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Summary

1. The past decade has seen an explosion in the development and application of models aimed at estimating spe-

cies occurrence and occupancy dynamics while accounting for possible non-detection or species misidentifica-

tion.

2. We discuss some recent occupancy estimation methods and the biological systems that motivated their devel-

opment. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the

investigator.

3. Unlike many mark–recapture scenarios, investigators utilizing occupancy models have the ability, and

responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species

occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent

biological inference and interpretation of model parameters depend on these definitions and the ability to meet

model assumptions.

4. We demonstrate the relevance of these definitions by highlighting applications from a single biological system

(an amphibian–pathogen system) and discuss situations where the use of occupancy models has been criticized.

Finally, we use these applications to suggest future research andmodel development.

Key-words: amphibian disease, Batrachochytrium dendrobatidis, detection probability, dynamic

multistate occurrencemodels, false positive, misidentification, multiscale, study design

Introduction

Since the seminal work byMacKenzie et al. (2002, 2003), there

has been an explosion in the development and application of

models aimed at estimating species occurrence and occupancy

dynamics while accounting for possible non-detection or spe-

cies misidentification (MacKenzie et al. 2006, 2009; Miller

et al. 2011). Since 2002, well over 1000 papers have cited occu-

pancy models (Google Scholar) with a plethora of studies

investigating ecological questions and processes such as species

distributionmodelling (e.g. Royle,Nichols &K�ery 2005;K�ery,

Guillera-Arroita & Lahoz-Monhort 2013), habitat relation-

ships (e.g. Ball, Doherty & McDonald 2005), metapopulation

dynamics (e.g. Ferraz et al. 2007), invasive species dynamics

(e.g. Bled, Royle & Cam 2011; Yackulic et al. 2012), multispe-

cies relationships (e.g. competition or predation, MacKenzie

et al. 2006; Miller et al. 2012a) and community dynamics

(Zipkin, Dewan & Royle 2009). The studies have involved

numerous vertebrate taxa as well as applications to plants (e.g.

K�ery 2004), invertebrates (e.g. Govindan, K�ery & Swihart

2012) and pathogens (e.g. Gomez-Dias et al. 2010). Uses of

occupancy models have also extended to applications in

human medicine, palaeontology (taxonomic ranges based on

fossil data, Liow 2013) and even political science (probabilities

of incidents reflecting political unrest).

Various extensions of the original static and dynamicmodels

have been proposed to accommodate multiple occupied

states (Royle 2004; Royle & Link 2005; Nichols et al. 2007;

MacKenzie et al. 2009), estimate community-level metrics and

dynamics (Dorazio & Royle 2005; K�ery & Royle 2009), simul-

taneously model habitat and occupancy dynamics (Martin

et al. 2010; MacKenzie et al. 2011; Miller et al. 2012a), esti-

mate species occurrence at multiple spatial or temporal scales

(Nichols et al. 2008; Kendall 2009; McClintock et al. 2010b;

Mordecai et al. 2011; Pavlacky et al. 2012), and model occu-

pancy dynamics as a function of the occupancy states of nearby

(neighbouring) sites (Royle & Dorazio 2008; Bled, Royle &

Cam 2011; Yackulic et al. 2012). Other model development

has been aimed at relaxingmodel assumptions by allowing het-

erogeneous detection probabilities (e.g.MacKenzie et al. 2006;

Royle 2006), including abundance-induced heterogeneity in

detection probability (Royle&Nichols 2003;Royle 2004;Royle

& Dorazio 2008), dealing with lack of independence among

repeated detection surveys at a sampling unit (Nichols et al.

2008;Hines et al. 2010;Guillera-Arroita 2011), accommodating*Correspondence author. E-mail: llbailey@colostate.edu
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misidentification or false-positive detections (Miller et al.

2011, 2013), and developing methods to address violations of

the closure assumption (Rota et al. 2009;Kendall et al. 2013).

Occurrence data have the advantage of being relatively easy

to collect, and the availability of various free software pack-

ages has contributed to proliferation of the use of occupancy

models (e.g. Program PRESENCE, Hines 2006; Program

MARK, White & Burnham 1999; the R package unmarked,

Fiske & Chandler 2011; OpenBUGS, Lunn et al. 2009). Still,

the ability to draw strong biological inference from occurrence

data depends upon the clear articulation of study objectives

and an appropriate sampling design. Investigators utilizing

occupancymodels have the ability, and responsibility, to define

the following terms based on their biological questions, logisti-

cal constraints and other study specifics: sample units (i.e.

sites), the time period over which occurrence is assumed to be

static, replicate surveys and even the criteria that constitute

‘detection’. Several recent papers have been critical of the use

of occupancy models when the above terms are ambiguous

(Efford & Dawson 2012) or defined in a manner that leads to

violation of critical model assumptions (e.g. Kendall & White

2009; Guillera-Arroita 2011). While the importance of study

design has always been emphasized in the occupancy arena

(MacKenzie & Royle 2005; MacKenzie et al. 2006; Bailey

et al. 2007; Guillera-Arroita & Lahoz-Mohort 2012),

most occupancy design papers concentrate on developing cost-

efficient designs for a generic application (e.g. MacKenzie &

Royle 2005; Guillera-Arroita, Ridout &Morgan 2010) or eval-

uate the relativemerits of different detectionmethods (e.g. Nic-

hols et al. 2008). To provide general recommendations on

appropriate sample size and optimal allocation of effort among

sites and surveys, these papers have necessarily assumed that

investigators appropriately define key components to address

their biological objectives. Specific recommendations about

how to define these key components are difficult to provide

because objectives, logistical constraints and other key deter-

minants of study design differ among studies. Such factors

determine how well the study system corresponds to model

assumptions and thus the strength of inference provided by

that application of occupancymodels.

In this paper, we discuss some of the newer occupancy mod-

els and the biological systems that motivated their develop-

ment. Collectively, these models offer tremendous flexibility

and exciting new ways for practitioners to address biological

questions related to species occurrence. We emphasize that

biological inference and interpretation of model parameters

depend upon the study system and the ability to meet model

assumptions. To illustrate the importance of defining key occu-

pancy components, we show how these definitions can vary

within a given biological system based on different study objec-

tives. A clear objective that specifies exactly what biological

aspect of the system is being represented by ‘occupancy’ should

lead naturally to reasonable options for elements of the field

design (e.g. sample unit, season length, etc.). This, in turn, will

lead to analyses that yield strong, defensible biological infer-

ences about the system of interest. Failure to specify a clear

objective will result in weaker inferences.

Occupancymodels: key components and
assumptions

Occupancy is usually defined as the probability that the focal

taxon occupies, or uses, a sample unit during a specified period

of time during which the occupancy state is assumed to be

static. A typical occupancy study design involves identifying

the complete set of sample units of interest (of size S) and

selecting a sample (of size s) in a manner that allows investiga-

tors to generalize conclusions based upon the sample to the

specified population of units. During designated points in time

that relate to the time-scale at which occupancy states are likely

to change, the s units are repeatedly surveyed within a rela-

tively short time period (during which the occupancy state at

each unit is static), and the observed occupancy state is

recorded during each survey of each unit, or ‘site’. This design

clearly resembles Pollock’s robust design in mark–recapture

models (Pollock 1982; Kendall, Pollock & Brownie 1995), but

within the occupancy literature, primary periods are often

referred to as ‘seasons’ and secondary sessions as ‘surveys or

visits’. Within each season, the occupancy state of each unit

does not change (i.e. closure assumption); hence, the repeated

surveys provide multiple opportunities to observe the true

occupancy state for a given season. Between seasons, the occu-

pancy statemay change at the sites: occupied sites may become

unoccupied (i.e. local extinction) and unoccupied sites may be

colonized.Model parameters under this simple dynamicmodel

(MacKenzie et al. 2003) include the following:

wi1 = the probability that unit i is occupied by the target

species during the first season.

pijt = the probability of detecting the species at an occupied

unit i during the jth independent survey of the site during

season t.

eit = the probability that occupied unit i in season t becomes

unoccupied in season t + 1 (local extinction).

cit = the probability that an unoccupied unit i in season t is

occupiedby the target species in season t + 1(colonization).

Model likelihoods for the data can be developed that

explicitly incorporate the biological and sampling processes

either by accounting for all possibilities when there is ambi-

guity in the true occupancy state (due to imperfect detection,

i.e. integrating across the occupancy states), or using a hierar-

chical modelling approach. Parameter estimates may be

obtained using maximum likelihood or Bayesian methods of

inference.

There are several critical assumptions for the model

described above, including (i) the closure assumption men-

tioned above; (ii) the probability of initial occupancy (season 1,

w1) and subsequent vital rate parameters (et, ct) are constant

among sites, or differences are modelled using covariates (e.g.

usually via a logit link); (iii) no unmodelled heterogeneity in

detection probabilities; (iv) survey outcomes are independent

of one another; and (v) species are not misidentified or falsely

detected when a site is unoccupied (MacKenzie et al. 2006). If

these assumptions are not met, estimators may be biased, pre-

cision may be overstated, and inferences about factors influ-

encing model parameters may be incorrect. For greater detail
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on the basic modelling approaches, readers should see

MacKenzie et al. (2002, 2003, 2006).

Motivation for newmodel development

During the past decade, several new models have been devel-

oped to expand upon the basic dynamic model or relax its

associated assumptions. In this section, we discuss some of

these models and refer readers to other extensions presented in

this session.

BEYOND TWO STATES

Soon after the publication of the initial occupancy models,

there was a desire to extend models to include more than one

occupied state. There are many biological systems where it is

advantageous to classify different subcategories of species

occurrence (e.g. breeding/non-breeding or relative abundance

classes) or simultaneously model the joint dynamics of habitat

and species occurrence. Motivated by these biological systems,

several dynamicmultistatemodels have been developed to pro-

vide inferences about the probabilities of sites being in any one

of the occupancy states and making dynamic transitions

among them. Thesemodels allow for ambiguity not only in the

presence or absence of the species (for example) from the field

observations, but also in assignment of the correct subcatego-

ry. We begin by describing a general model and then highlight

the flexibility of this class of model using a diverse group of

innovative biological applications.

Motivated by the case of anuran call index data, Royle

(2004) and Royle & Link (2005) developed models for assess-

ing patterns in multiple occurrence states at a single point in

time.Nichols et al. (2007) developed a reparameterized version

of the Royle & Link (2005) model to assess reproductive suc-

cess at a unit, given species occurrence. MacKenzie et al.

(2009) provided a general multistate framework, within which

these previous developments represented special cases (param-

eterizations), and then extended thesemethods to allow estima-

tion of parameters governing the dynamic processes

responsible for change in these occupancy states between sea-

sons. For generality, we present both the conditional binomial

parameterization and the multinomial parameterization of

MacKenzie et al. (2009), but we acknowledge that most appli-

cations have utilized the conditional form. The conditional

binomial approach may be biologically more reasonable when

progression from one occupancy state to another is considered

as a series of steps (e.g. species is present or absent at a unit and

then given presence, breeding or no breeding occurred).

Numerically, this parameterization can be more stable, partic-

ularly when covariates are incorporated. Importantly, in all

these cases, the observed occupancy states are defined hierar-

chically, such that the lowest observed state (non-detection)

has the greatest ambiguity about the true occupancy state (all

states, occupied and unoccupied, are possible), but there is no

uncertainty regarding the true state at a unit where the highest

state is observed.

We develop the model first in terms of three possible states

(unoccupied and two occupied states) to be consistent with

many model applications and then mention how the model

can be extended to more states to accommodate other exten-

sions such as habitat–occupancy dynamics and species

co-occurrencemodels.

Let φ[m] be the probability that a unit is in occupancy state

m,where
P

m /½m� ¼ 1. In the case of three mutually exclusive

occupancy states, we can write the probability of a unit being

unoccupied as 1� φ[1]� φ[2]. Most applications of the multi-

state occupancy model have used a conditional binomial

parameterization where the probability of the higher state is

conditional on species occurrence. Here, the probability of

occupancy is defined as w = φ[1] + φ[2], and the probability a

unit is in state 2 (the highest state) can be written as conditional

on occupancy, R = φ[2]|w. Thus, the initial state probability

vector for the first season of sampling can be defined as

/0 = [1�φ[1]�φ[2] φ[1] φ[2]] = [1�w w(1�R) wR]. A transition

probability matrix /t. is used to describe change in the true

state of a unit between seasons t and t + 1. This matrix can be

written in terms of parameters /½m;n�
t , the probability of a unit

transitioning from statem at time t to state n at time t + 1 or as

the product of two conditional probabilities: for examplew½m�
tþ1,

the probability of a unit being occupied at time t + 1, given

that it was in statem at time t, and R
½m�
tþ1, the probability a unit

is in the highest state (2) at time t + 1, given the unit was in

statem at time t and is occupied at time t + 1.

Conditional on the true state of a unit at a given time, detec-

tion probabilities are defined for each parameterization

(Table 1).

Following MacKenzie et al. (2009), the probability of the

observed detection histories h collected over T seasons can be

determined succinctly usingmatrix notation, that is,

Pr h hjð Þ ¼ /0

YT�1

t¼1

D ph;t
� �

/t

" #
ph;T;

where ph,t is the detection probability vector for the portion of

the full detection history observed in season t and D (ph,t) is a

diagonal matrix with the elements of ph,t on the main diagonal

(top left to bottom right) and zero elsewhere. Using a matrix

formulation, ambiguity in the true occupancy state from the

observed data is resolved through the matrix multiplication,

which is essentially just the sum of the probabilities of the vari-

ous possible outcomes. Assuming the detection histories are

ut ¼
/½0;0�
t /½0;1�

t /½0;2�
t

/½1;0�
t /½1;1�

t /½1;2�
t

/½2;0�
t /½2;1�

t /½2;2�
t

2
64

3
75 ¼

1� w½0�
tþ1 w½0�

tþ1ð1� R
½0�
tþ1Þ w½0�

tþ1R
½0�
tþ1

1� w½1�
tþ1 w½1�

tþ1ð1� R
½1�
tþ1Þ w½1�

tþ1R
½1�
tþ1

1� w½2�
tþ1 w½2�

tþ1ð1� R
½2�
tþ1Þ w½2�

tþ1R
½2�
tþ1

2
64

3
75
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independent for each unit, the joint probability for the data

(and themodel likelihood) is

Pr h1; h2; . . . hsjhð Þ ¼ L h h1; h2; . . . hsjð Þ ¼
Ys
i¼1

Pr hi hjð Þ

where h denotes all the parameters in the model. Alternatively,

the same underlying modelling structure can be developed

within a state-space or hierarchical model (MacKenzie et al.

2009).

Most avian applications of the above model have focused

on evaluating factors influencing occupancy and reproduc-

tive success of nesting raptor species. Martin et al. (2009)

used the method to explore potential negative impacts of rec-

reational activities on Golden Eagles (Aquila chrysaetos) in

Denali National Park, Alaska, and found that while there

was some evidence of reduced colonization (i.e. w½0�
tþ1 was

lower at highly accessible sites), conditional reproduction

was better modelled as a function of prey abundance.

MacKenzie et al. (2012) applied the model to potential nest-

ing territories for California Spotted Owls (Strix occidentalis

occidentalis) in California. This species is relatively long-lived

and exhibits high fidelity to nesting territories. In this case,

successive territory occupancy should be correlated with

adult survival, and probability of reproductive success

should be highly correlated with per capita reproductive

rates, making it possible to investigate population dynamics

without marking individuals. A similar multievent approach

was also taken by Lorentzen, Choquet and Steen (2012) to

estimate survival and hatching success at occupied nests of

colonial seabird species.

Interestingly, several authors have applied the model to esti-

mate habitat and occupancy dynamics by redefining the true

states as unsuitable habitat (and thus unoccupied), suitable

habitat occupied by no or only few individuals of the target

species or suitable habitat occupied by some or many individu-

als of the target species. Such an approachwas applied to study

the use of water holes by African elephants (Loxodonta afri-

cana) in Hwange National Park, Zimbabwe (Martin et al.

2010), and the occurrence of larvae of a suite of plains fishes in

the Arikaree River, eastern Colorado, USA (Falke et al.

2012). The aim of these studies was to examine how habitat

suitability and factors that affect habitat suitability (e.g. rain-

fall, snowpack) influence the distribution and abundance of

target species. Actively manipulating the availability of surface

water (habitat) is one option that managers have to influence

these species’ distributions, and the resulting parameter

estimates can be used to predict responses to potential actions

under differing environmental conditions to identify optimal

management decisions.

Applications such as these prompted the development of

more flexible models to separate the fundamental compo-

nents of habitat and species occurrence dynamics to better

understand ecological processes. MacKenzie et al. (2011)

developed a model that permits variable levels of species

occurrence probabilities among multiple habitat types, where

the species occurrence may also influence the habitat dynam-

ics (e.g. overgrazing). Likewise, Miller et al. (2012a) concep-

tualized a model that included combinations of habitat

(suitable/unsuitable) and predator and prey occurrence. Both

papers modelled the dynamics of target amphibian species

that rely on ephemeral habitats for long-term persistence,

hence the emphasis on modelling habitat and species dynam-

ics simultaneously. These studies provide examples of the

flexibility of occupancy models, specifically investigating

multiple simultaneous effects on focal species dynamics. At

the same time, multiple effects necessitate the development

of complex models and require that investigators carefully

consider only those models that are relevant for their biologi-

cal system. We will return to these considerations in later

sections.

FALSE-POSIT IVE DETECTIONS

Arguably the most vital assumption of the occupancy models

mentioned thus far is that species are not misidentified or fal-

sely detected when a site is unoccupied.While the possibility of

false-positive errors had been acknowledged in various studies

(e.g. Simons et al. 2007; Shea et al. 2011), the problem had

been largely ignored in model development until recently (but

see Royle & Link 2006). A series of experimentally based

papers on birds and anurans highlighted the pervasiveness of

the problem in aural detections, noting that false-positive

errors existed for nearly all species and observers (Simons et al.

2007;McClintock et al. 2010a;Miller et al. 2012b).Moreover,

there was limited ability to reduce these errors with additional,

targeted training (Miller et al. 2012b). Using standard

dynamic occupancy models, low levels of false-positive errors

(< 5% of all detections) caused severe overestimation of site

occupancy, colonization and local extinction probabilities, as

well as spurious relationships between these parameters and

explanatory variables (Royle & Link 2006; McClintock et al.

2010a; Miller et al. 2011, 2013). It should also be noted that

biases introduced by species misidentification are not limited

Table 1. Detection probabilities associated with dynamic multistate

occupancy models. In the multinomial parameterization (A), p
½l;m�
t; j is

the probability of observing a unit in occupancy state l during survey j

in season t, given the unit is in true occupancy state m. In the condi-

tional binomial parameterization (B), p
½m�
t; j is the probability of detecting

the target species during survey j in season t, given the unit is in true

state m, and dt,j is the probability of correctly classifying the true state

as state ‘2’, given the species was detected during survey j in season t

True state

Observed state

0 1 2

(A)

0 1 0 0

1 1� p
½1;1�
t;j

� �
p
½1;1�
t;j 0

2 1� p
½1;2�
t;j �p

½2;2�
t;j

� �
p
½1;2�
t; j p

½2;2�
t; j

(B)

0 1 0 0

1 1� p
½1�
t;j p

½1�
t;j 0

2 1� p
½2�
t;j p

½2�
t; jð1� dt; jÞ p

½2�
t; jdt; j
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to analyses that account for imperfect detection. If a species

may be misidentified, but is detected perfectly at a sample unit

otherwise, ‘false presences’ will result and occupancy estimates

are likely biased.

Miller et al. (2011, 2013) developed models that accommo-

date possible false-positive detections, provided a subset of the

detections is certain (i.e. a species may be present and not

detected, but detections have no false-positive errors; also see

Hanks, Hooten & Baker (2011) for a similar Bayesian hierar-

chical model). The models resemble the multistate models

described above and are analogous to the multievent models

employed in mark–recapture studies to deal with state uncer-

tainty (Pradel 2005). Initial occupancy and rate parameters are

identical to those of the multistate model, where the true occu-

pancy state of a unit i in season t,mit, is one ofK discrete occu-

pancy states. In the simple case of only two true states

(occupied, mit = 1, or unoccupied mit = 0), possible observa-

tions on survey j are non-detection (denoted ytj = 0), uncertain

detection (meaning detection with the possibility of a false

positive; ytj = 1) and certain detection (ytj = 2). The expected

probability of recording an observed state y, given the true

statem is given in Table 2. Notice that if a detection is consid-

ered ‘certain’ (y = 2), the unit is assumed to be occupied (i.e. if

a detection is considered ‘certain’, the species is detected with-

out error). In addition to this model permitting both types of

detections at any survey, Miller et al. (2011) also developed a

complementarymodel for cases where a subset of sample units

is surveyed by different methods on different sample occasions,

with one method admitting possible false positives and the

other method being certain (detections included no false posi-

tives).

False-positive models are relatively new and have only been

applied to the ecological studies that helped motivate their

development, namely anuran studies that rely heavily on aural

detections (Miller et al. 2011) and a study investigating occu-

pancy dynamics of wolf packs in Montana by combining hun-

ter observations and radiotelemetry information (Miller et al.

2013). We believe that any study that relies on indirect animal

detection, such as animal sign (e.g. tracks, scats Karanth et al.

2011; Molinari-Jobin et al. 2012) or interviews of local experts

(e.g. Zeller et al. 2011), will benefit from these new models.

Additionally, themodels could be applied in studies that utilize

computer algorithms (e.g. Waddle, Thigpen & Glorioso 2009)

or laboratory assays (e.g. McClintock et al. 2010b) to deter-

mine species identification from survey results. Given the

severe bias that can result from ignoring false-positive detec-

tions, we hope that any study that may suspect such errors

would use these models to formally test whether p
½10�
t; j ¼ 0. Uti-

lizing a combination of design modifications to lower the prev-

alence of false positives and model-based approaches to deal

with problems that remain should reduce the bias caused by

false-positive detections.

MULTISCALE MODELS

The work described above details methods that allow for the

expansion of the number of occupied states, but another arena

of rapid development has focused on expanding the number of

hierarchical scales of species occurrence. Motivation for these

models includes relaxing model assumptions, such as indepen-

dence among surveys and closure, and differentiating between

species occurrence at local and larger scales. Again, we begin

by describing a single-season multiscale model and then high-

light variations of this model theme using a diverse group of

innovative biological applications.

Early multiscale occupancy models were developed to

address lack of independence, or correlation, among surveys

(Nichols et al. 2008; Hines et al. 2010). Often multiple detec-

tion devices are deployed at the same location within a

sample unit to detect multiple species, or individuals of various

life-history phases for a given species, or to compare the effi-

ciency of multiple detection devices (see citations within Nic-

hols et al. 2008). If detections from each device are used as

surveys, lack of independence may exist if individual animals

detected by one device are more likely to be detected by

another device (i.e. detections among surveys are not indepen-

dent). Nichols et al. (2008) exploited this dependence to permit

inference about species occurrence at two hierarchical scales,

the small scale of the location at which sampling devices were

deployed and the larger scale of the sample unit within which

the devices were located. The basic sampling design is identical

to the general framework described above, but L different sur-

veys (e.g. detection devices, observers or timed observations)

are collocated in each sampled unit and sampled atT occasions

or subunits. The occupancy state of the unit is assumed static

over this time period, but the species local availability (e.g.

presence at the specific location of the detection devices) may

change over time or subunits. Model parameters under this

model include the following:

wi = the probability that sample unit i is occupied by the tar-

get species

hit = the probability the species is locally present (available

for detection) at occasion or subunit t, given the unit i is

occupied.

pitj = the probability of detecting the species with survey j,

given that it is locally present at occasion or subunit t.

The two occupancy parameters, wi and hit, permit the mod-

elling of occupancy at two different scales (spatial or tempo-

ral): wi corresponds to species occurrence at the larger scale,

Table 2. The probability of recording an observed state y, given the

true state m, using occupancy models that allow for ‘false-positive’

detections. p
½10�
t; j is the probability of incorrectly detecting the species

during survey j of season t at an unoccupied unit (possible only for

uncertain detections), p
½11�
t; j is the probability of detecting the species dur-

ing survey j of season t at an occupied unit, and bt, j is the probability

that a detection is classified as certain during survey j of season t, given

that the unit is occupied and the species is detected

True state

Observed state, y

0 1 2

0 1� p
½10�
t; j p

½10�
t; j 0

1 1� p
½11�
t; j p

½11�
t; j ð1� bt; jÞ p

½11�
t; j bt; j
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while hit refers to the presence of the target species at the local

scale, conditional on species presence in the sample unit (the

larger scale). The product wihit represents the unconditional

probability of small-scale occupancy, indicating presence of

individual(s) of the species at the local spatial or temporal

scale, and wi (1� hit) represents the probability that the species
is present in the unit, but unavailable for detection at occasion

or subunit t.

Pavlacky et al. (2012) employed this approach to estimate

occupancy and local availability for two avian species thought

to differ in characteristics that make them rare. They used a

common sampling approach where sample units (1 km2 plots)

were chosen in a probabilistic manner and then multiple point

count stations were systematically placed at equal distances

(250 m) from one another within chosen units. Each fixed-

radius (125 m) point count station was surveyed using a time-

to-detectionmethod during the breeding season. Lark sparrow

(Chondestes grammacus) were fairly scarce among sample units

(ŵ = 0�2), but were locally common when they occurred

(ĥ = 0�35). Conversely, brown creepers (Certhia Americana)

occupied more units across the landscape (ŵ = 0�3), but were
locally rare (ĥ = 0�1), identifying this species as more suscepti-

ble to future declines at the regional scale. In a similar example,

Mordecai et al. (2011) investigated factors influencing occur-

rence and temporal availability of Louisiana waterthrush

(Seiurus motacilla) at point count locations along stream tran-

sects in West Virginia, USA. While Pavlacky et al. (2012)

assumed conditional independence among their point count

stations, Mordecai et al. (2011) accounted for possible spatial

dependence among point counts by including a random inter-

cept for aggregates (transects) of point count stations.

A severe form of spatial dependence may occur for species

that are detected along transects or trails, when units are only

surveyed once (L = 1) and trail segments are used as spatial

replicates. Such designs are often employed for large carnivore

species, such as tigers, and two different modelling approaches

have been proposed to deal with this type of problem (Hines

et al. 2010; Guillera-Arroita et al. 2011). One approach

describes the detection process as a continuous point process,

where detections occur randomly along a continuous axis

(Poisson process) or potential clustering in detections are

accounted for via a Markov modulating Poisson process

(Guillera-Arroita et al. 2011). Another approach is to discret-

ize the trail or transect into spatial subunits of equal length and

thenmodel spatial dependence as a first-orderMarkov process

by defining two parameters for local occurrence (Hines et al.

2010):

hit = the probability the species is present (available) at sub-

unit t within an occupied unit i, given the species was not

present at the previous subunit.

h’it = the probability the species is present (available) at sub-

unit twithin an occupied unit i, given the species was present

at the previous subunit.

Detection histories for each sampled unit consist of detec-

tion–nondetection data from each successive spatial subunit,

for example, hi = 01011 denotes a unit where 5 successive spa-

tial subunits were surveyed. Assuming constancy in model

parameters among units, the probability statement associated

with this history is Pr(hi = 01011) = w[(1�h1)h2 + h1(1�p1) h′2]
p2[(1� h′3)h4 + h′3(1�p3)h′4]p4h′5p5. Note the terms in square

brackets account for the ambiguity associated with the non-

detection of the species in the first and third subunits. Every

detection history can be modelled in this manner, and the like-

lihood under this model can be expressed as follows:

L w; h; h0; pjh1; h2; . . . ; hsð Þ ¼ Qs
i¼1 PrðhiÞ. Covariates can be

used to model variation in any of the model parameters,

but with only a single survey at each spatial subunit, there is

limited ability to distinguish between factors influencing local

occurrence (availability) and those influencing the conditional

detection probability. To date, most applications have

assumed that local occurrence parameters are constant over

subunits and modelled detection probability as a function of

covariates (e.g. Karanth et al. 2011). If repeated surveys are

conducted at each subunit, better differentiation of factors

influencing local occurrence and detection probability is possi-

ble, while still accommodating spatial dependence in occu-

pancy (availability) among spatial subunits (J.E. Hines and

L.L. Bailey, unpublished data).

The applications mentioned above have all involved surveys

of spatial subunits within a larger unit, but it is easy to imagine

the same general framework for temporal subunits or occa-

sions within a longer time period of interest. For example, pre-

vious avian studies often involve a single visit to each unit, with

detections recorded in multiple, successive time periods (i.e.

species recorded in 3�5-min periods during a 15-min point

count). Even if a unit is visited multiple times within a season,

the closure assumption is violated by the non-random occur-

rence (availability) of a species during the season. Investigators

have addressed this issue by (i) creating extra replication (sur-

veys) for each occasion t, then applying the standard dynamic

occupancy model (MacKenzie et al. 2003) to directly estimate

temporal availability, hit, and deriving a ‘large-scale’ parameter

corresponding to the longer time period of interest (Rota et al.

2009), or (ii) modelling species arrival and departure times

directly for species with staggered entry and exit times during

the period of interest (Kendall et al. 2013).

Like the multistate models described in a previous section,

multiscale models offer flexibility that is often necessary to

address important model assumptions, but they are not meant

as a fix for poor study design. Their application is essential to

control for biases in certain biological and sampling scenarios,

but the additional model complexity may lead to poorer preci-

sion andweaker inference.

Model flexibility and study design: disease
system example

Occurrence data have the advantage of being relatively easy to

collect, and historic records can often be converted to detec-

tion–nondetection data. The availability of numerous data sets

and a variety of flexible occupancy models have led to many

occupancy-based papers in the literature. For many of these

applications in which the underlying ecological and data

collection processes were well approximated by occupancy
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models, reasonable inferences were obtained. However, when

data collection and study system do not correspond well to the

processes for which occupancymodels were developed, reason-

able inferences are not necessarily expected. It is the responsi-

bility of investigators utilizing any model based on detection–

nondetection data to clearly define the following terms as

applied to their study objectives: sample units (i.e. sites), the

time period over which occurrence is assumed to be static, rep-

licate surveys and even the criteria that constitute ‘detection’.

Still, many practitioners overlook the importance of defining

key terms (e.g. site, survey, season) with respect to their biolog-

ical question(s) and focus instead on the practical trade-offs

related to the optimal number of surveys per site. Most occu-

pancy design papers have followed suit, concentrating on

developing cost-efficient designs for a generic application (e.g.

MacKenzie &Royle 2005). But while there are some aspects of

study design that can be usefully treated in a generic manner,

other aspects require a tailoring of design to ecological and

sampling specifics. Such specifics typically involve first specify-

ing study objectives, which lead to specific definitions of key

model terms. Conditional on these objectives and definitions,

appropriate data are collected and model(s) are developed to

correspond to the underlying processes of interest.

In the following section, we focus on a single biological sys-

tem (a host–pathogen system) to illustrate how different bio-

logical hypotheses (objectives) result in dramatically different

study designs. In each study, we emphasize the definition of

key occupancy components and the associated model assump-

tions that are most relevant to the biological questions being

addressed.

DISEASE SYSTEM: BACKGROUND

Many amphibian declines world-wide have been attributed to

the emerging infectious disease chytridiomycosis, caused by

the fungal pathogen Batrachochytrium dendrobatidis (hereafter

Bd, e.g. Berger et al. 1998; Muths et al. 2003). Bd is transmit-

ted between individuals and the environment via an aquatic

flagellated zoospore (Berger et al. 2005). When the load of

zoospores on an individual is high enough, it can alter electro-

lyte transport across the epidermis, disrupting ion homeostasis,

and lead to cardiac arrest (Voyles et al. 2009). Susceptibility of

amphibians to chytridiomycosis is variable among species; vul-

nerable species often decline rapidly, while resistant species

may function as a reservoir for the pathogen.

Despite numerous papers focusing on amphibian–Bd inter-

actions, few have considered imperfect detection of either the

host or the pathogen (but see Adams et al. 2010; Miller et al.

2012c). The following occupancy-based examples are amixture

of published works specific to the Bd disease system and pro-

poseddesigns, somemotivatedbydifferent ecological systems.

PATHOGEN PREVALENCE IN A SINGLE HOST

POPULATION

Often the most fundamental parameter in disease studies is

prevalence, the proportion of infected individuals in a defined

population of organisms (i.e. disease frequency). Studies of Bd

dynamics have focused on both prevalence and the infection

intensity, defined as the abundance of Bd found on infected

individuals (e.g. Briggs, Knapp & Vredenburg 2010; Miller

et al. 2012c). In these studies, the ‘area of interest’ is usually a

single amphibian population, where a subset of individuals

(sample units) is randomly selected (presumably).Multiple sur-

veys are obtained from all or a subset of captured individuals,

and the manner in which these surveys are collected define the

time period over which prevalence is assumed to be static.

Typically, Bd is detected on a captured individual by gently

rubbing the surface of the skin with a cotton swab. Multiple

PCR samples (surveys) are prepared from each swab and anal-

ysed using quantitative PCR (qPRC) techniques, yielding

detection–non-detection information and a quantitative mea-

sure of zoospore equivalents for each survey (Hyatt et al.

2007). Under this sampling scenario, the resulting estimates of

occupancy (prevalence) represent the probability of Bd occur-

rence among individuals in the population and apply to the

time period over which individuals were captured, often only a

single visit. As with most disease assays, the sensitivity of the

PCR is <1 (Hyatt et al. 2007), and while most authors

acknowledge this fact, they attempt to account for non-detec-

tion by simply aggregating results for multiple PCR surveys

rather than estimate (and correct for) detection probability

(but seeMiller et al. 2012c).

Several previous studies utilized occupancy models with this

type of data to estimate prevalence and address biological

questions related to the individual characteristics (e.g. species,

life stage) that may influence the probability of pathogen

occurrence or detection (Gomez-Dias et al. 2010; Cooch et al.

2012). These applications rely on the basic assumptions out-

lined in the previousOccupancyModels section.Many of these

assumptions are likely met for the sampling design described

above (e.g. closure assumption, no false detections), and others

can be addressed by modelling heterogeneity in pathogen

occurrence and detection as a function of covariates specific to

the individual (unit). However, in many disease systems, the

detection of the pathogen is likely a function of the intensity of

the pathogen on/in the host. In cases where no index of infec-

tion intensity is available, utilizing an approach that models

detection probability as a function of the latent distribution of

pathogen abundance should reduce the bias in prevalence

caused by heterogeneity in Bd detection among individuals

(Royle & Nichols 2003; Lachish et al. 2012). Many Bd studies

now estimate an index of infection intensity (zoospore equiva-

lents) for each survey. Miller et al. (2012c) described two ana-

lytical methods to accommodate the relationship between

pathogen detection and infection intensity: an ad hoc approach

using closed population abundance estimators (Huggins 1991)

and a hierarchical Bayesian estimator that extended previous

occupancy models to account for observational error in the

detection ofBd and sampling error inmeasuring the associated

Bd zoospore equivalents.

An important assumption in these scenarios/applications is

that the sampled units (captured individuals) are a random

sample of the population of interest. Studies of other disease
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systems have emphasized that estimates of prevalence can be

biased if infected and uninfected individuals have different cap-

ture probabilities (reviewed in Cooch et al. 2012). Establishing

whether such detection differences exist among individuals

usually requires multiple detections and observations of the

disease state for individuals over time and typically utilizes

mark–recapture methods (Cooch et al. 2012). Such studies are

rare for amphibian–Bd systems, and none has found differ-

ences in individual capture probability associated with Bd

occurrence, but none has properly accounted for uncertainty

in individual infection state (Murray et al. 2009; Pilliod et al.

2010).

ESTIMATING THE PROPORTION OF INFECTED HOST

POPULATIONS

Understanding factors that influence a pathogen’s distribution

and determining when and how it is transmitted among seem-

ingly isolated host populations is amajor theme in disease ecol-

ogy and geographical epidemiology. Numerous studies have

found that Bd is widely distributed geographically; however,

the utility of these studies is limited due to the opportunistic

nature of the sampling (Muths, Pedersen & Pedersen 2009). A

more robust sampling design might define an ‘area of interest’

as a collection of perhaps-isolated amphibian populations

within a specified region (e.g. amphibian populations at wet-

lands within a national park). A sample of these populations

(units) is drawn in a manner that allows for generalization to

the entire collection of amphibian populations. Populations

are visited once to capture and swab individuals, often of dif-

ferent species, without replacement: these individual swabs can

be viewed as surveys of the unit. Typically in these large-scale

studies, a single PCR assay is conducted on each individual

swab, or multiple swabs may be pooled, due to budget con-

straints. Inevitably, the number of surveys (PCR assays) varies

among units, though amaximum is usually defined.

Adams et al. (2010) used this approach to investigate factors

influencing spatial patterns in Bd occurrence in amphibian

populations in Oregon and northern California, USA. They

expected the processes that resulted in the presence of Bd in

amphibian populations (e.g. variables associated with Bd ther-

mal tolerances) would differ from the processes that result in

the presence of Bd among individuals within an infected popu-

lation (e.g. species, life-history stage, date). The authors recog-

nized several limitations of applying occupancy models to this

design. First, there is a finite number of surveys, determined by

the number of amphibians available in the local population,

and sampling individuals without replacement creates depen-

dence among surveys. They used simulations to determine that

bias resulting from such dependence was negligible for most

populations in their study (i.e. for populations >50 individuals
with true prevalence values for infected populations > 0�05).
Additionally, the probability estimates represent a combina-

tion of at least two processes: the probability the pathogen is

present on the individual in an infected population (i.e. true

prevalence) and the probability of detecting the pathogen using

standardized field and laboratory techniques, given it is present

on the individual. While these authors believed that the proba-

bility of detecting the pathogen on an infected individual was

quite high, the resulting detection probability should be inter-

preted as an index of prevalence (Miller et al. 2012c).

INVESTIGATING FACTORS INFLUENCING HOST–

PATHOGEN DYNAMICS

Little is known about the long-term dynamics of Bd once

established in an area of interest. The fungus has low mobility

and is considered vulnerable outside of a host (Piotrowski,

Annis & Longcore 2004). Recent work has shown differential

susceptibility among amphibian species suggesting that some

non-target species may function as reservoirs, or vectors, lead-

ing to the persistence or spread ofBd among habitats and pop-

ulations (Briggs, Knapp & Vredenburg 2010). Even among

susceptible species, it is apparent thatBd is not invariably lethal

and that the pathogen persists in an enzootic state in hosts that

survived infection during an initial epizootic (Briggs, Knapp &

Vredenburg 2010; Pilliod et al. 2010). Understanding amphib-

ian–Bd dynamics after an epizootic and determining whether

amphibians may persist or recolonize affected areas requires

the ability to sample Bd at sites that have few or no

amphibians.

In this case, a sampling design might define an ‘area of

interest’ as a collection of habitats (e.g. ponds) that may serve

as amphibian breeding locations within a specified region. A

sample of these habitats (units) is surveyed multiple times to

detect both Bd and target amphibians during a time period

where the occurrence of both pathogen and host is consid-

ered static. Captured amphibians can be sampled for Bd in

the manner described above, but if amphibians are not

detected, a water sample could be used to detect Bd in the

environment (Kirshtein et al. 2007). Here, target amphibian

detection informs the amphibian state (occupied) at the unit

and serves as a survey for the detection of the pathogen. Both

swabs and water samples are considered independent surveys

of Bd at a unit, but the survey methods are likely to have dif-

ferent Bd detection probabilities (Kirshtein et al. 2007; Hy-

man & Collins 2012), and these can be accommodated in the

modelling.

To our knowledge, no such study exists for an amphibian–

Bd system, but McClintock et al. (2010b) outlined a study

design for such a system. In this case, occupancy corresponds

to the spatial prevalence of the pathogen across habitats.

More interesting are the host–pathogen dynamics that resem-

ble a dynamic species co-occurrence model that may incorpo-

rate neighbourhood autologistic effects (McClintock et al.

2010b; Yackulic et al. 2012, in press). Alternatively, similari-

ties could also be drawn to existing habitat–occupancy

dynamic models with two types of habitats: those with and

without the pathogen (MacKenzie et al. 2011). Relevant bio-

logical hypotheses would involve differences in the occurrence

and dynamics of the target amphibian species conditional

on the habitat type, and importantly, the occurrence of the

target species may influence the dynamics of the pathogen

(habitat).
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SUMMARY

Each of the studies above addresses different biological ques-

tions related to a common host–pathogen system. Accord-

ingly, the definition of a sample unit varies from a single

individual to a patch of potential breeding habitat. Investiga-

tors have more control over sample unit selection in the latter

case, and the inference to all sample units is more defensible.

Surveys are defined as individual swabs or groups of swabs,

water samples or combinations of these methods. The time

period over which these surveys are obtained, ranging from a

single visit to an entire breeding season, defines the time period

over which the pathogen state, or amphibian and pathogen

state, is assumed to be static among units. The longer time peri-

ods separating such ‘primary sampling occasions’ (MacKenzie

et al. 2003) then define the periods to which the occupancy–

dynamic rate parameters apply. It is imperative to align the

biological hypotheses of the study with a comparable sample

design such that selected models are believed to correspond

reasonably well to the processes that generated the data; thus,

model assumptions are likely to bemet.

Conclusions

Theapplications presented in this paper are intended todemon-

strate the breadth of flexibility possible with current occupancy

models.Wehave chosen to focuson thosemodels that involve a

single to a few target species, but we acknowledge that there is a

rich literature involving the occurrence of multiple species (e.g.

Dorazio & Royle 2005; K�ery & Royle 2009; Zipkin, Dewan &

Royle 2009). Ecologists recognize thatmultiple effects are likely

relevant tomost studies of occupancy dynamics, and a desire to

include these effects motivated the development of the models

described here. Cries for evenmore flexible models to deal with

systemcomplexityplaceaddedresponsibilitynotonlyonmodel

developers (biostatisticians), but also on ecologists to clarify

and communicate their hypotheses about the dynamics moti-

vating the desire for increased model complexity. We view this

added responsibility as a good thing, but simply note that the

flexibility of occupancy models requires ecologists to try to

restrict the investigated model set to those combinations of

effects that representplausibleapriorihypotheses.

We recognize that there are relatively few papers that focus

on the design of occupancy studies, due in part to the flexibility

of existing models. It is difficult, if not impossible, to develop

generic recommendations for all aspects of study design. Any

attempt to do so would require using language that is so vague

(to be inclusive) that it would lose its utility. What is general

and conserved is the process that one should go through when

designing an occupancy study. Typically, this process involves

first specifying study objectives, which then direct definitions

of keymodel terms. Conditional on these objectives and defini-

tions, the process then entails collection of appropriate data

and utilization or development of models to correspond to the

underlying processes of interest. We hope that our abbreviated

demonstration of this process using a single ecological system

will assist other practitioners when considering the use of

occupancy models to address hypotheses related to occupancy

dynamics.

Many methodological extensions have been developed to

address interesting biological questions, but some extensions

have emerged from study designs where assumptions of sim-

pler modelling approaches are notmet. Such extensions should

not, necessarily, be seen as encouraging the particular design

used in that study as the best way to address those (or similar)

objectives. Whenever possible, one should opt for the simplest

and most appropriate study design to address the biological

question(s) of interest, instead of relying on model-based solu-

tions to correct for certain aspects of the study design after the

data have been collected. In the latter situation, inferences are

going to be more model dependent than when potential issues

are identified and dealt with during the study design phase.
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