Chapter

Adding constraints: MARK and linear
models

6.1. A (brief) review of linear models

If you have a background in linear models, then much of this material will be familiar. If you're a
statistician, obviously we’re leaving out a lot of the “details’ (to say the least). Our purpose is to provide a
minimum level of background, so even newcomers to linear models have a ‘feel” for the approach. If you
are new to linear models, we strongly suggest you supplement your reading of this chapter by having
a look at one of the many good textbooks on this subject. McCullagh & Nelder (1989) and Dobson &
Barnett (2008) are particularly good.

The basic idea underlying linear models can be stated quite simply: the response variable in many
statistical analyses can be expressed as a linear regression function of 1 or more other factors. In fact,
any ANOVA-type design can be analyzed using linear regression models (although interpretation
of interactions is sometimes complex). In general, for data collected from marked individuals, the
‘response variable” is often a probability or proportion (e.g., survival or recapture rate), which must
be transformed prior to analysis using a linear models approach (we’ll get to that in a moment). For the
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moment, assume the response variable has been suitably transformed.

We'll start by demonstrating this relationship between ‘regression” and "ANOVA', by means of a sim-
ple example. Consider data from a study where the skull circumference of young pre-school children is
measured, and we’re interested in knowing if this structure is on average larger in males than in females
(we'll assume for the moment that all of the children were the same chronological age). Let’s suppose
we measure 7 male and 7 female children, and analyze our data using a normal single-classification
ANOVA. Here are the data:

male 7.2 7.1 9.1 7.2 7.3 7.2 7.5
female 9.8 8.5 8.7 8.6 8.4 7.7 8.2

First, the results from a ‘standard ANOVA’ (as you might generate using some statistical analysis
software):

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137
Error 12 5.485 0.457

Total 13 9.292

The results of this analysis indicate a marginally significant difference between male and female
children.

However, what if our statistics package was limited only to a regression subroutine? Could we have
analyzed our data using a linear regression model, instead of ANOVA, and arrived at the same result?
The answer is, indeed, yes, we can. What we do is simply take the classification factor (SEX) and ‘code’
itasa ‘0’ or ‘1’ dummy variable (we’ll see why in just a moment). For example, let ‘0" represent females,
and ‘1’ represent males. Thus, every individual in our data set is assigned a ‘0" or a ‘1, depending upon
their gender. Let’s call this dummy variable SEX. Now, all we need to do is regress our response variable
(the skull circumference) on the dummy variable for SEX. Here are the results of the regression analysis:

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137
Error 12 5.485 0.457

Total 13 9.292

No, it’s not a typo — it is in fact the exact same table as above. The two approaches are entirely
synonymous, yielding identical results. How can this be? The answer lies in the structure of the models
actually being tested. So, let’s step back to the beginning, and look at things a bit more formally.

In general, a linear model can be expressed in matrix form as
y=Xp+e€

where y is a vector of responses (i.e., a vector of the response variables), § is a vector of parameters
(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0" or ‘1’ elements, or values of
‘independent’ variables, and € is a vector of random error terms.

In cases of analysis of variation of the response variable among different levels of one or more
classification (i.e., ‘treatment’ or ‘factor’) levels, there is a parameter f8 in the vector 8 to represent each
level of a factor. The elements of X (which is generally referred to as the design matrix — discussed below)
are chosen to exclude or include the appropriate parameters for each observation. These elements are
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often referred to as either ‘dummy’ or ‘indicator’ variables (‘indicator’ generally being used when only
‘1’ or ‘0" are used as the coding variables).

The following simple example will make this clear, and will illustrate the underlying connection
between a linear regression model and analysis of variation (ANOVA). Suppose you have collected
data on the scutum width of male and female individuals of some insect species. You are interested
in whether or not the difference in mean scutum width between the sexes differs more than would
be expected by random chance. Normally, you might consider using a single-classification (Model I)
ANOVA for this sort of analysis. Recall that for this sort of analysis, any single variate Y (in this case, Y
= scutum width), can be decomposed as:

Yi]- =U+a;+€

In other words, each individual variate Y;; is the sum of the global mean (u), the deviation of the
individual from that mean due to the ‘classification” factor (sex; a;), and the random error term (e; i)
In this example, with 2 levels of the classification factor (i.e., males and females), we would be testing
for differences of the type (a; — a,). If (a; — a,) = 0 (the null hypothesis), then we would conclude no
significant group effect (i.e., no significant difference in group means between the sexes).

How could we use linear regression to approach the same analysis? In a regression analysis, each
individual variate Y; would be decomposed as:

Y; =B+ Box;+€;

In this case, each variate Y; is the sum of the product of the slope (f,) and the variable x, the intercept
(B1),and a random error term (€). In this case, the hypothesis being tested is whether or not the estimate
of the slope is significantly different from 0 (H,: 5, = 0).

However, what is the variable x’? In fact, this is the key to understanding the connection between
the regression model and the ANOVA analysis. In the regression formulation, x represents a coding
(‘"dummy”) variable specifying male or female (i.e., sex, the classification variable in the ANOVA anal-
ysis). The coding variable takes on the value of ‘0" or ‘1" ("0’ for females, 1’ for males). We regress the
response variable Y (scutum width) on the coding variable for sex. If the slope (8, ) is not different from 0,
then we interpret this as evidence that the numerical value of the coding variable does not significantly
influence variation in our data. Put another way;, if the slope does not differ from 0, then this indicates
no significant difference between the sexes. This is entirely analogous to test of the (a; — a,) hypothesis
in the ANOVA analysis.

Recall that we can express a linear model in matrix form as
y=Xp+e€

where y is a vector of responses (i.e., a vector of the response variables), 8 is a vector of parameters
(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0" or 1" elements, or values of
‘independent’ variables, and € is a vector of random error terms. For our present example, the design
matrix X consists of 2 columns of ‘0" and ‘1" dummy variables (the first column corresponding to the
intercept, 8, and the second column corresponding to dummy variable coding for a given sex, f,).
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Given K individuals in each sex (although a balanced design is not required), y = X + € can be
written as

Yig| _|1 0 51] L |€1x
Yy 1 1118 €21
[Yor| |1 1] L€2k ]

In fact, in this case, if we used ‘1’ to code for males, and ‘0" to code for females, then the intercept
(1) would represent the estimate for female survival (since if the dummy variable is ‘0", then all that
remains in the model is the intercept, and the random error term). The §, term actually reflects (male
survival - female survival), such that 8; + 8, = (female) + (male-female) = male survival. The structure
of the design matrix is discussed in more detail in the next section.

It is perhaps worth noting that models of the form ‘y = Xp + €’ are called linear models because
the non-error part of the expression X is a linear combination of the parameters (and not specifically
because of the relationship of ANOVA to linear regression). MARK uses this general linear models
approach as the basis for all of the analysis (data) types available.

begin sidebar

matrix approach to linear regression & ANOVA: simple introduction

Here, we provide a very simple example of a matrix approach to linear regression (and, by extension,
to linear models in general). For deeper understanding, you are strongly urged to consult one of the
several very good textbooks which give much fuller treatments of the subject.

Consider the linear model, say of individual (i) with mass (Y;) relative to sex (X;, where X = 0 or
X = 1for—say—female or male, respectively), measured with Gaussian (normally) distributed random
variation (€;) about the mean. We’ll assume the following ‘fake” data:

mass (Y)
male(X=1) | 11 12 11 14
female (X =0) | 8 11 12 10

The mean mass for males (X,, = 12) is larger than the mean mass for females (X F= 10.25) — the usual
question being, is the difference between the two larger than expected due to random chance?

We could adopt a linear models approach to answering this question — first, we could write the
relationship between mass and sex in linear model form as

Yi=p1+prX;+¢;

The null hypothesis of ‘no difference between sexes’ can be expressed formally in terms of the
term for sex; i.e., H, : f, = 0. The technical problem then is estimating the 8; coefficients in the linear
model. To do this, first define a vector y for all the Y;, a matrix X for a vector of 1s and all the X;, a
vector € for all the €;, and further define a vector §8 for the coefficients $; and §,.
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Then (for our ‘fake” data set) we get

1] 1 1] eqy]
12| |11 €1
1| |11 €1
y= %P ! ﬁ1]+ Ul _Xpre
81 (1 Of[f2] |e:
1| |1 0 .
12 1 0 e
0] |1 o e, ]

Note that the matrix X is referred to as the design matrix — the construction of the design matrix is
fundamental to using linear models in MARK, as we will cover in considerable detail later in this
chapter. So, to derive estimates of the §; coefficients, we need to find a vector 8 such that y = Xp.
Is this possible? The answer is clearly 'no’, because that would require the points to lie exactly on a
straight line. A more modest (and tractable) question is: can we find a vector f§ such that X§ is in a
sense ‘as close to y as possible?’. The answer is ‘yes’. The task is to find 8 such that the length of the
vector € =y — Xp is as small as possible (i.e., e — 0).

How do we get there from here? Fairly easily. First, we note that what we’re trying to do is solve for
P in the linear model. The first step is to let € = 0 (such that it drops out of the equation — this should
make sense, if you keep in mind that what we're trying to do is to find 8 such that the length of the
vector € is, in effect, 0). This leaves us with

y=Xp
Then, a few steps of algebra to solve for the vector f3:
y=Xp
Xty = XTxp

(xTx)_l XTy = (xTx)_1 xXTxp
(xTx)_1 X'y=p
B= (xTx)_1 Xty

In words, we multiply both sides of the initial equation by the transpose of X to get the crossproduct
XTX, which is a square matrix (note: the square matrix (XTX) is called the pseudo inverse of X. We cannot
use the true matrix inverse of X — that is, X! - because it generally does not exist as X is not a square
matrix; m # n). We then find the inverse of this cross-product matrix and multiply both sides by that.
This allows us to cancel out the term involving X on the right-hand side of the equation, allowing us
to find an estimate of 8, which we call 8, in terms of the original data.

It is worth noting that we could also approach this problem using the more familiar method of least
squares. Recall that least squares involves minimizing the sum of the squared residuals between the
observed and expected values. More formally, we want to minimize the Euclidean norm squared of
the residual (y — Xp), that is, the quantity

lly = XBIZ = (1Y, = XB)) + (1Y~ XB)))” + -+ (I¥; = XB),))°

where (Xf); denotes the ith component of the vector (Xg).
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We could also rewrite this as
lly = XBIZ = (1Y, = XB)) + (1Y~ XB)))” ++--+ ([¥; = XB),))°
= Z (i =By + ﬁzxi))2

i=1
You might recall (from some linear algebra class you might have taken) that for some vector 6
91
0, n
0To=[0, 0, - 0,]| |=61+63+--+05=> 07
: i
97’!

Thus, if 6 = (y — Xp), then we can write

ly = XBlI* = (y - XB)™ (y - XB)
=y"y -28"™x"y + pTX"xp

All that’s left is to differentiate this expression with respect to f3, set to 0, and solve. Let

S=lly-XgI*=(y-XB)" (y - Xp)

Thus,
= = 2xTy+2xTXB =0
BT y+ B
xTy = xTxp

5 Ty\ 14T

B=(x"x) xTy
Note the resulting solution is identical to that obtained from the preceding solution to the linear set of
equations (i.e., the linear algebra approach).

In fact, we could show that both solutions are equivalent to the MLE estimates for f§ (the Gaussian
linear model is nice in the sense that the parameter estimates — namely the solution to the linear set
of equations, the least squares estimate, and the maximum likelihood estimate — are all the same).

So for our ‘fake’ data:
~ -1
B=(x"x) xTy
_[10.25
175
Thus, our estimates for the intercept and slope are §; = 10.25 and , = 1.75, respectively. We would

next estimate the error variance for 3; and f,. First, we derive an estimate of the variance-covariance
matrix for the vector 8 estimates as

var(f) = (xTx)_1 a2

e

We can estimate ag from the residual sums of squares (RSS) as

RSS = (y-XB)T (y - XB)

If the model estimates p parameters, then the estimate of 63 is simply RSS/(N — p) where N is the
number of data points. Thus,

var(B) = (X™X) ™ (v - XB) T (y - XB)/(N — p)
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So, for our ‘fake’ data (where N = 8 and p = 2), and our vector ﬁ,

RSS = (y - XB)" (y - XB)
=14.75

and thus

var() = (XX) ™ (y = XB) " (y = XB)/(N = p)

_ [ 06146 -0.6146
T |-0.6146  1.2292

Thus SE(3;) = V0.6146 = 0.7840, and SE(f,) = V1.2292 = 1.1087. And, since a 95% CI for f,
(approximately 8, + 2SE; [~0.4674, 3.9674]) clearly bounds 0, we would conclude no significant sex
effect at a nominal a = 0.05 level.

end sidebar

6.2. Linear models and the ‘design matrix’: the basics

In program MARK, the default design matrix for a given model is determined by the parameter
structure of the model you are trying to fit (number of groups, and the number and structure of the
parameters; i.e., the PIMs). This design matrix is then modified in various ways to examine the relative
fit of different models to the data. In order to understand this process, it is essential that you understand
how the design matrix is constructed.

Perhaps the best way to introduce the concept of a design matrix is by means of an example. Suppose
you are doing a ‘typical’ ANOVA on data with a single classification factor (say, ‘treatment’). Suppose
that there are 4 levels for this factor (perhaps a control, and 3 different levels of the ‘treatment’). You
want to test the hypothesis that there is no heterogeneity among ‘treatment’ levels (H,: 11y = p1p, = p3 =
tyg). Recall from the preceding discussion that this problem can be formulated as an applied linear
regression problem using ‘0/1 dummy variable” coding for the different levels of the ‘treatment’.

Recall the previous example (above) which had 1 ‘treatment’ or classification factor (sex), with 2 levels
(male and female). The corresponding regression model was

Y;=B1+Box; +¢€

where x represented a coding variable specifying male or female (i.e., sex, the classification variable in
the ANOVA analysis). The coding variable took on the value of ‘0" or ‘1" (‘0" for females, ‘1" for males).

What would the regression model look like for our present example, with 4 levels of the treatment
factor instead of 2? How can we use a simple ‘0’ or ‘1" dummy variable coding scheme (which clearly
has only 2 “levels’) to accommodate a treatment factor with 4 levels? The key is to consider the answer
to the following question: if x; can take on 1 of 2 values (0 or 1), then how many values of x; do we need
to specify k levels of the classification variable (i.e., the treatment variable)? If you think about it for a
moment, you should realize that the answer is k — 1 (which, of course, corresponds to the degrees of
freedom for a single-classification ANOVA). Thus, for the present example, x4, x, and x3 could be:

_J 1iftrt1 ) 1iftrt2 _J 1iftrt3
17\ o0if other 271 0if other 371 0if other

Clearly, when the coefficients for x, x, and x5 are all 0, then the treatment level must be 4 (‘other”).
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Thus, our regression equation for this example would be:

Yi = P14+ Boxy ++B3Xy + Paxz +€;

In this case, §; is the intercept, while ,, 3 and S, correspond to the slopes for each of the levels of
the treatment factor. Since there are 4 levels of the treatment, 3 slopes are needed to code 4 levels of
the treatment, because 1 of the levels of the treatment corresponds to the case where all 3 slopes are 0.
Parameters §,, 5 and f, refer to treatment levels 1, 2, and 3, respectively. If x; = x, = x5, then f; refers
to treatment level 4. In other words, the intercept corresponds to treatment level 4.

begin sidebar

why is level 4 the intercept?

Choosing the intercept to specify treatment 4 was entirely arbitrary — we could for example have used
any other level of the treatment as the intercept, and adjusted the coding for the remaining levels
according. For example, we could have used used level 1 of the treatment as ‘other”’ (i.e., the intercept),
as follows:

v 1iftrt2 v 1iftrt3 = 1liftrt4
L7 oif other 27 0if other 371 oif other
In this case, when the coefficients for x;, x, and x5 are all 0, then the treatment level must be
1 (‘other’). Our regression equation would stay the same

Y; = B1+ Poxy ++P3xy + fux3 + €

but now, parameters f8,, f3 and S, refer to treatment levels 2, 3, and 4, respectively. If x; = x, = x5,
then B, refers to treatment level 1.

What is important to note here is that in either case, one of the levels is specified by the intercept
(i-e., B1)- This level is referred to as the ‘control” or ‘reference’ level. In this design, then, the other levels
(By — Bg4) are ‘offsets’ from this reference (control) level (i.e., the other § terms represent the magnitude
that a particular level of the treatment differs from the control). We will discuss this and related issues
in much more detail later.

end sidebar

From this step, it is fairly straightforward to derive the design matrix (so-called because it fully
represents the design of the analysis). The design matrix is simply a matrix showing the structure of
the ‘dummy”’ coding variables in the analysis. Because there are 4 parameters being estimated in the
equation (81, B, f3 and B,), each corresponding to the 4 levels of the main effect, then the design matrix
will be a (4 X 4) square matrix.

To help construct the design matrix, we can decompose the general regression equation for this
analysis (above) into 1 regression equations, where 7 is the number of parameters in the regression
equation (i.e., the number of levels of the main effect; n = 4).

treatment equation
1 Yi=p1(1) + B2(1) + B3(0) + B4 (0)
2 Y; = p1(1) + B,(0) + B3(1) + $,(0)
4 Yi=p1(D) + B2(0) + B3(0) + B4(0)
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The design matrix X simply corresponds to the matrix of the coefficient multipliers (in bold) in these
equations.

1

While this seems logical enough, there are, in fact, a number of alternative parameterizations of the
design matrix, each of which yields the same ‘model fit’, but which have different interpretations.

For example, all 6 of the following design matrices (X;, X, and X;) give equivalent model fits for our
example problem:

1 1 0 0] (1 0 0 0] 110 0
101 0 1100 100 0
Xl‘1001 X2‘1010 X3‘101o
1 0 0 o 1 0 0 1 10 0 1
1 1 0 0 1 0 0 0 1 1 0 0
101 0 0100 1 0 1 0
Xi=11 0 0 0 =10 01 0 Xs=11 0o o0 1
1 0 0 1 0 0 01 1 -1 -1 -1

X; (above) is the design matrix we derived previously; we estimate an intercept term for the last
‘treatment’ level (4), and then an additional ‘treatment’ effect for ‘treatment’ levels 1, 2 and 3. Matrices
X, — X, are based on the same underlying idea, except that the intercept specifies a different ‘reference’
level in each case (see preceding -sidebar-). For example, in X,, the intercept corresponds to treatment
level 1. In X3, the intercept corresponds to treatment level 2. And, in X,, the intercept corresponds to
treatment level 4.

In X5 is an identity design matrix. Here, each row corresponds to a parameter, and each column
corresponds to a parameter. Thus, each parameter represents a treatment estimate directly, not as an
‘offset’ (deviation) from the ‘control” or ‘reference’ (i.e., the intercept).

In X4, we estimate a mean parameter among treatment levels, and then an ‘offset” for each of the 4
levels; the first column corresponds to the mean treatment value, and the remaining columns provide
the treatment effects.

We'll consider these different design matrices later in the chapter. Note that the choice of the structure
of the design matrix doesn’t affect the estimates of the parameters (¢, or p, for example) — but it does
change how estimates of the individual slope parameters in the linear model are interpreted. We will
see many examples of this later in the chapter.

Perhaps the most important thing to remember in considering design matrices is that the number
of rows corresponds to the number of parameters in your PIMs, whereas the number of columns
corresponds to the number of these parameters you are trying to individually estimate. As we will
see in the next section, this distinction becomes important when fitting models where parameters are
constrained to be functions of 1 or more effects.

Finally, a more complex example, using 2 groups (say, males and females), with multiple levels of a

treatment within group (i.e., within sex). This example is clearly analogous to a 2-way ANOVA, with 2
main ‘effects’ (treatment, and sex). Again, assume there are 4 possible treatment levels. The response
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variable Y can be decomposed as:
Yig=u+a;+p;+(af)+e

where a; is the sex (group) effect, §; is the treatment effect, and (ap);; is the interaction of the two.

The corresponding regression equation would be:

Yi; =By + P2(SEX) + B3(ty) + By(t) + P5(t3)
+ e (SEX. t1) + B (SEX. t,) + B (SEX.t3) + €

If we derive the design matrix directly from this expression, then we see that we have 8 rows: 2 levels
for SEX (male or female) multiplied by 4 treatment levels within sex (remember, (1 — 1) = 3 columns).
The design matrix X (shown below) would also have 8 columns, corresponding to the intercept, the SEX
(group effect), and the treatment and interaction terms, respectively

>

Il
S
O OO R OO O -
OO = OO O == O

OO O O - = ==
O =R OO O = OO
OO OO OO OO -
OO O OO OO
o O O O O OO

The first column represents the intercept, the second column the group (SEX) effect (1=male, 0O=female;
i.e., the additive effect of males-females), columns 3-5 represent the treatment effect (t; — t3), and
columns 6-8 represent the interactions of SEX (male) and treatment. Why male, and not female? It
depends on the coding — in this case, we're using ‘0" to represent females, and thus the interaction
columns have non-zero elements for males only.

Suppose, for example, rather than the full model (with interactions), you wanted to fit the additive
model consisting simply of the 2 main effects (no interaction term):

Yig=u+a;+p;+€

which, in regression form, is

Yij = B1 + Ba(SEX) + B3(ty) + 4(ty) + Bs(ts) +€

Using the design matrix X (above), this is easily accomplished by simply deleting the columns corre-
sponding to the interaction terms:

1 1 1 0 0]
11010
1100 1
11000
X=11 01 0 0
100 10
1000 1
1 0 0 0 0
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Got it? As we work through this chapter, we’ll come back to the concept of a ‘linear model” and the
‘design matrix’ with considerable frequency, but hopefully you have the basic idea. In the examples
we will explore in this chapter, you will learn the basic steps of creating these linear ‘dummy variable’
models, design matrices, and how to use them with MARK to test a variety of hypotheses.

The only thing we now need to consider is — how can we use ‘regression models’ for analysis of mark-
recapture data, since both survival and recapture are not ‘normal’ response variables — normal in the
sense that they are both constrained to be values from 0 — 1? If you simply regressed ‘live=1/dead=0"
or ‘seen=1, not seen=0" on some set of explanatory variables x, it is quite conceivable that for some
values of x the estimates value of survival or recapture would be > 1 or < 0, which clearly can’t be
correct! However, we clearly want to be able to bring the full power of ANOVA-type analyses to bear
on capture-recapture studies.

As mentioned earlier in this chapter, the way around this problem is to transform the probability of
survival or recapture, such that the transformed probabilities have been mapped from [0, 1] to [—c0, +00],
which is of course the ‘assumption” for normal linear regression models. To accomplish this, MARK
uses a link function (see the following ‘sidebar’ for more general background on link functions). In
fact, MARK allows you to choose among a number of different link functions (some of which are more
appropriate for certain types of analyses than others). The default the sin link, which has very good
properties for analyses that use what is known as the ‘identity matrix’ (much more on this matrix in a
minute. . .). For models which don’t use the identity matrix (such as constrained models), the logit link
function is preferred (this is discussed later on in this chapter). Using these transformed probabilities,
we can use linear regression models analogous to the one we just considered in the skull circumference
example. We will now consider a simple example in detail, based on live encounter data from the
European Dipper, to demonstrate how linear models are constructed using MARK.

begin sidebar

What is a link function?

In the context of analysis of data from marked individuals, a link function is a transformation of prob-
ability such that the transformed probability is mapped from [0, 1] to [—-co, +o0]. For example, suppose
you want to express a dichotomous (i.e., binary) response variable Y (e.g., survival or recapture) as a
function of 1 or more explanatory variables. Let Y = 1 if alive or present; otherwise Y = 0. Let x be
a vector of explanatory variables, and p = Pr(Y = 1 | x) is the probability of the response variable
you want to model. We can construct a linear function of this probability by using a certain type of
transform of the probability, p. For example, the logit transformation (one of several transformation
or link functions you can use with MARK) is given as:

logit(p) = ln(%) =fq + Box

where f; is the intercept, and S, is the vector of slope parameters. Since 6 = In(p/(1 - p)) has inverse
p= e? /(1 + ee) =1/(1+ e_e), then the back-transformed estimate of p (i.e., back-transformed to the
[0, 1] probability scale) is

. elgﬁ'ﬁzx B 1
P 1+ eﬁl*ﬁzx 1+ e—ﬁl—ﬁzx

In other words, we can express the probability of the event (survival or recapture) as a linear function
of a vector of explanatory variables. The logit (or logistic) model is a special case of a more general
class of linear models where a function f = f(m) of the mean of any arbitrary response variable
is assumed to be linearly related to the vector of explanatory variables. The function f is the ‘link’
between the random component of the model (the response variable) and the fixed component (the
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explanatory variables). For this reason, the function f(m) is often referred to as a ‘link function’”.

MARK allows you to choose among a number of different link functions (we will discuss the various
link functions later in this chapter), some of which are more appropriate for certain types of analysis
than others. MARK estimates the intercept and vector of the slope parameters, using the specified
link, and then reconstitutes the values of the parameter from the values of the explanatory variables,
x. MARK does this in 2 steps: (1) first, MARK reconstitutes estimates of the parameter from f;, f,
and x, and then (2) MARK computes values of the parameter from f using the back transform f -
There are several examples of this in the text.

end sidebar
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