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Abstract: Presence–absence data can be useful to wildlife managers in a wide variety of contexts, from monitoring
populations at large spatial scales to identifying habitats that are of high value to specific species of conservation
concern. However, a key issue is that a species may be declared “absent” from a landscape unit simply as a result of
not detecting the species using the prescribed sampling methods. The effect of this imperfect detection is that
parameter estimates will be biased, and any modeling of the data provides a description of the surveyors’ ability to
find the species on the landscape, not where the species is on the landscape. The reliability of so-called “pres-
ence–absence” data for making sound management decisions and valid scientific conclusions could therefore be
questioned. However, after collecting appropriate data (i.e., repeated surveys of landscape units within a relative-
ly short timeframe), recently developed statistical models can be used to obtain unbiased parameter estimates.
Here I provide a nontechnical overview of the issues that pertain to wildlife studies or monitoring programs that
seek to make reliable inference about the presence or absence of a target species.
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The presence or absence of a species from a
collection of landscape units is a widely used con-
cept by researchers and managers in wildlife-
related disciplines. In a monitoring context, the
proportion of monitoring sites (e.g., habitat
patches or quadrats) within a region where the
species is present can be used as a surrogate for
population size or species abundance; this is par-
ticularly true at large scales, for cryptic, low-den-
sity and/or territorial species. The underlying
logic is that changes in the proportion of occu-
pied sites (i.e., places where the species is pre-
sent) will be correlated with changes in the pop-
ulation size, provided sites are defined at an
appropriate spatial scale (Zielinski and Stauffer
1996, Trenham et al. 2003, Weber et al. 2004,
MacKenzie et al. 2005a). Habitat models and
some resource selection probability functions
relate presence–absence data to the habitat char-
acteristics of study sites or resource units. Such
techniques have been used to identify habitats
that may be highly used by the target species,
hence they should be of high conservation value
and prioritized for protection by management
(Manly et al. 2002, Tyre et al. 2003, Johnson et al.
2004, Ball et al. 2005). In many situations the
species’ range or distribution may be of direct
interest, particularly how the distribution changes

over time. For threatened and endangered spe-
cies, interest is often directed at range contrac-
tions, while for invasive species, interest is in the
rate of expansion (Brown et al. 1996, Ceballos and
Ehrlich 2002, Wikle 2003). Metapopulation mod-
els and incidence functions have been used with
presence–absence data to investigate sources of
variation in species occupancy and to identify
habitat patches with potentially high levels of per-
sistence. As with habitat models, the identified
patches may then be prioritized for protection
from future development (Hanski 1999, Moila-
nen 2002). In some applications the “species” is
not restricted to the vertebrate and invertebrate
members of the animal kingdom, but it may be a
disease (e.g., chronic wasting disease, West Nile
virus) or presence of species malformations with-
in a region (e.g., amphibian malformations). 

While the presence of a target species can often
be confirmed at a location, it is generally impossi-
ble to confirm species’ absence. An observed ab-
sence may simply be the result of the survey
method failing to detect the presence of the spe-
cies that is actually resident at the location (e.g., the
species was currently elsewhere within its home
range, or failed to call within a 5-min point count).
This facet of so-called “presence–absence” data has
long been recognized, and the use of terms such
as “presence–not detected” has sometimes been
used to acknowledge that a nondetection does1 E-mail: Darryl@proteus.co.nz
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not equate to species absence. However, the use
of such a term confuses the biological and sam-
pling processes. Presence–absence is the biologi-
cal reality of whether the species is resident at a
particular location, while detection–nondetection
relates to the observed outcome of the sampling
process. A more correct term for the data resulting
from such surveys would be detection–nondetec-
tion, which I use throughout this paper.

The effect of ignoring imperfect detection is
that estimates of occupancy and related parame-
ters can be seriously biased, which results in mis-
leading inferences about the system (Moilanen
2002, Tyre et al. 2003, Gu and Swihart 2004,
MacKenzie 2006), which can lead to erroneous
management decisions. Regardless of the level of
complexity in a particular analytic technique, un-
less detection probability is specifically accounted
for, results will pertain to a combination of biolog-
ical and sampling processes. That is, results repre-
sent the surveyors’ ability to find the species in the
landscape, not where the species is in the land-
scape. From a management perspective, the latter
is likely to be much more useful than the former.

To minimize the chance of obtaining a “false
absence” (i.e., the species was present but unde-
tected) one protocol is to conduct multiple sur-
veys at a location within a relatively short time-
frame. For instance, if the probability of
detecting the species in a survey of an occupied
location is 0.6, there is a 0.4 (= 1 – 0.6) probabili-
ty of a false absence from a single survey (i.e., by
not detecting the species). However if 2 surveys
are conducted, then the probability of not detect-
ing the species at either survey reduces to 0.16 (=
[1 – 0.6]2), and it reduces to 0.064 (= [1 – 0.6]3)
if 3 surveys are conducted. One approach is to
then assume that sufficient surveying effort has
been expended such that the probability of a
false absence is negligible. Hence, locations
where the species were never detected are
regarded as a genuine absence, and standard
techniques for binary data are used (e.g., logistic
regression). However a more rigorous approach
is to use a method of analysis that explicitly incor-
porates detection probability. Such techniques
have been suggested independently by Geissler
and Fuller (1987), Azuma et al. (1990), MacKen-
zie et al. (2002), Tyre et al. (2003), Stauffer et al.
(2004), and Wintle et al. (2004). Useful exten-
sions and refinements to these methods have also
been suggested by MacKenzie et al. (2003), Royle
and Nichols (2003), MacKenzie et al. (2004a),
Royle (2004), and Dorazio and Royle (2005). 

I discuss these various techniques by providing
a brief summary of the issues that are common to
many wildlife applications where presence–
absence-type metrics are of interest. I begin with a
conceptual overview of how such studies could be
conducted, and then illustrate the consequences
of imperfect detection. I then provide an overview
of the potential analytic methods that are now
available that explicitly account for detection
probability and touch on important points while
avoiding finer mathematical details. Next, I give
suggestions on how we might use this analytic
framework to aid in the design of an occupancy
study, with reference to recent and upcoming
publications. Finally, I discuss current and future
directions of research and how these new methods
could be used to improve management decisions.

A General Sampling Scheme
Consider the general situation in which the frac-

tion of landscape units where the target species is
present is of interest (occupancy). Landscape
units may constitute small regions of an arbitrar-
ily defined size (e.g., grid cells, quadrats) or nat-
urally occurring discrete patches of habitat (e.g.,
ponds, forest remnants). Inference is to be made
about the collection of landscape units and not
the population of animals on the landscape (i.e.,
the landscape units represent the sampling units
of a statistical population). A probabilistic sam-
pling scheme is used to select U landscape units
that are to be surveyed to establish the presence
or absence of the target species. However, as
mentioned above, the species is only ever detect-
ed imperfectly, hence each landscape unit is sur-
veyed K times within a relatively short timeframe
(i.e., a season). Interest may also lie in how the
level of occupancy changes over time, hence the
U landscape units may be surveyed for multiple
seasons with repeated surveys each season.

MacKenzie et al. (2005b; see also MacKenzie
and Royle 2005) discuss in great detail implica-
tions of defining a “season.” An important point
is to distinguish between “occupancy” and “use,”
and to consider how each relates to management
objectives. A landscape unit is “occupied” if the
species is always physically present somewhere
within that unit over a set period of time (the
defined season). If the species is physically pre-
sent within a unit only at random points in time
during the season, then that could be defined as
“use” rather than occupancy (MacKenzie et al.
2004b). For example, if the size of a landscape
unit is small compared to the home range of a
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species, then whether the species is physically
present within the unit on a given day during a 5-
day study period may be considered random. In
this case the unit would be defined as “used” by
the species because it was not always there during
the 5-day period. However, if the landscape unit
is similar in size to the species home range, then
it may be more appropriate to consider the unit
as “occupied” because the species is likely always
to be present within it. Alternatively, if a season is
defined to be a single day rather than a 5-day
period, then it may be appropriate to consider
the smaller landscape unit as “occupied” provid-
ed it is unlikely for the species to move to anoth-
er part of its home range during that day. It is
important to realize that the fraction of units
“used” by the species over a longer timeframe will
generally be larger than the fraction of units
“occupied” by the species at any given point in
time, and consider how that corresponds with
management objectives. For example, if the
objective is to determine what habitats are being
“used” by a wide-ranging carnivore, then a longer
season may be appropriate, but if the intent is to
employ occupancy as a surrogate for population
size, then a much shorter season should be used.
That is, a longer season may indicate that carni-
vores are everywhere because of their wide-rang-
ing nature, which could be misleading in terms
of a surrogate for population size, whereas a
shorter season would indicate where the carni-
vores are within the region before they have a
chance to move elsewhere. While it is important
to distinguish between “use” and “occupancy” in
terms of defining season length, both cases are
amenable to investigation using the methods I
describe below. Hereafter I use the term “occu-
pancy” for both concepts.

How and Why Would Imperfect Detection
be an Issue?

As I alluded to earlier, a species may go unde-
tected in a survey of a landscape unit for a num-
ber of reasons. For territorial species that have
home ranges larger than a landscape unit, a sur-
vey may fail to detect the presence of the species
because the species is elsewhere within its home
range during the survey. Indeed, it was this type of
practical situation that Tyre et al. (2003) envi-
sioned when suggesting the use of a zero-inflated
binomial model (see also Wintle et al. 2004, Field
et al. 2005). They conceptualized the general
problem as the consequence of 2 independent
Bernoulli processes operating at 2 timescales: (1)

utilization (or use) of a unit by the species over a
longer timeframe, and (2) given the species uti-
lizes a unit, that it was present and observed dur-
ing a survey within that unit. In a situation where
the species was likely to be always present at the
landscape unit for the duration of the season,
then a nondetection will generally occur simply as
a result of the survey methods and level of survey
effort. For example, a bird species may simply fail
to call during a timed audio survey, or an animal
may not happen to walk across a tracking plate.
This was the situation regarded by MacKenzie et
al. (2002) when they assumed the landscape units
were closed to changes in occupancy during the
season (i.e., landscape units were either always
occupied or always unoccupied during the sea-
son). Subsequently, MacKenzie (2005b; see also
MacKenzie et al. 2004b, 2005b) suggested this
assumption could be relaxed to estimate “use”
provided the probability of the species being phys-
ically present at a landscape unit was random (i.e.,
the probability did not depend upon whether the
species was physically present within that unit at
the time of a previous survey), which was the same
situation considered by Tyre et al. (2003). Modern
technology does not resolve the nondetection
issue. For instance, radio and satellite transmitters
may be affected by terrain or canopy cover that
may result in an animal not being located during
a sampling period (Frair et al. 2004).

If not accounted for, imperfect detection of the
species will cause parameter estimators to be
biased. Suppose the probability of occupancy is ψ
and, given a unit is occupied, the probability of
detecting the species in a single survey is p. After
K surveys the probability of detecting the species at
least once will be: 1 – (1 – p)K, (i.e., 1 minus the
probability of not detecting the species in any of
the K surveys). Therefore, the probability of the
species being present and detected (i.e., finding
the species) at a unit will be ψ(1 – [1 – p]K). If
detection–nondetection data are regarded as
representing actual presence–absence, then the
relative bias (RB) in an estimate of occupancy
that does not explicitly allow for detection prob-
ability will be:

RB = 
ψ[1 –(1 – p)K] – ψ

ψ

= –(1 – p)K.

That is, a naive estimate will always be biased low
with the degree of bias being greater when p
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and/or K are small. Furthermore, suppose a
comparison of occupancy levels at 2 periods (e.g.,
trend) or places (e.g., different habitat types)
may be of interest. It can be quickly shown that
the ratio of 2 naive occupancy estimates will only
be unbiased if the probability of detecting the
species at least once at both times or places are
virtually equal. The relative bias in this instance is
approximately: 

RB ∼∼
[1 – (1 – p2)K2]

– 1
[1 – (1 – p1)K1].

For example, suppose in a comparison of 2 habi-
tat types the probability of detecting the species is
0.5 in habitat A and 0.4 in habitat B, and in each
habitat type 3 surveys will be conducted per land-
scape unit. The RB in a naive comparison of
occupancy will be approximately: 

RB ∼∼
[1 – (1 – 0.4)3]

– 1
[1 – (1 – 0.5)3],

=
0.784
0.875

– 1

= –0.104

i.e., the comparison will be underestimated by
10%.

The effect of nondetection on parameter esti-
mates in specific contexts has been recently inves-
tigated by a number of authors. Tyre et al. (2003)
showed in a habitat modeling context that when
detection–nondetection data was regarded as
presence–absence data, habitat-related effects on
presence (or occupancy) were underestimated by
simple logistic regression. They speculated that if
detection probability co-varied with habitat, then
positive biases may result. Gu and Swihart (2004)
demonstrated exactly that, again in a habitat
modeling context. They concluded that using
logistic regression on so-called presence–absence
data may lead to erroneous conclusions about
habitat suitability, even when the level of nonde-
tection is relatively small. MacKenzie (2005a) also
illustrated this, where a variable that affected
detection probability was mistakenly identified as
being important in a resource selection applica-
tion when using a simple logistic regression
approach. In a metapopulation context, Moila-
nen (2002) concluded that the nondetection of a

species in occupied patches resulted in serious
biases of a number of incidence function para-
meters to the point where the predictive ability of
a metapopulation model may be compromised.
In some scenarios, the persistence of the meta-
population may be overestimated. Given the gen-
eral use of these methods (particularly logistic
regression) to analyze presence–absence data in
wildlife applications, ignoring the nondetection
issue may result in false confidence of current
management and conservation strategies by
under- or overvaluing different habitats or
regions. Moilanen (2002), Tyre et al. (2003), Gu
and Swihart (2004), and MacKenzie (2005a) all
recommend that appropriate field data should
be collected such that detection probabilities can
be directly incorporated into inferential proce-
dures. Repeated surveying of landscape units
within a season allows that to be accomplished.

Summary of Appropriate Analytic 
Methods

A number of papers discuss obtaining unbiased
estimates of occupancy from appropriately collect-
ed field data (Geissler and Fuller 1987, Azuma et
al. 1990, MacKenzie et al. 2002, Tyre et al. 2003,
Stauffer et al. 2004, Wintle et al. 2004). A common
element in these papers was recognizing that non-
detection of the species at a landscape unit may be
the result of 2 distinct processes: (1) the species
was present but never detected, or (2) the species
was genuinely absent during the season. Simple
probabilistic arguments were used to build a
model, and parameters may be estimated, gener-
ally using likelihood-based methods. The treat-
ment given to the general problem by MacKenzie
et al. (2002) was the most comprehensive in that
many of the other methods could be considered
special cases. When detection probability is
assumed to be constant during a season, the mod-
eling approach of MacKenzie et al. (2002) reduces
to a zero-inflated binomial process, which was used
by Tyre et al. (2003), Stauffer et al. (2004), and
Wintle et al. (2004). In addition, if surveying of a
unit is halted after the first detection of the target
species during a season, the approach of MacKen-
zie et al. (2002) is conceptually similar to that of
Azuma et al. (1990). The main advantages for con-
sidering the problem of occupancy estimation in
the likelihood-based framework outlined by
MacKenzie et al. (2002) are: (1) unequal sampling
effort may be used at each landscape unit, (2)
both occupancy and detection probabilities may
be functions of landscape-unit characteristics (e.g.,
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habitat type), (3) detection probabilities may be a
function of variables specific to each survey occa-
sion (e.g., localized weather conditions), and (4)
being likelihood-based, either frequentist or
Bayesian methods of analysis may be used (by
equating the model likelihood to the probability
of observing the data given the parameters).

The basic approach of MacKenzie et al. (2002)
was very simple and similar to the reasoning used
in the development of many mark–recapture
models. Model parameters were defined to rep-
resent occupancy and detection probabilities, a
verbal description of the sampling process that
was assumed to result in the observed data was
developed, and this was then translated into a
mathematical equation using the defined model
parameters.  Below I briefly illustrate this process.
For example, let ψi be the probability of occu-
pancy at landscape unit i, and pij be the probabil-
ity of detecting the species in the j th survey of
unit i given the species was present (hence 1 – pij
is the probability of not detecting the species
given it was present; note the i subscript is used
for generality, but it is not possible to estimate
distinct probabilities for each unit, see below).
Now suppose that at unit 1, 3 surveys were con-
ducted with the resulting sequence of detections
(1) and nondetections (0) being {101}. The ver-
bal description would be: the species was present
(as it was detected at least once), detected in sur-
vey 1, not detected in survey 2, and detected in
survey 3. Translating this into a mathematical
equation to represent the probability of observ-
ing this sequence gives ψ

1
p

11
(1 – p

12
)p

13
. Next, sup-

pose that at landscape unit 2, the species was never
detected during the 3 surveys giving the sequence
{000}. Here, the verbal description would be: the
species was present but not detected in any of the
surveys, or the species was absent. The corre-
sponding mathematical translation is ψ

2
(1 – p

21
)

(1 – p
22

)(1 – p
23

) + (1 – ψ
2
). The 2 terms are

added here because of the 2 possible explana-
tions for the observed data. The model likelihood
is then constructed by combining the equations
for all of the sampled landscape units (for details
see MacKenzie et al. 2002; see also MacKenzie et
al. 2004b, 2005a,b).

An assumption common to all the above meth-
ods is that occupancy and detection probabilities
were the same across all sampled units (i.e., ψi =
ψ and pij = pj), the probabilities varied in accor-
dance to a defined function via measured covari-
ates (e.g., via a logistic regression function; ψi =
eXi β/[1 + eXi β]), or the probabilities were random

values from a probability distribution (e.g., ψi
logit-normal[µ,σ2]). That is, there was no un-
modeled heterogeneity in the probabilities. Un-
modeled heterogeneity will again introduce bias
into parameter estimates. One potential source
of heterogeneity is variation in the local abun-
dance of the species (i.e., the number of individ-
uals of the species within each landscape unit).
Detection probability of the species would be
greater in units with greater local abundance.
Royle and Nichols (2003) extended the approach
of MacKenzie et al. (2002) by considering how
individuals of the species may be distributed
across the landscape. Royle (2004) also extended
the general approach to situations where, rather
than collecting just detection–nondetection data
at each survey, repeated counts of the number of
individual animals of the species are made at the
landscape units. The advantage of such
approaches is that it is possible to estimate abun-
dance rather than just occupancy; however, care-
ful consideration must be made as to exactly what
“abundance” refers to in specific contexts (i.e.,
the estimated “abundance” parameter may not
be interpretable as the expected number of indi-
viduals within a landscape unit).

So far, all the methods I have mentioned deal
with the problem of estimating occupancy at a
single point in time (e.g., within a single season).
Such methods are useful for evaluating the cur-
rent status of a species or for investigating how a
species was distributed across a landscape in rela-
tion to measurable covariates; that is, for investi-
gating patterns in occupancy. Often, how occu-
pancy changes over time and the underlying
processes of change may be of as much or greater
interest. Clearly the only reliable method for
investigating the processes of change is to survey
the landscape units for multiple seasons
(MacKenzie et al. 2003, MacKenzie and Nichols
2004). One approach for analyzing such data is to
apply the above models to each season’s data
either separately or by assuming some functional
change in the occupancy parameter over time
(e.g., Field et al. 2005). However, such an
approach does not consider how the occupancy
state of specific units may change over time.
These dynamic processes are commonly referred
to as local extinction and colonization, respec-
tively. MacKenzie et al. (2003; see also MacKenzie
et al. 2004b; 2005a,b for details) extended the sin-
gle-season approach of MacKenzie et al. (2002)
to explicitly incorporate these processes while
simultaneously accounting for imperfect detec-
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tion. Their multi-season model had all the same
advantages of the single-season model (i.e., likeli-
hood-based, ability to incorporate information on
measured covariates, unequal sampling effort) and
resulted in a very flexible method of analysis. A
similar approach was suggested by Barbraud et al.
(2003) using mark–recapture models where land-
scape units may be considered as individual
marked animals, but this method required equal
sampling effort across all units and did not con-
sider units where the species was never detected.
Note that the processes of local extinction and
colonization may induce a form of temporal
autocorrelation as units that were occupied in
season t may be more likely to be occupied in sea-
son t + 1. Also note that MacKenzie et al (2005b)
have recently shown that applying a series of sin-
gle-season models to multi-season data (e.g.,
Field et al. 2005) makes a de-facto assumption
that changes in the occupancy state of units
between seasons occur at random (i.e., the prob-
ability that a unit is occupied in season t is the
same regardless of the whether the unit was occu-
pied or unoccupied in season t – 1). Hence,
methods of analysis that explicitly incorporate
the processes of local extinction and colonization
are likely to provide more reliable results than
those that do not. Furthermore, the method of
MacKenzie et al. (2003) allows detection proba-
bility to vary within and between seasons, which is
likely to be a biological reality.

From a management perspective, one quantity
that may be of interest in some situations is the
probability that the species was present at a land-
scape unit given it was never detected there.
From Bayes theorem we have:

PR(species present | species not detected) =
PR(species present and not detected)

PR (species not detected)

This can be simply calculated from the estimat-
ed parameters. For example, suppose that in sea-
son t (for generality) unit i was surveyed twice,
and the species was never detected. From the
results of the analysis, the probability of occu-
pancy was estimated as ψ̂i,t = 0.65 (this may have
to be calculated recursively in a multi-season
study; see MacKenzie et al. 2003 for details), and

detection probabilities were p̂ i,1,t = 0.4 and  p̂ i,2,t
= 0.6. The estimate for the probability of the spe-
cies being present given it was never detected at
the unit would be:

That is, the unconditional estimate of the species
being present was 0.65, but by taking into account
that the species was not detected after 2 surveys,
the estimated probability of presence was reduced
to 0.31. An approximate standard error for this
conditional probability can be obtained using the
delta method (MacKenzie et al. 2005b). Had detec-
tion probabilities been smaller, then the reduction
in the probability of presence would not have been
so great, but conversely had they been larger or
had more surveys been conducted, the condition-
al probability of presence would have been small-
er (i.e., the probability of a false absence would
have been smaller if the probability of detecting
the species at least once was greater).

Implications for the Design of Studies
and Monitoring Programs

The imperfect detection of a species may seri-
ously impede our ability to make reliable,
informed management decisions. Not allowing
for detection probability has been shown to lead
to erroneous conclusions about the system under
consideration, whether using back-of-the-enve-
lope calculations (as above), extensive simulation
studies (Moilanen 2002, Tyre et al. 2003, Gu and
Swihart 2004) or the analysis of real data
(MacKenzie 2006). The use of repeat surveys
within a season provides the relevant data allow-
ing detection probabilities to be estimated. Clear-
ly, when logistical resources are limited (as is
often the case) the necessity of conducting
repeat surveys may reduce the total number of
landscape units that can be surveyed per season.
A question that naturally arises is “How many
repeat surveys should be conducted?” However,
before addressing this question, it is important to



J. Wildl. Manage. 69(3):2005 855WILDLIFE MANAGERS AND PRESENCE–ABSENCE DATA •  MacKenzie

consider other more fundamental issues related
to the design of a study or monitoring program.

The first is the why, what, and how of the intend-
ed study/monitoring program (Yoccoz et al.
2001, MacKenzie and Royle 2005). The why com-
ponent relates to establishing a clear objective for
sampling the wildlife population. The exact pur-
pose of the sampling determines what aspect of
the population should be measured and how one
should conduct the sampling. For example, it
would not be useful for me to design a good occu-
pancy study if I really wanted to estimate the sur-
vival probabilities of individuals. Similarly, as I dis-
cussed previously, the choice of season length
may depend upon whether “use” vs “occupancy”
of landscape units by a wide-ranging carnivore
was of interest. A good objective should provide
some statement as to the program’s general
intent (e.g., measure status or trends in the pop-
ulation) and the level of acceptable uncertainty.
Moreover, a good objective provides a link
between the collection of data and the advance-
ment of science or implementation of manage-
ment actions. For example, is the intent of the
study to distinguish between competing hypothe-
ses about the ecology of the species such as
whether recruitment is density dependent or not
(say), or simply to estimate the current level of
recruitment to determine whether management
should begin a captive breeding program? Simi-
larly, is the intent of the study simply to estimate
the current level of occupancy for a species with-
in a management region, or is more detailed
information required to identify which habitats
are highly used by the species to prioritize them
for conservation? In each of these 2 examples, the
2 subtly different objectives would require very
different designs (and very different levels of
effort) to provide the relevant information. Clear-
ly defining why one is sampling a wildlife popula-
tion greatly aids the entire study design process.

Here the issue of what to measure about the
population is occupancy (or a related metric),
but other options may include abundance or spe-
cies richness (MacKenzie and Royle 2005;
MacKenzie et al. 2005a,b). The choice of which
aspect of the population (or wider ecological
community) to measure is related to the study’s
objective and to available logistical resources.
Generally, abundance-related measures tend to
be most costly, followed by occupancy and species
richness-related metrics. 

How to design the study is the issue that usually
receives the greatest focus, as it is where the

specifics of the design (e.g., sample sizes, field
protocols, etc.) are generally considered. For
occupancy-type studies, I suggest considering a
number of issues: (1) what is an appropriate land-
scape unit, (2) season length, and (3) how should
landscape units be selected for surveying. These
issues are inextricably linked to why and what,
hence they should only be considered once these
questions have been suitably addressed. For
example, if the intent of the study was to deter-
mine whether a species prefers one form of habi-
tat over another, one approach would be to ran-
domly select units only from those areas of the
landscape with those types of habitats. Another
approach would be to randomly select units from
the entire landscape that may (or may not) con-
tain one of the habitat types of interest. While
either design may provide the relevant informa-
tion, I think it would be prudent to use the for-
mer approach considering the objective of the
study. However, if the main objective of the sam-
pling was simply to measure occupancy across the
entire landscape, and habitat relationships were
of secondary importance, then I suggest using
the latter approach because it allows inference to
be made to the entire landscape rather than just
those portions of the landscape with 2 habitat
types. My further comments (and associated ref-
erences) relate to many of the how questions that
are commonly raised during the design of an
occupancy study, although some can only be con-
sidered on a case-by-case basis given the specifics
of why and what.

In terms of designing an occupancy-based study
or monitoring program, the necessity of con-
ducting repeat surveys of a landscape unit may
not always translate into multiple discrete visits to
the unit. That is, the requirement of repeat sur-
veys may be incorporated into a program without
substantially impacting upon the total level of
effort or resources. Options for collecting the
repeated survey data include: (1) multiple dis-
crete visits, (2) multiple observers surveying inde-
pendently, (3) single observer conducting multi-
ple surveys separated by an appropriate time
interval, and (4) surveying multiple plots within a
larger landscape unit (e.g., multiple short tran-
sects within a 25-ha unit). Whether a particular
method is appropriate in a given situation
depends very much on how the model assump-
tions relate to the biology of the target species.
Key issues to consider are available survey tech-
niques, the timescale over which detection prob-
ability may change (e.g., daily due to weather pat-
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terns, or within a day due to activity), whether the
species is likely to continuously occupy a unit dur-
ing a season (i.e., use vs. occupancy), and the
meaningful definition of a landscape unit. It is of
particular importance to consider whether a pro-
posed study design is likely to introduce detec-
tion heterogeneity between units due, for exam-
ple, to observer effects or surveying different
units at different times of the season (MacKenzie
et al. 2004b, 2005b; MacKenzie and Royle 2005).

A current area of research is seeking general
results in terms of allocation of survey effort
between the number of units to sample and num-
ber of surveys per unit. Little has been published
to date, the exceptions being Field et al. (2005)
and MacKenzie and Royle (2005). 

MacKenzie and Royle (2005) considered the
problem of designing an efficient study for esti-
mating occupancy in a single season, where effi-
ciency may either be defined as achieving a
desired level of precision for minimal total survey
effort or maximizing precision (i.e., minimizing
the variance) for a fixed level of survey effort. They
showed that regardless of the definition used,
there are an optimal number of repeat surveys
that should be conducted at a unit for specified
occupancy and detection probabilities. This opti-
mal number was independent of the number of
units surveyed; hence, regardless of whether 50 or
50,000 units are to be surveyed, the same number
of repeat surveys should be conducted. They also
considered 3 general study designs: (1) a standard
design where all units are surveyed an equal num-
ber of times; (2) a double-sampling design where
a subset of units are surveyed repeatedly, with
other units only surveyed once; and (3) a removal
design where units are surveyed up to a set maxi-
mum number of times, but surveying halts once
the species is first detected (i.e., the design con-
sidered by Azuma et al. 1990). They found that the
removal design was generally the most efficient
(followed by a standard design, then the double-
sampling design) because detecting the species for
the first time at a unit was the most important
piece of information in terms of establishing occu-
pancy; although they speculated the removal
design may be less robust to assumption violations
than a standard design. As a compromise between
efficiency and robustness, they suggested a hybrid
design in which the removal protocol is used on
some units and a standard design on others. The
final recommendations of MacKenzie and Royle
(2005) were that (1) as a general strategy for rare
species, more landscape units should be surveyed

less intensively, while for common species, fewer
units should be survey more intensively; (2) unless
a removal design is to be used, units should be sur-
veyed a minimum of 3 times when detection prob-
ability is anticipated to be >0.5, and that minimum
should be increased for smaller detection proba-
bilities; and (3) increasing spatial replication with
insufficient repeat surveys may not yield a more
precise estimate of occupancy than surveying
fewer units with greater intensity (e.g., they pro-
vided an example where the same expected stan-
dard error for the occupancy probability could
be achieved by either surveying 80 landscape
units 5 times or 500 units only twice).

Field et al. (2005) considered a different situa-
tion, with a slightly different approach to study
design, where a trend in occupancy (specifically a
decline) over a 3 season time period was of inter-
est, subject to budgetary constraints. Based upon
a hypothesis testing objective, they assessed the
effect the number of repeated surveys had on the
power of the test to detect a decline (assuming
that increasing the number of repeat surveys
decreased the number of units that could be sam-
pled, given a fixed budget). For the scenarios
considered, they found that power was maxi-
mized when 2 surveys per season were conducted
at each site, but they recommended a greater
number of surveys if detection probability was
low or if the species was more common (i.e.,
occupancy was higher). Subsequent investiga-
tions have shown that this result holds where the
main consideration was the variance of the trend
estimate rather than the power of a hypothesis
test (A. Tyre, School of Natural Resources, Uni-
versity of Nebraska, personal communication).
However, the methods used by Field et al. (2005)
assumed detection probability was equal in each
of the 3 seasons (i.e., all of the repeat surveys over
the 3 seasons contributed to estimating a single
detection probability). Experience and the analy-
sis of empirical data sets (e.g., MacKenzie et al.
2003, 2005a ; Bailey et al. 2004; Olson et al. 2005)
suggest that detection probability will likely vary
between seasons (and possibly within seasons
also). The consequence of this is that a greater
number of repeat surveys may be required per
season, hence I suggest that the above recom-
mendations of MacKenzie and Royle (2005) also
be used where the study/monitoring program is
to be continued over multiple seasons (i.e., ≥3
surveys per unit when p > 0.5).

In some multiple season studies or monitoring
programs it may be possible to consider a trade-
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off between number of
units sampled per sea-
son and the number of
seasons for which the
study is to be conducted.
The coefficient of varia-
tion (CV) of the estimat-
ed trend in occupancy
(on the logistic scale and
ignoring the processes of
colonization and local
extinction for simplicity)
decreases as the number
of seasons of data collec-
tion increases (Fig. 1). A
similar level of precision
can be achieved by sur-
veying more units over
fewer seasons vs. survey-
ing fewer units over a
longer period (e.g., 200 units for 4 seasons vs. 50
units for 8 seasons; Fig. 1). The implication for
designing programs to inform management is
that if precise information is required within a
short timeframe then more sampling effort will
be needed each season (however “season” is
defined), whereas if management has the luxury
of a longer timeframe and short-term fluctua-
tions are not of interest, then less sampling effort
per season may be required. An alternative view-
point is that if available funding only permits a
small number of landscape units to be surveyed
each season, then management (and stakehold-
ers) must understand that a longer timeframe
will be required to provide decisive information
about the system, hence they must be prepared
to make a long-term commitment to the pro-
gram. While I believe this tradeoff to exist more
generally, the magnitude of this tradeoff has only
been considered for a single situation (Fig. 1)
and it should be evaluated on a case-by-case basis.

A related issue in multiple-season studies is
whether the same landscape unit should be sur-
veyed each season or different units surveyed as
in a rotating panel design (Urquhart and Kincaid
1999). I recently compared (D. MacKenzie,  Pro-
teus Wildlife Research Consultants, unpublished
data) a number of potential designs for multiple
season occupancy studies and found that the pre-
cision of an estimated trend in occupancy was gen-
erally similar for rotating panel-type designs and
designs where the same units were surveyed each
season. I found that the key determinant of the
precision of the trend estimate (given sufficient

repeat surveys within each season) was the num-
ber of units surveyed per season, not the total
number of units surveyed. However, I argue
against the use of rotating panel-type designs from
the perspective that spatial and temporal changes
in occupancy may become confounded. That is, if
occupancy was estimated as different each season
using a rotating panel design, it may be due to (1)
a change in occupancy across the landscape over
time, (2) the fact that different units within the
landscape were sampled, or (3) a combination of
both. It may not be possible to make strong state-
ments about a trend in occupancy because it could
be reasonable to argue that the observed change
was a result of surveying different locations, par-
ticularly when the number of seasons was small
(<5). While some of these issues could be
accommodated through appropriate modeling, I
point out that the inclusion of additional parame-
ters in the model will reduce the precision of the
trend estimate, and a simpler approach would be
to survey the same units each season. Where the
main objective is to measure trend in occupancy,
I suggest that rotating panel-type designs may be
unnecessarily complicated and recommend they
not be used unless the continual surveying of the
same units over time would lead to the degrada-
tion of those units (i.e., the act of monitoring was
having a negative effect on the units). 

DISCUSSION
I have summarized the current literature on

occupancy-related applications that explicitly
incorporate detectability. There is a greater body

Fig. 1. Simulation-based coefficient of variation (CV) for estimated trend in occupancy (on the
logistic scale) where 50, 100, or 200 landscape units are each surveyed 3 times per season,
for multiple seasons. Solid lines are solely for ease of interpretation.
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of literature on occupancy-related applications
that ignores issues of detectability that I have, in
turn, ignored. To me, the issue of imperfect
detection is both common sense and fundamen-
tal, and hence it cannot be ignored if one wishes
to make reliable inferences about the biology
(i.e., presence–absence) rather than the sam-
pling (i.e., detection–nondetection) of the spe-
cies. It is ironic that complicated methods of
analysis have often been developed for so-called
presence–absence data, but the developers have
failed to grasp the influence that imperfect detec-
tion may have on their analyses. 

I am similarly critical of indices that do not take
into account the sampling methods that have
given rise to the observed data. A commonly stat-
ed virtue of such indices is that they are relatively
assumption free compared to other estimation
approaches. It is true that they often require very
few calculations. However, to draw inferences
about the population based on an index, assump-
tions are required, and the assumptions are typi-
cally more restrictive than those required of
more direct estimation procedures (see Conn et
al. 2004 for a recent treatment of the subject).
What is most frustrating is that often studies that
have been designed around an index would only
require minimal additional effort (or sometimes
only a reallocation of effort) to provide appro-
priate data that would permit direct estimation
about the aspect of the population of interest.

Given the flexible methods of analysis that have
now been developed for detection–nondetection
data and the increasing weight of evidence in the
literature that detectability matters, I would ex-
pect to see more widespread use of the methods
I have discussed, both in terms of robust study
designs and statistical analysis. I would also
expect to see further development of these meth-
ods in the future. Already, the extension to count
data by Royle (2004) should prove to be a very
useful method in situations where it is possible to
obtain repeated counts of unique individuals
across a number of landscape units, although as I
noted earlier, careful attention must be paid to
the modeling assumptions in order to interpret
the abundance parameter correctly in any given
application. Issues of detectability can also be
problematic with inferences about the co-occur-
rence of species, particularly when the level of
detectability differs among species. MacKenzie et
al. (2004a) recently considered this problem and
extended the single-season occupancy model of
MacKenzie et al. (2002) in an effort to address it.

Based on the above methods, Dorazio and Royle
(2005) have developed a conceptual framework
for estimating occupancy and species richness by
taking a community-level approach to modeling. 

The prospect of combining occupancy-type
thinking with other sources of information also
promises some exciting developments. In situa-
tions where a landscape unit may be occupied by
a small number of individuals that effectively
behave as a single entity (e.g., a breeding pair),
mark–recapture data could be used to provide
information on whether the same individual(s)
returns each season or whether turnover occurs
(MacKenzie and Nichols 2004). Issues such as
population sources and sinks could thus be
addressed using empirical data. In other con-
texts, if mark–recapture studies were conducted
at some landscape units the mark–recapture data
could be used to augment the estimation of how
local abundance may vary across units, using the
ideas presented by Royle and Nichols (2003) to
incorporate abundance-related heterogeneity in
detection probability.

The scope for using occupancy-type thinking in
wildlife disciplines is huge, much greater than I
realized when I first became interested in the
topic in early 2001. Then, my only exposure to the
occupancy metric was for use as a surrogate to
abundance for a large-scale monitoring program
I was loosely associated with. Now I realize the
basic concept is widely used in many facets of eco-
logical research and management. Over the past
5 years there seems to have been some realization
that not accounting for detection probability may
lead to misleading conclusions, and interest in
the general topic has been renewed (this special
section is evidence of that fact). This has led to
rapid methodological developments that we pre-
sented in important papers throughout the litera-
ture. I have referred to and summarized many of
the key papers above, but it is impossible to pro-
vide a detailed overview of these methods in a sin-
gle paper. For a much more complete synthesis of
the current literature, interested readers are
directed to MacKenzie et al. (2005b).

MANAGEMENT IMPLICATIONS
Presence–absence data can provide wildlife

managers and researchers with useful informa-
tion about a species in a variety of contexts (e.g.,
changes in species distributions or identifying
habitats of high intrinsic value to a species). How-
ever, a key issue that has largely been ignored or
overlooked until recently is the imperfect detec-
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tion of a species and the consequences it has on
resulting inferences. To make reliable, informed
management decisions, studies and monitoring
programs must be designed to provide informa-
tion about detection probability (i.e., landscape
units being repeatedly surveyed) and appropriate
methods of analysis must be used. 

Finally, in my capacity as a consulting biometri-
cian I am often reminded that conducting moni-
toring programs and wildlife studies can be costly,
particularly at large spatial scales. Before uttering
the statisticians’ knee-jerk reaction that unattain-
ably large sample sizes will be required, I find it
helpful to become familiar with the proposed
study site, field methods, etc., to get some idea of
what may be practically achieved within a given
financial budget. I also encourage clients to think
laterally about alternative field methods or aspects
of the population that could provide similar
information at a reduced cost. However, to effec-
tively monitor a population, there will always be a
minimal level of information that needs to be col-
lected from the field, and the cost of doing so
may be beyond current budgets. How to proceed
in such situations is difficult; one approach is to
downscale the objectives or lengthen the time-
scale over which the objective is to be evaluated. 

There is also the issue of the cost of not having
an effective monitoring program. What is the
monetary, ecological, cultural, and political
impact of not having reliable information about
the target species? For example, at the comple-
tion of a multi-million dollar habitat restoration
project, what would be the cost if it cannot be
reliably demonstrated that the habitat restoration
has been beneficial to the population? Would
future funding be jeopardized? Would there be
any social or political fallout for stakeholders who
supported or were opposed to the initial project?
In a different context, what would be the cost of
not having sufficient data to identify that a par-
ticular invasive species was becoming established
within a region? How much disruption or dam-
age might be caused to the ecosystem? How
much more money would be required to control
a well-entrenched invasive species, rather than
beginning control operations earlier that may
have been possible if a more effective monitoring
program had been in place? Inherently, reliable
knowledge is valuable, the issue is how valuable.
Different stakeholders may have different per-
ceptions, but sometimes the potential value of
reliable information can only be ascertained by
considering the cost of not having that knowl-

edge. In some instances, when the cost outweighs
the budget of a proposed design, additional
funding can be found. In other situations, con-
sideration of these costs may help to define a
more realistically achievable objective.
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