown types each with different detection probabilities. For example sites occupied by the
species may have either low or high abundances, but the researchers cannot tell which type
a particular site belongs to. However, this uncertainty can be expressed as a probability and
included in the model to be estimated. Another approach might be to use Markov chain Monte
Carlo, and assume the detection probabilities for each site come from some undefined (but
reasonably well behaved) distribution. The main point is that there are options available for
dealing with heterogeneity caused by variations in abundance.

Second, even if parameter estimates are biased by heterogeneous detection probabilities,
the argument could be made that such an analysis is still better than using naive counts that do
not account for detectability at all. As discussed in MacKenzie et al. (2003), naive approaches
(based solely upon counts) are also likely to be affected by heterogeneity, but their assumptions
are not explicitly outlined (or even realized) by many users. For accurate inferences to be
made, the above methods assume closure of the sites with respect to occupancy during the
surveying period, and that parameters are constant across sites; a naive count requires these
assumptions plus perfect detection of the species.

8. Example

A simple analysis of the tiger salamander (Ambystoma tigrinum) data, considered by
MacKenzie et al. (2003), illustrates the methods. During the northern hemisphere spring and
summer months of 2000 and 2001, dipnet surveys were conducted for larvae and metamorphs
of various amphibian species at 40 farm ponds in south-eastern Minnesota. Biologically, it
is reasonable to expect tiger salamander larvae and metamorphs to emerge at ponds during
mid-spring, and continue to occupy ponds until late summer. Therefore, to satisfy our within-
season closure assumption, the data have been truncated so that only surveys conducted from
1 May to 7 August are included in the analysis. Each day has been considered as a potential
opportunity for surveying the farm ponds, hence a missing observation has been defined as
any day on which a site was not surveyed. The 40 ponds were surveyed 5.0 times on average
(range 1-9) in 2000; in 2001, 39 of the ponds were surveyed 3.0 times on average (range
2-7). Table 1 presents estimates of occupancy, local extinction and colonization probabilities
using three approaches. The first two are naive methods, that do not account for detectability,
based upon (i) only the first survey of a site each year (representing the type of data expected
if sites were only surveyed once per season); and (ii) all surveys each year. In both cases,
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tiger salamander larvae or metamorphs were defined to (a) occupy a site if they were detected
there at least once during the season; (b) have become locally extinct from a site between
years if they were not detected at least once in 2001, having been detected there during 2000;
and (c) have colonized a site if they were detected there in 2001 having not been detected
there during 2000. The third set of estimates is obtained by applying the data to the multiple
season model described above, where detection probabilities may vary between seasons but
are constant within seasons.

The first set of naive estimates is quite different to the other results, highlighting the
dangers of basing inferences about the state of the species on a single presence/absence survey
when the species is not detected with certainty. Based on this set of results we would conclude
that the proportion of area occupied has increased by 139%. There is little difference between
the second naive method and the multiple season model estimates of local extinction and
colonization probabilities, and level of occupancy in 2001. However there is a reasonable
difference in the level of occupancy in 2000 which, for the naive approach, translates to an
apparent 41% increase in occupancy, but allowing for species detectability there is an apparent
increase of only 15%. This is because in the 2000 season the probability of detecting the
species in a dipnet survey of an occupied site was estimated to be 0.29, whereas in the 2001
season detection probability was estimated to have increased to 0.66. This has inflated the
apparent rate of change in proportion of area occupied when detectability is not explicitly
accounted for in the naive approach. Without an omniscient viewpoint, we cannot judge
which set of estimates most closely resembles the truth, although it would seem most prudent
to use those that allow for uncertain detection.

An added advantage of using the modelling approach is that it can be used to constrain
some parameters, to investigate, for example, whether there is variation over time. MacKenzie
et al. (2003) fitted a suite of models to the data above to represent various constraints on
parameter values. They found the most parsimonious model (in terms of Akaike’s Information
Criterion) to be one in which the overall level of occupancy was constant, while allowing for
changes in the state of occupancy of the ponds between years.

9. Discussion

The methods reviewed above offer very flexible analysis for species presence/absence
surveys, using well established statistical techniques (namely, likelihood theory). The ability
to incorporate missing observations or unequal surveying effort across sites allows a wide
range of sampling designs to be implemented. The most robust is likely to be a design in
which all sites are visited an equal number of times. This design provides the most data, so
more complex models could be investigated during an analysis, and checks of assumption
violations would probably be more accurate. Repeated surveys allow detection probabilities
to be estimated, but there is undoubtedly a point beyond which it is inefficient to collect
further information on detectability. An alternative design might randomly choose a subset
of sites that are repeatedly surveyed and survey other sites only once: such a design relies
more heavily on the now untestable assumption that the detection function constructed for
sites surveyed more often is equally appropriate for the sites surveyed once. Another possible
design might repeatedly survey all sites until the species is detected for the first time (up to
some maximum number of surveys). Once the species has been detected at a site, that site is
never surveyed again during that season. Such a design could be useful where access to sites is
difficult, and detection probabilities are constant across all surveys or modelled accurately by
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a covariate relationship. These examples (there are many more that could be used in practice)
are compatible with the methods described above, although there are implicit assumptions
involved with each that need to be considered during analysis of the data.

There is also a great deal of flexibility in how the repeated surveys are conducted in
practice. More than one survey could be conducted with each visit to a site, by either the same
or multiple observers. However it is important to ensure that the surveys remain independent
and that the methods used, and any assumptions implicit in the choice of method, are consistent
across all sites.

Recently, this general approach of analysing species presence/absence data with imper-
fect detections has been extended to multiple species (MacKenzie, Bailey & Nichols, 2004).
The joint modelling of two or more species allows questions of species co-occurrences to be
addressed, while accounting for the imperfect detection of the species. Over the last 30 years,
a substantial body of literature has detailed various methods for determining whether patterns
observed in a species presence/absence matrix could have occurred by chance or show strong
evidence of non-randomness (Connor & Simberloff, 1979, 1983; Gilpin & Diamond, 1982,
1984; Kelt, Taper & Mesevre, 1995; Manly, 1995; Gotelli, 2000; Gotteli & McCabe, 2002).
However, by not accounting for imperfect detection, inferences can be misleading, as an ap-
parent species absence may actually be due to the non-detection of the species. Furthermore,
non-random patterns can be caused by different habitat preferences, or by ability to detect
different species varying across habitat types. By extending our models above, the level of
co-occurrence between species can be assessed while allowing for such habitat differences. In
theory, the models could be extended to a large number of species; but the number of param-
eters to be estimated would be huge (requiring a very large dataset) and difficult to interpret.
In practice, multiple-species models should be useful for assessing co-occurrences between a
small number of species (< 4). A multiple-season version should also be able to estimate the
rate at which one species is being replaced by another at the monitoring sites, which might
be particularly useful for quantifying the impact an invasive species is having on a native,
for example.

The above models could be applied to the monitoring of biodiversity or species richness.
Rather than monitoring a single species at multiple sites, multiple species could be monitored
at a single site. To develop a list of species that are of interest, multiple presence/absence
surveys could be conducted within a common ‘season’ for all species, and the proportion of
species on the list that are thought to be present could be estimated (allowing for imperfect
detectability). The multiple season model would then be useful for assessing, and quantify-
ing, changes in the community structure. Such an approach would be feasible for low-cost
biodiversity monitoring.

Specialized computer software has been developed to enable the above methods to be
applied. Program PRESENCE is freely available over the Internet, and may be downloaded
from http://www.proteus.co.nz. The methods have also been implemented in Program MARK
(http://www.cnr.colostate.edu/ ~ gwhite/mark), although the multiple season model uses one
of the alternative parameterizations where occupancy is estimated for each season, along with
local-extinction probabilities.
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