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Summary

1. The past decade has seen an explosion in the development and application of models aimed at estimating spe-
cies occurrence and occupancy dynamics while accounting for possible non-detection or species misidentifica-
tion.

2. We discuss some recent occupancy estimation methods and the biological systems that motivated their devel-
opment. Collectively, these models offer tremendous flexibility, but simultaneously place added demands on the
investigator.

3. Unlike many mark-recapture scenarios, investigators utilizing occupancy models have the ability, and
responsibility, to define their sample units (i.e. sites), replicate sampling occasions, time period over which species
occurrence is assumed to be static and even the criteria that constitute ‘detection’ of a target species. Subsequent
biological inference and interpretation of model parameters depend on these definitions and the ability to meet
model assumptions.

4. We demonstrate the relevance of these definitions by highlighting applications from a single biological system
(an amphibian—pathogen system) and discuss situations where the use of occupancy models has been criticized.
Finally, we use these applications to suggest future research and model development.
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Introduction

Since the seminal work by MacKenzie e al. (2002, 2003), there
has been an explosion in the development and application of
models aimed at estimating species occurrence and occupancy
dynamics while accounting for possible non-detection or spe-
cies misidentification (MacKenzie er al. 2006, 2009; Miller
et al. 2011). Since 2002, well over 1000 papers have cited occu-
pancy models (Google Scholar) with a plethora of studies
investigating ecological questions and processes such as species
distribution modelling (e.g. Royle, Nichols & Kéry 2005; Kéry,
Guillera-Arroita & Lahoz-Monhort 2013), habitat relation-
ships (e.g. Ball, Doherty & McDonald 2005), metapopulation
dynamics (e.g. Ferraz et al. 2007), invasive species dynamics
(e.g. Bled, Royle & Cam 2011; Yackulic ez al. 2012), multispe-
cies relationships (e.g. competition or predation, MacKenzie
et al. 2006; Miller et al. 2012a) and community dynamics
(Zipkin, Dewan & Royle 2009). The studies have involved
numerous vertebrate taxa as well as applications to plants (e.g.
Kéry 2004), invertebrates (e.g. Govindan, Kéry & Swihart
2012) and pathogens (e.g. Gomez-Dias et al. 2010). Uses of
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occupancy models have also extended to applications in
human medicine, palaecontology (taxonomic ranges based on
fossil data, Liow 2013) and even political science (probabilities
of incidents reflecting political unrest).

Various extensions of the original static and dynamic models
have been proposed to accommodate multiple occupied
states (Royle 2004; Royle & Link 2005; Nichols ez al. 2007;
MacKenzie et al. 2009), estimate community-level metrics and
dynamics (Dorazio & Royle 2005; Kéry & Royle 2009), simul-
taneously model habitat and occupancy dynamics (Martin
et al. 2010; MacKenzie et al. 2011; Miller et al. 2012a), esti-
mate species occurrence at multiple spatial or temporal scales
(Nichols et al. 2008; Kendall 2009; McClintock et al. 2010b;
Mordecai et al. 2011; Pavlacky et al. 2012), and model occu-
pancy dynamics as a function of the occupancy states of nearby
(neighbouring) sites (Royle & Dorazio 2008; Bled, Royle &
Cam 2011; Yackulic et al. 2012). Other model development
has been aimed at relaxing model assumptions by allowing het-
erogeneous detection probabilities (e.g. MacKenzie e al. 2006;
Royle 2006), including abundance-induced heterogeneity in
detection probability (Royle & Nichols 2003; Royle 2004; Royle
& Dorazio 2008), dealing with lack of independence among
repeated detection surveys at a sampling unit (Nichols ez al.
2008; Hines et al. 2010; Guillera-Arroita 2011), accommodating
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misidentification or false-positive detections (Miller et al.
2011, 2013), and developing methods to address violations of
the closure assumption (Rota er al. 2009; Kendall ez al. 2013).
Occurrence data have the advantage of being relatively easy
to collect, and the availability of various free software pack-
ages has contributed to proliferation of the use of occupancy
models (e.g. Program PRESENCE, Hines 2006; Program
MARK, White & Burnham 1999; the R package unmarked,
Fiske & Chandler 2011; OpenBUGS, Lunn ez al. 2009). Still,
the ability to draw strong biological inference from occurrence
data depends upon the clear articulation of study objectives
and an appropriate sampling design. Investigators utilizing
occupancy models have the ability, and responsibility, to define
the following terms based on their biological questions, logisti-
cal constraints and other study specifics: sample units (i.c.
sites), the time period over which occurrence is assumed to be
static, replicate surveys and even the criteria that constitute
‘detection’. Several recent papers have been critical of the use
of occupancy models when the above terms are ambiguous
(Efford & Dawson 2012) or defined in a manner that leads to
violation of critical model assumptions (e.g. Kendall & White
2009; Guillera-Arroita 2011). While the importance of study
design has always been emphasized in the occupancy arena
(MacKenzie & Royle 2005; MacKenzie et al. 2006; Bailey
2007; Guillera-Arroita & Lahoz-Mohort 2012),
most occupancy design papers concentrate on developing cost-
efficient designs for a generic application (e.g. MacKenzie &
Royle 2005; Guillera-Arroita, Ridout & Morgan 2010) or eval-
uate the relative merits of different detection methods (e.g. Nic-
hols et al. 2008). To provide general recommendations on
appropriate sample size and optimal allocation of effort among
sites and surveys, these papers have necessarily assumed that
investigators appropriately define key components to address
their biological objectives. Specific recommendations about
how to define these key components are difficult to provide
because objectives, logistical constraints and other key deter-

et al.

minants of study design differ among studies. Such factors
determine how well the study system corresponds to model
assumptions and thus the strength of inference provided by
that application of occupancy models.

In this paper, we discuss some of the newer occupancy mod-
els and the biological systems that motivated their develop-
ment. Collectively, these models offer tremendous flexibility
and exciting new ways for practitioners to address biological
questions related to species occurrence. We emphasize that
biological inference and interpretation of model parameters
depend upon the study system and the ability to meet model
assumptions. To illustrate the importance of defining key occu-
pancy components, we show how these definitions can vary
within a given biological system based on different study objec-
tives. A clear objective that specifies exactly what biological
aspect of the system is being represented by ‘occupancy’ should
lead naturally to reasonable options for elements of the field
design (e.g. sample unit, season length, etc.). This, in turn, will
lead to analyses that yield strong, defensible biological infer-
ences about the system of interest. Failure to specify a clear
objective will result in weaker inferences.

Occupancy models: key components and
assumptions

Occupancy is usually defined as the probability that the focal
taxon occupies, or uses, a sample unit during a specified period
of time during which the occupancy state is assumed to be
static. A typical occupancy study design involves identifying
the complete set of sample units of interest (of size S) and
selecting a sample (of size s) in a manner that allows investiga-
tors to generalize conclusions based upon the sample to the
specified population of units. During designated points in time
that relate to the time-scale at which occupancy states are likely
to change, the s units are repeatedly surveyed within a rela-
tively short time period (during which the occupancy state at
each unit is static), and the observed occupancy state is
recorded during each survey of each unit, or ‘site’. This design
clearly resembles Pollock’s robust design in mark-recapture
models (Pollock 1982; Kendall, Pollock & Brownie 1995), but
within the occupancy literature, primary periods are often
referred to as ‘seasons’ and secondary sessions as ‘surveys or
visits’. Within each season, the occupancy state of each unit
does not change (i.e. closure assumption); hence, the repeated
surveys provide multiple opportunities to observe the true
occupancy state for a given season. Between seasons, the occu-
pancy state may change at the sites: occupied sites may become
unoccupied (i.e. local extinction) and unoccupied sites may be
colonized. Model parameters under this simple dynamic model
(MacKenzie et al. 2003) include the following:
;1 = the probability that unit 7 is occupied by the target
species during the first season.
Py = the probability of detecting the species at an occupied
unit 7 during the jth independent survey of the site during
season 7.

g; = the probability that occupied unit 7 in season ¢ becomes
unoccupied in season ¢ + 1 (local extinction).
Vi, = the probability that an unoccupied unit 7 in season 7 is

occupied by the target speciesinseason¢ + 1 (colonization).

Model likelihoods for the data can be developed that
explicitly incorporate the biological and sampling processes
either by accounting for all possibilities when there is ambi-
guity in the true occupancy state (due to imperfect detection,
i.e. integrating across the occupancy states), or using a hierar-
chical modelling approach. Parameter estimates may be
obtained using maximum likelihood or Bayesian methods of
inference.

There are several critical assumptions for the model
described above, including (i) the closure assumption men-
tioned above; (ii) the probability of initial occupancy (season 1,
;) and subsequent vital rate parameters (g, v,) are constant
among sites, or differences are modelled using covariates (e.g.
usually via a logit link); (iii) no unmodelled heterogeneity in
detection probabilities; (iv) survey outcomes are independent
of one another; and (v) species are not misidentified or falsely
detected when a site is unoccupied (MacKenzie et al. 2006). If
these assumptions are not met, estimators may be biased, pre-
cision may be overstated, and inferences about factors influ-
encing model parameters may be incorrect. For greater detail
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on the basic modelling approaches, readers should see
MacKenzie et al. (2002, 2003, 2006).

Motivation for new model development

During the past decade, several new models have been devel-
oped to expand upon the basic dynamic model or relax its
associated assumptions. In this section, we discuss some of
these models and refer readers to other extensions presented in
this session.

BEYOND TWO STATES

Soon after the publication of the initial occupancy models,
there was a desire to extend models to include more than one
occupied state. There are many biological systems where it is
advantageous to classify different subcategories of species
occurrence (e.g. breeding/non-breeding or relative abundance
classes) or simultaneously model the joint dynamics of habitat
and species occurrence. Motivated by these biological systems,
several dynamic multistate models have been developed to pro-
vide inferences about the probabilities of sites being in any one
of the occupancy states and making dynamic transitions
among them. These models allow for ambiguity not only in the
presence or absence of the species (for example) from the field
observations, but also in assignment of the correct subcatego-
ry. We begin by describing a general model and then highlight
the flexibility of this class of model using a diverse group of
innovative biological applications.

Motivated by the case of anuran call index data, Royle
(2004) and Royle & Link (2005) developed models for assess-
ing patterns in multiple occurrence states at a single point in
time. Nichols ez al. (2007) developed a reparameterized version
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these cases, the observed occupancy states are defined hierar-
chically, such that the lowest observed state (non-detection)
has the greatest ambiguity about the true occupancy state (all
states, occupied and unoccupied, are possible), but there is no
uncertainty regarding the true state at a unit where the highest
state is observed.

We develop the model first in terms of three possible states
(unoccupied and two occupied states) to be consistent with
many model applications and then mention how the model
can be extended to more states to accommodate other exten-
sions such as habitat—occupancy dynamics and species
co-occurrence models.

Let ¢! be the probability that a unit is in occupancy state
m, where ¢" = 1.1In the case of three mutually exclusive
occupancy states, we can write the probability of a unit being
unoccupied as 1— ¢p— ¢Pl. Most applications of the multi-
state occupancy model have used a conditional binomial
parameterization where the probability of the higher state is
conditional on species occurrence. Here, the probability of
occupancy is defined as = ¢! + ¢!, and the probability a
unit is in state 2 (the highest state) can be written as conditional
on occupancy, R = ¢)[2]NJ. Thus, the initial state probability
vector for the first season of sampling can be defined as
do = [1—pM—pP $M G = [1—y (1—R) YR]. A transition
probability matrix ¢,. is used to describe change in the true
state of a unit between seasons 7 and ¢ + 1. This matrix can be
written in terms of parameters ¢!, the probability of a unit
transitioning from state m at time ¢ to state n at time ¢ + 1 or as
the product of two conditional probabilities: for example wm ,
the probability of a unit being occupied at time ¢ + 1, given
that it was in state m at time ¢, and RE'Z]I , the probability a unit
is in the highest state (2) at time ¢ + 1, given the unit was in
state m at time ¢ and is occupied at time ¢ + 1.
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of the Royle & Link (2005) model to assess reproductive suc-
cess at a unit, given species occurrence. MacKenzie et al.
(2009) provided a general multistate framework, within which
these previous developments represented special cases (param-
eterizations), and then extended these methods to allow estima-
tion of parameters governing the dynamic processes
responsible for change in these occupancy states between sea-
sons. For generality, we present both the conditional binomial
parameterization and the multinomial parameterization of
MacKenzie et al. (2009), but we acknowledge that most appli-
cations have utilized the conditional form. The conditional
binomial approach may be biologically more reasonable when
progression from one occupancy state to another is considered
as a series of steps (e.g. species is present or absent at a unit and
then given presence, breeding or no breeding occurred).
Numerically, this parameterization can be more stable, partic-
ularly when covariates are incorporated. Importantly, in all

Conditional on the true state of a unit at a given time, detec-
tion probabilities are defined for each parameterization
(Table 1).

Following MacKenzie et al. (2009), the probability of the
observed detection histories h collected over T seasons can be
determined succinctly using matrix notation, that is,

-1
H D(ph,r)¢t:| Ph. 75
=1

where py, is the detection probability vector for the portion of
the full detection history observed in season ¢ and D (py,) is a
diagonal matrix with the elements of p;,, on the main diagonal
(top left to bottom right) and zero elsewhere. Using a matrix
formulation, ambiguity in the true occupancy state from the
observed data is resolved through the matrix multiplication,
which is essentially just the sum of the probabilities of the vari-
ous possible outcomes. Assuming the detection histories are

Pr(h|0) = ¢y
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Table 1. Detection probabilities associated with dynamic multistate
. . L. [Lm] -
occupancy models. In the multinomial parameterization (A), p, ;" is
the probability of observing a unit in occupancy state / during survey j
in season 7, given the unit is in true occupancy state m. In the condi-
tional binomial parameterization (B), pgf'}-] is the probability of detecting
the target species during survey j in season ¢, given the unit is in true
state m, and ¢, is the probability of correctly classifying the true state

as state *2’, given the species was detected during survey j in season ¢

Observed state
True state 0 1 2
(A)
0 1 0 0
11 11
1 <1 —PEJ ]) PE,/ ] 0
12 22 1.2) 2.2
2 (1 *Pg,f ]*Pg,/ ]> Pg,f] 1’£,f]
(B)
0 1 0 0
1 1
1 1-p)) o) 0
2 2
2 1= p PO =0) PO

independent for each unit, the joint probability for the data
(and the model likelihood) is

Pr(hi,hy, ... hy|0) = L(O]h;, by, ... hy) = ] Pr(h;]6)
i=1

where 0 denotes all the parameters in the model. Alternatively,
the same underlying modelling structure can be developed
within a state-space or hierarchical model (MacKenzie et al.
2009).

Most avian applications of the above model have focused
on evaluating factors influencing occupancy and reproduc-
tive success of nesting raptor species. Martin et al. (2009)
used the method to explore potential negative impacts of rec-
reational activities on Golden Eagles (Aquila chrysaetos) in
Denali National Park, Alaska, and found that while there
was some evidence of reduced colonization (i.e. \|1£(ﬂ| was
lower at highly accessible sites), conditional reproduction
was better modelled as a function of prey abundance.
MacKenzie et al. (2012) applied the model to potential nest-
ing territories for California Spotted Owls (Strix occidentalis
occidentalis) in California. This species is relatively long-lived
and exhibits high fidelity to nesting territories. In this case,
successive territory occupancy should be correlated with
adult survival, and probability of reproductive success
should be highly correlated with per capita reproductive
rates, making it possible to investigate population dynamics
without marking individuals. A similar multievent approach
was also taken by Lorentzen, Choquet and Steen (2012) to
estimate survival and hatching success at occupied nests of
colonial seabird species.

Interestingly, several authors have applied the model to esti-
mate habitat and occupancy dynamics by redefining the true
states as unsuitable habitat (and thus unoccupied), suitable
habitat occupied by no or only few individuals of the target
species or suitable habitat occupied by some or many individu-
als of the target species. Such an approach was applied to study

the use of water holes by African elephants (Loxodonta afii-
cana) in Hwange National Park, Zimbabwe (Martin et al.
2010), and the occurrence of larvae of a suite of plains fishes in
the Arikaree River, eastern Colorado, USA (Falke et al.
2012). The aim of these studies was to examine how habitat
suitability and factors that affect habitat suitability (e.g. rain-
fall, snowpack) influence the distribution and abundance of
target species. Actively manipulating the availability of surface
water (habitat) is one option that managers have to influence
these species’ distributions, and the resulting parameter
estimates can be used to predict responses to potential actions
under differing environmental conditions to identify optimal
management decisions.

Applications such as these prompted the development of
more flexible models to separate the fundamental compo-
nents of habitat and species occurrence dynamics to better
understand ecological processes. MacKenzie et al. (2011)
developed a model that permits variable levels of species
occurrence probabilities among multiple habitat types, where
the species occurrence may also influence the habitat dynam-
ics (e.g. overgrazing). Likewise, Miller et al. (2012a) concep-
tualized a model that included combinations of habitat
(suitable/unsuitable) and predator and prey occurrence. Both
papers modelled the dynamics of target amphibian species
that rely on ephemeral habitats for long-term persistence,
hence the emphasis on modelling habitat and species dynam-
ics simultaneously. These studies provide examples of the
flexibility of occupancy models, specifically investigating
multiple simultaneous effects on focal species dynamics. At
the same time, multiple effects necessitate the development
of complex models and require that investigators carefully
consider only those models that are relevant for their biologi-
cal system. We will return to these considerations in later
sections.

FALSE-POSITIVEDETECTIONS

Arguably the most vital assumption of the occupancy models
mentioned thus far is that species are not misidentified or fal-
sely detected when a site is unoccupied. While the possibility of
false-positive errors had been acknowledged in various studies
(e.g. Simons et al. 2007; Shea et al. 2011), the problem had
been largely ignored in model development until recently (but
see Royle & Link 2006). A series of experimentally based
papers on birds and anurans highlighted the pervasiveness of
the problem in aural detections, noting that false-positive
errors existed for nearly all species and observers (Simons et al.
2007; McClintock et al. 2010a; Miller et al. 2012b). Moreover,
there was limited ability to reduce these errors with additional,
targeted training (Miller ef al. 2012b). Using standard
dynamic occupancy models, low levels of false-positive errors
(< 5% of all detections) caused severe overestimation of site
occupancy, colonization and local extinction probabilities, as
well as spurious relationships between these parameters and
explanatory variables (Royle & Link 2006; McClintock et al.
2010a; Miller et al. 2011, 2013). It should also be noted that
biases introduced by species misidentification are not limited
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to analyses that account for imperfect detection. If a species
may be misidentified, but is detected perfectly at a sample unit
otherwise, ‘false presences’ will result and occupancy estimates
are likely biased.

Miller et al. (2011, 2013) developed models that accommo-
date possible false-positive detections, provided a subset of the
detections is certain (i.e. a species may be present and not
detected, but detections have no false-positive errors; also see
Hanks, Hooten & Baker (2011) for a similar Bayesian hierar-
chical model). The models resemble the multistate models
described above and are analogous to the multievent models
employed in mark-recapture studies to deal with state uncer-
tainty (Pradel 2005). Initial occupancy and rate parameters are
identical to those of the multistate model, where the true occu-
pancy state of a unit 7 in season , n1;,, is one of K discrete occu-
pancy states. In the simple case of only two true states
(occupied, m;; = 1, or unoccupied m;, = 0), possible observa-
tions on survey j are non-detection (denoted y,; = 0), uncertain
detection (meaning detection with the possibility of a false
positive; y,; = 1) and certain detection (y,; = 2). The expected
probability of recording an observed state y, given the true
state m is given in Table 2. Notice that if a detection is consid-
ered ‘certain’ (y = 2), the unit is assumed to be occupied (i.e. if
a detection is considered ‘certain’, the species is detected with-
out error). In addition to this model permitting both types of
detections at any survey, Miller ez al. (2011) also developed a
complementary model for cases where a subset of sample units
is surveyed by different methods on different sample occasions,
with one method admitting possible false positives and the
other method being certain (detections included no false posi-
tives).

False-positive models are relatively new and have only been
applied to the ecological studies that helped motivate their
development, namely anuran studies that rely heavily on aural
detections (Miller er al. 2011) and a study investigating occu-
pancy dynamics of wolf packs in Montana by combining hun-
ter observations and radiotelemetry information (Miller ez al.
2013). We believe that any study that relies on indirect animal
detection, such as animal sign (e.g. tracks, scats Karanth et al.
2011; Molinari-Jobin et al. 2012) or interviews of local experts
(e.g. Zeller et al. 2011), will benefit from these new models.
Additionally, the models could be applied in studies that utilize

Table 2. The probability of recording an observed state y, given the
true state m, using occupancy models that allow for ‘false-positive’
detections. pg?] is the probability of incorrectly detecting the species
during survey j of season ¢ at an unoccupied unit (possible only for
uncertain detections), pgf/l-]is the probability of detecting the species dur-
ing survey j of season ¢ at an occupied unit, and b, ; is the probability
that a detection is classified as certain during survey j of season ¢, given
that the unit is occupied and the species is detected

Observed state, y

True state 0 1 2
10 10
0 1-p)l) Ly 0
1 1—p) P =b.y) b
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computer algorithms (e.g. Waddle, Thigpen & Glorioso 2009)
or laboratory assays (e.g. McClintock et al. 2010b) to deter-
mine species identification from survey results. Given the
severe bias that can result from ignoring false-positive detec-
tions, we hope that any study that may suspect such errors
would use these models to formally test whether p??] = 0. Uti-
lizing a combination of design modifications to lower the prev-
alence of false positives and model-based approaches to deal
with problems that remain should reduce the bias caused by
false-positive detections.

MULTISCALE MODELS

The work described above details methods that allow for the
expansion of the number of occupied states, but another arena
of rapid development has focused on expanding the number of
hierarchical scales of species occurrence. Motivation for these
models includes relaxing model assumptions, such as indepen-
dence among surveys and closure, and differentiating between
species occurrence at local and larger scales. Again, we begin
by describing a single-season multiscale model and then high-
light variations of this model theme using a diverse group of
innovative biological applications.

Early multiscale occupancy models were developed to
address lack of independence, or correlation, among surveys
(Nichols et al. 2008; Hines et al. 2010). Often multiple detec-
tion devices are deployed at the same location within a
sample unit to detect multiple species, or individuals of various
life-history phases for a given species, or to compare the effi-
ciency of multiple detection devices (see citations within Nic-
hols et al. 2008). If detections from each device are used as
surveys, lack of independence may exist if individual animals
detected by one device are more likely to be detected by
another device (i.e. detections among surveys are not indepen-
dent). Nichols er al. (2008) exploited this dependence to permit
inference about species occurrence at two hierarchical scales,
the small scale of the location at which sampling devices were
deployed and the larger scale of the sample unit within which
the devices were located. The basic sampling design is identical
to the general framework described above, but L different sur-
veys (e.g. detection devices, observers or timed observations)
are collocated in each sampled unit and sampled at 7" occasions
or subunits. The occupancy state of the unit is assumed static
over this time period, but the species local availability (e.g.
presence at the specific location of the detection devices) may
change over time or subunits. Model parameters under this
model include the following:

; = the probability that sample unit 7 is occupied by the tar-
get species

0,, = the probability the species is locally present (available
for detection) at occasion or subunit ¢, given the unit 7 is
occupied.

piy = the probability of detecting the species with survey j,

given that it is locally present at occasion or subunit 7.

The two occupancy parameters, \; and 0,,, permit the mod-
elling of occupancy at two different scales (spatial or tempo-
ral): \s; corresponds to species occurrence at the larger scale,
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while 0;, refers to the presence of the target species at the local
scale, conditional on species presence in the sample unit (the
larger scale). The product \,0;, represents the unconditional
probability of small-scale occupancy, indicating presence of
individual(s) of the species at the local spatial or temporal
scale, and \s; (1— 0, represents the probability that the species
is present in the unit, but unavailable for detection at occasion
or subunit 7.

Pavlacky et al. (2012) employed this approach to estimate
occupancy and local availability for two avian species thought
to differ in characteristics that make them rare. They used a
common sampling approach where sample units (1 km? plots)
were chosen in a probabilistic manner and then multiple point
count stations were systematically placed at equal distances
(250 m) from one another within chosen units. Each fixed-
radius (125 m) point count station was surveyed using a time-
to-detection method during the breeding season. Lark sparrow
(Chondestes grammacus) were fairly scarce among sample units
(l/} =(0-2), but were locally common when they occurred
(0 = 0-35). Conversely, brown creepers (Certhia Americana)
occupied more units across the landscape (J/ = (-3), but were
locally rare ((9 = 0-1), identifying this species as more suscepti-
ble to future declines at the regional scale. In a similar example,
Mordecai et al. (2011) investigated factors influencing occur-
rence and temporal availability of Louisiana waterthrush
(Seiurus motacilla) at point count locations along stream tran-
sects in West Virginia, USA. While Pavlacky er al. (2012)
assumed conditional independence among their point count
stations, Mordecai et al. (2011) accounted for possible spatial
dependence among point counts by including a random inter-
cept for aggregates (transects) of point count stations.

A severe form of spatial dependence may occur for species
that are detected along transects or trails, when units are only
surveyed once (L = 1) and trail segments are used as spatial
replicates. Such designs are often employed for large carnivore
species, such as tigers, and two different modelling approaches
have been proposed to deal with this type of problem (Hines
et al. 2010; Guillera-Arroita et al. 2011). One approach
describes the detection process as a continuous point process,
where detections occur randomly along a continuous axis
(Poisson process) or potential clustering in detections are
accounted for via a Markov modulating Poisson process
(Guillera-Arroita et al. 2011). Another approach is to discret-
ize the trail or transect into spatial subunits of equal length and
then model spatial dependence as a first-order Markov process
by defining two parameters for local occurrence (Hines et al.
2010):

0;, = the probability the species is present (available) at sub-
unit ¢ within an occupied unit 7, given the species was not
present at the previous subunit.

0’;, = the probability the species is present (available) at sub-
unit 7 within an occupied unit 7, given the species was present
at the previous subunit.

Detection histories for each sampled unit consist of detec-
tion—nondetection data from each successive spatial subunit,
for example, #; = 01011 denotes a unit where 5 successive spa-
tial subunits were surveyed. Assuming constancy in model

parameters among units, the probability statement associated
with this history is Pr(s; = 01011) = y[(1—-0,)0, + 0,(1—p,) 0%]
Dpol(1— 03)04 + 05(1—p3)0'4]p40'sps. Note the terms in square
brackets account for the ambiguity associated with the non-
detection of the species in the first and third subunits. Every
detection history can be modelled in this manner, and the like-
lihood under this model can be expressed as follows:
L, 0,0 plhi,hay... hs) = T, Pr(h;). Covariates can be
used to model variation in any of the model parameters,
but with only a single survey at each spatial subunit, there is
limited ability to distinguish between factors influencing local
occurrence (availability) and those influencing the conditional
detection probability. To date, most applications have
assumed that local occurrence parameters are constant over
subunits and modelled detection probability as a function of
covariates (e.g. Karanth ez al. 2011). If repeated surveys are
conducted at each subunit, better differentiation of factors
influencing local occurrence and detection probability is possi-
ble, while still accommodating spatial dependence in occu-
pancy (availability) among spatial subunits (J.E. Hines and
L.L. Bailey, unpublished data).

The applications mentioned above have all involved surveys
of spatial subunits within a larger unit, but it is easy to imagine
the same general framework for temporal subunits or occa-
sions within a longer time period of interest. For example, pre-
vious avian studies often involve a single visit to each unit, with
detections recorded in multiple, successive time periods (i.e.
species recorded in 3-5-min periods during a 15-min point
count). Even if a unit is visited multiple times within a season,
the closure assumption is violated by the non-random occur-
rence (availability) of a species during the season. Investigators
have addressed this issue by (i) creating extra replication (sur-
veys) for each occasion ¢, then applying the standard dynamic
occupancy model (MacKenzie et al. 2003) to directly estimate
temporal availability, 0;,, and deriving a ‘large-scale’ parameter
corresponding to the longer time period of interest (Rota ez al.
2009), or (ii) modelling species arrival and departure times
directly for species with staggered entry and exit times during
the period of interest (Kendall e al. 2013).

Like the multistate models described in a previous section,
multiscale models offer flexibility that is often necessary to
address important model assumptions, but they are not meant
as a fix for poor study design. Their application is essential to
control for biases in certain biological and sampling scenarios,
but the additional model complexity may lead to poorer preci-
sion and weaker inference.

Model flexibility and study design: disease
system example

Occurrence data have the advantage of being relatively easy to
collect, and historic records can often be converted to detec-
tion—nondetection data. The availability of numerous data sets
and a variety of flexible occupancy models have led to many
occupancy-based papers in the literature. For many of these
applications in which the underlying ecological and data
collection processes were well approximated by occupancy
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models, reasonable inferences were obtained. However, when
data collection and study system do not correspond well to the
processes for which occupancy models were developed, reason-
able inferences are not necessarily expected. It is the responsi-
bility of investigators utilizing any model based on detection—
nondetection data to clearly define the following terms as
applied to their study objectives: sample units (i.e. sites), the
time period over which occurrence is assumed to be static, rep-
licate surveys and even the criteria that constitute ‘detection’.
Still, many practitioners overlook the importance of defining
key terms (e.g. site, survey, season) with respect to their biolog-
ical question(s) and focus instead on the practical trade-offs
related to the optimal number of surveys per site. Most occu-
pancy design papers have followed suit, concentrating on
developing cost-efficient designs for a generic application (e.g.
MacKenzie & Royle 2005). But while there are some aspects of
study design that can be usefully treated in a generic manner,
other aspects require a tailoring of design to ecological and
sampling specifics. Such specifics typically involve first specify-
ing study objectives, which lead to specific definitions of key
model terms. Conditional on these objectives and definitions,
appropriate data are collected and model(s) are developed to
correspond to the underlying processes of interest.

In the following section, we focus on a single biological sys-
tem (a host—pathogen system) to illustrate how different bio-
logical hypotheses (objectives) result in dramatically different
study designs. In each study, we emphasize the definition of
key occupancy components and the associated model assump-
tions that are most relevant to the biological questions being
addressed.

DISEASE SYSTEM: BACKGROUND

Many amphibian declines world-wide have been attributed to
the emerging infectious disease chytridiomycosis, caused by
the fungal pathogen Batrachochytrium dendrobatidis (hereafter
Bd, e.g. Berger et al. 1998; Muths et al. 2003). Bd is transmit-
ted between individuals and the environment via an aquatic
flagellated zoospore (Berger et al. 2005). When the load of
zoospores on an individual is high enough, it can alter electro-
lyte transport across the epidermis, disrupting ion homeostasis,
and lead to cardiac arrest (Voyles et al. 2009). Susceptibility of
amphibians to chytridiomycosis is variable among species; vul-
nerable species often decline rapidly, while resistant species
may function as a reservoir for the pathogen.

Despite numerous papers focusing on amphibian—Bd inter-
actions, few have considered imperfect detection of either the
host or the pathogen (but see Adams ez al. 2010; Miller et al.
2012c¢). The following occupancy-based examples are a mixture
of published works specific to the Bd disease system and pro-
posed designs, some motivated by different ecological systems.

PATHOGEN PREVALENCE INASINGLEHOST
POPULATION

Often the most fundamental parameter in disease studies is
prevalence, the proportion of infected individuals in a defined
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population of organisms (i.e. disease frequency). Studies of Bd
dynamics have focused on both prevalence and the infection
intensity, defined as the abundance of Bd found on infected
individuals (e.g. Briggs, Knapp & Vredenburg 2010; Miller
et al. 2012c). In these studies, the ‘area of interest’ is usually a
single amphibian population, where a subset of individuals
(sample units) is randomly selected (presumably). Multiple sur-
veys are obtained from all or a subset of captured individuals,
and the manner in which these surveys are collected define the
time period over which prevalence is assumed to be static.
Typically, Bd is detected on a captured individual by gently
rubbing the surface of the skin with a cotton swab. Multiple
PCR samples (surveys) are prepared from each swab and anal-
ysed using quantitative PCR (qPRC) techniques, yielding
detection—non-detection information and a quantitative mea-
sure of zoospore equivalents for each survey (Hyatt et al.
2007). Under this sampling scenario, the resulting estimates of
occupancy (prevalence) represent the probability of Bd occur-
rence among individuals in the population and apply to the
time period over which individuals were captured, often only a
single visit. As with most disease assays, the sensitivity of the
PCR is <1 (Hyatt et al. 2007), and while most authors
acknowledge this fact, they attempt to account for non-detec-
tion by simply aggregating results for multiple PCR surveys
rather than estimate (and correct for) detection probability
(but see Miller et al. 2012c).

Several previous studies utilized occupancy models with this
type of data to estimate prevalence and address biological
questions related to the individual characteristics (e.g. species,
life stage) that may influence the probability of pathogen
occurrence or detection (Gomez-Dias et al. 2010; Cooch et al.
2012). These applications rely on the basic assumptions out-
lined in the previous Occupancy Models section. Many of these
assumptions are likely met for the sampling design described
above (e.g. closure assumption, no false detections), and others
can be addressed by modelling heterogeneity in pathogen
occurrence and detection as a function of covariates specific to
the individual (unit). However, in many disease systems, the
detection of the pathogen is likely a function of the intensity of
the pathogen on/in the host. In cases where no index of infec-
tion intensity is available, utilizing an approach that models
detection probability as a function of the latent distribution of
pathogen abundance should reduce the bias in prevalence
caused by heterogeneity in Bd detection among individuals
(Royle & Nichols 2003; Lachish et al. 2012). Many Bd studies
now estimate an index of infection intensity (zoospore equiva-
lents) for each survey. Miller et al. (2012¢) described two ana-
lytical methods to accommodate the relationship between
pathogen detection and infection intensity: an ad hoc approach
using closed population abundance estimators (Huggins 1991)
and a hierarchical Bayesian estimator that extended previous
occupancy models to account for observational error in the
detection of Bd and sampling error in measuring the associated
Bdzoospore equivalents.

An important assumption in these scenarios/applications is
that the sampled units (captured individuals) are a random
sample of the population of interest. Studies of other disease
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systems have emphasized that estimates of prevalence can be
biased if infected and uninfected individuals have different cap-
ture probabilities (reviewed in Cooch et al. 2012). Establishing
whether such detection differences exist among individuals
usually requires multiple detections and observations of the
disease state for individuals over time and typically utilizes
mark-recapture methods (Cooch et al. 2012). Such studies are
rare for amphibian—Bd systems, and none has found differ-
ences in individual capture probability associated with Bd
occurrence, but none has properly accounted for uncertainty
in individual infection state (Murray et al. 2009; Pilliod et al.
2010).

ESTIMATING THE PROPORTION OF INFECTED HOST
POPULATIONS

Understanding factors that influence a pathogen’s distribution
and determining when and how it is transmitted among seem-
ingly isolated host populations is a major theme in disease ecol-
ogy and geographical epidemiology. Numerous studies have
found that Bd is widely distributed geographically; however,
the utility of these studies is limited due to the opportunistic
nature of the sampling (Muths, Pedersen & Pedersen 2009). A
more robust sampling design might define an ‘area of interest’
as a collection of perhaps-isolated amphibian populations
within a specified region (e.g. amphibian populations at wet-
lands within a national park). A sample of these populations
(units) is drawn in a manner that allows for generalization to
the entire collection of amphibian populations. Populations
are visited once to capture and swab individuals, often of dif-
ferent species, without replacement: these individual swabs can
be viewed as surveys of the unit. Typically in these large-scale
studies, a single PCR assay is conducted on each individual
swab, or multiple swabs may be pooled, due to budget con-
straints. Inevitably, the number of surveys (PCR assays) varies
among units, though a maximum is usually defined.

Adams et al. (2010) used this approach to investigate factors
influencing spatial patterns in Bd occurrence in amphibian
populations in Oregon and northern California, USA. They
expected the processes that resulted in the presence of Bd in
amphibian populations (e.g. variables associated with Bd ther-
mal tolerances) would differ from the processes that result in
the presence of Bd among individuals within an infected popu-
lation (e.g. species, life-history stage, date). The authors recog-
nized several limitations of applying occupancy models to this
design. First, there is a finite number of surveys, determined by
the number of amphibians available in the local population,
and sampling individuals without replacement creates depen-
dence among surveys. They used simulations to determine that
bias resulting from such dependence was negligible for most
populations in their study (i.e. for populations >50 individuals
with true prevalence values for infected populations > 0-05).
Additionally, the probability estimates represent a combina-
tion of at least two processes: the probability the pathogen is
present on the individual in an infected population (i.e. true
prevalence) and the probability of detecting the pathogen using
standardized field and laboratory techniques, given it is present

on the individual. While these authors believed that the proba-
bility of detecting the pathogen on an infected individual was
quite high, the resulting detection probability should be inter-
preted as an index of prevalence (Miller ez al. 2012c).

INVESTIGATING FACTORS INFLUENCING HOST-
PATHOGENDYNAMICS

Little is known about the long-term dynamics of Bd once
established in an area of interest. The fungus has low mobility
and is considered vulnerable outside of a host (Piotrowski,
Annis & Longcore 2004). Recent work has shown differential
susceptibility among amphibian species suggesting that some
non-target species may function as reservoirs, or vectors, lead-
ing to the persistence or spread of Bd among habitats and pop-
ulations (Briggs, Knapp & Vredenburg 2010). Even among
susceptible species, it is apparent that Bd is not invariably lethal
and that the pathogen persists in an enzootic state in hosts that
survived infection during an initial epizootic (Briggs, Knapp &
Vredenburg 2010; Pilliod ez @l. 2010). Understanding amphib-
ian—Bd dynamics after an epizootic and determining whether
amphibians may persist or recolonize affected areas requires
the ability to sample Bd at sites that have few or no
amphibians.

In this case, a sampling design might define an ‘area of
interest’ as a collection of habitats (e.g. ponds) that may serve
as amphibian breeding locations within a specified region. A
sample of these habitats (units) is surveyed multiple times to
detect both Bd and target amphibians during a time period
where the occurrence of both pathogen and host is consid-
ered static. Captured amphibians can be sampled for Bd in
the manner described above, but if amphibians are not
detected, a water sample could be used to detect Bd in the
environment (Kirshtein et al. 2007). Here, target amphibian
detection informs the amphibian state (occupied) at the unit
and serves as a survey for the detection of the pathogen. Both
swabs and water samples are considered independent surveys
of Bd at a unit, but the survey methods are likely to have dif-
ferent Bd detection probabilities (Kirshtein ez al. 2007; Hy-
man & Collins 2012), and these can be accommodated in the
modelling.

To our knowledge, no such study exists for an amphibian—
Bd system, but McClintock et al. (2010b) outlined a study
design for such a system. In this case, occupancy corresponds
to the spatial prevalence of the pathogen across habitats.
More interesting are the host—pathogen dynamics that resem-
ble a dynamic species co-occurrence model that may incorpo-
rate neighbourhood autologistic effects (McClintock et al.
2010b; Yackulic et al. 2012, in press). Alternatively, similari-
ties could also be drawn to existing habitat-occupancy
dynamic models with two types of habitats: those with and
without the pathogen (MacKenzie ez al. 2011). Relevant bio-
logical hypotheses would involve differences in the occurrence
and dynamics of the target amphibian species conditional
on the habitat type, and importantly, the occurrence of the
target species may influence the dynamics of the pathogen
(habitat).
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SUMMARY

Each of the studies above addresses different biological ques-
tions related to a common host—pathogen system. Accord-
ingly, the definition of a sample unit varies from a single
individual to a patch of potential breeding habitat. Investiga-
tors have more control over sample unit selection in the latter
case, and the inference to all sample units is more defensible.
Surveys are defined as individual swabs or groups of swabs,
water samples or combinations of these methods. The time
period over which these surveys are obtained, ranging from a
single visit to an entire breeding season, defines the time period
over which the pathogen state, or amphibian and pathogen
state, is assumed to be static among units. The longer time peri-
ods separating such ‘primary sampling occasions’ (MacKenzie
et al. 2003) then define the periods to which the occupancy—
dynamic rate parameters apply. It is imperative to align the
biological hypotheses of the study with a comparable sample
design such that selected models are believed to correspond
reasonably well to the processes that generated the data; thus,
model assumptions are likely to be met.

Conclusions

The applications presented in this paper are intended to demon-
strate the breadth of flexibility possible with current occupancy
models. We have chosen to focus on those models that involve a
single to a few target species, but we acknowledge that thereis a
rich literature involving the occurrence of multiple species (e.g.
Dorazio & Royle 2005; Kéry & Royle 2009; Zipkin, Dewan &
Royle 2009). Ecologists recognize that multiple effects are likely
relevant to most studies of occupancy dynamics, and a desire to
include these effects motivated the development of the models
described here. Cries for even more flexible models to deal with
system complexity place added responsibility not only on model
developers (biostatisticians), but also on ecologists to clarify
and communicate their hypotheses about the dynamics moti-
vating the desire for increased model complexity. We view this
added responsibility as a good thing, but simply note that the
flexibility of occupancy models requires ecologists to try to
restrict the investigated model set to those combinations of
effects that represent plausible a priorihypotheses.

We recognize that there are relatively few papers that focus
on the design of occupancy studies, due in part to the flexibility
of existing models. It is difficult, if not impossible, to develop
generic recommendations for all aspects of study design. Any
attempt to do so would require using language that is so vague
(to be inclusive) that it would lose its utility. What is general
and conserved is the process that one should go through when
designing an occupancy study. Typically, this process involves
first specifying study objectives, which then direct definitions
of key model terms. Conditional on these objectives and defini-
tions, the process then entails collection of appropriate data
and utilization or development of models to correspond to the
underlying processes of interest. We hope that our abbreviated
demonstration of this process using a single ecological system
will assist other practitioners when considering the use of
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occupancy models to address hypotheses related to occupancy
dynamics.

Many methodological extensions have been developed to
address interesting biological questions, but some extensions
have emerged from study designs where assumptions of sim-
pler modelling approaches are not met. Such extensions should
not, necessarily, be seen as encouraging the particular design
used in that study as the best way to address those (or similar)
objectives. Whenever possible, one should opt for the simplest
and most appropriate study design to address the biological
question(s) of interest, instead of relying on model-based solu-
tions to correct for certain aspects of the study design after the
data have been collected. In the latter situation, inferences are
going to be more model dependent than when potential issues
are identified and dealt with during the study design phase.
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