
Chapter 6
Adding constraints: MARK and linear

models

6.1. A (brief) review of linear models

If you have a background in linear models, then much of this material will be familiar. If you’re a

statistician, obviously we’re leaving out a lot of the ‘details’ (to say the least). Our purpose is to provide a

minimum level of background, so even newcomers to linear models have a ‘feel’ for the approach. If you

are new to linear models, we strongly suggest you supplement your reading of this chapter by having

a look at one of the many good textbooks on this subject. McCullagh & Nelder (1989) and Dobson &

Barnett (2008) are particularly good.

The basic idea underlying linear models can be stated quite simply: the response variable in many

statistical analyses can be expressed as a linear regression function of 1 or more other factors. In fact,

any ANOVA-type design can be analyzed using linear regression models (although interpretation

of interactions is sometimes complex). In general, for data collected from marked individuals, the

‘response variable’ is often a probability or proportion (e.g., survival or recapture rate), which must

be transformed prior to analysis using a linear models approach (we’ll get to that in a moment). For the
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moment, assume the response variable has been suitably transformed.

We’ll start by demonstrating this relationship between ‘regression’ and ‘ANOVA’, by means of a sim-

ple example. Consider data from a study where the skull circumference of young pre-school children is

measured, and we’re interested in knowing if this structure is on average larger in males than in females

(we’ll assume for the moment that all of the children were the same chronological age). Let’s suppose

we measure 7 male and 7 female children, and analyze our data using a normal single-classi�cation

ANOVA. Here are the data:

male 7.2 7.1 9.1 7.2 7.3 7.2 7.5

female 9.8 8.5 8.7 8.6 8.4 7.7 8.2

First, the results from a ‘standard ANOVA’ (as you might generate using some statistical analysis

software):

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137

Error 12 5.485 0.457

Total 13 9.292

The results of this analysis indicate a marginally signi�cant di�erence between male and female

children.

However, what if our statistics package was limited only to a regression subroutine? Could we have

analyzed our data using a linear regression model, instead of ANOVA, and arrived at the same result?

The answer is, indeed, yes, we can. What we do is simply take the classi�cation factor (SEX) and ‘code’

it as a ‘0’ or ‘1’ dummy variable (we’ll see why in just a moment). For example, let ‘0’ represent females,

and ‘1’ represent males. Thus, every individual in our data set is assigned a ‘0’ or a ‘1’, depending upon

their gender. Let’s call this dummy variable SEX. Now, all we need to do is regress our response variable

(the skull circumference) on the dummy variable for SEX. Here are the results of the regression analysis:

Source df SS MS F P

SEX 1 3.806 3.806 8.33 0.0137

Error 12 5.485 0.457

Total 13 9.292

No, it’s not a typo – it is in fact the exact same table as above. The two approaches are entirely

synonymous, yielding identical results. How can this be? The answer lies in the structure of the models

actually being tested. So, let’s step back to the beginning, and look at things a bit more formally.

In general, a linear model can be expressed in matrix form as

y = Xβ + ǫ

where y is a vector of responses (i.e., a vector of the response variables), β is a vector of parameters

(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0’ or ‘1’ elements, or values of

‘independent’ variables, and ǫ is a vector of random error terms.

In cases of analysis of variation of the response variable among di�erent levels of one or more

classi�cation (i.e., ‘treatment’ or ‘factor’) levels, there is a parameter β in the vector β to represent each

level of a factor. The elements of X (which is generally referred to as the design matrix – discussed below)

are chosen to exclude or include the appropriate parameters for each observation. These elements are
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often referred to as either ‘dummy’ or ‘indicator’ variables (‘indicator’ generally being used when only

‘1’ or ‘0’ are used as the coding variables).

The following simple example will make this clear, and will illustrate the underlying connection

between a linear regression model and analysis of variation (ANOVA). Suppose you have collected

data on the scutum width of male and female individuals of some insect species. You are interested

in whether or not the di�erence in mean scutum width between the sexes di�ers more than would

be expected by random chance. Normally, you might consider using a single-classi�cation (Model I)

ANOVA for this sort of analysis. Recall that for this sort of analysis, any single variate Y (in this case, Y

= scutum width), can be decomposed as:

Yi j = µ + αi + ǫi j

In other words, each individual variate Yi j is the sum of the global mean (µ), the deviation of the

individual from that mean due to the ‘classi�cation’ factor (sex; αi), and the random error term (ei j)

In this example, with 2 levels of the classi�cation factor (i.e., males and females), we would be testing

for di�erences of the type (α1 − α2). If (α1 − α2) = 0 (the null hypothesis), then we would conclude no

signi�cant group e�ect (i.e., no signi�cant di�erence in group means between the sexes).

How could we use linear regression to approach the same analysis? In a regression analysis, each

individual variate Yi would be decomposed as:

Yi = β1 + β2xi + ǫi

In this case, each variate Yi is the sum of the product of the slope (β2) and the variable x, the intercept

(β1), and a random error term (ǫ). In this case, the hypothesis being tested is whether or not the estimate

of the slope is signi�cantly di�erent from 0 (Ho: β2 = 0).

However, what is the variable ‘x’? In fact, this is the key to understanding the connection between

the regression model and the ANOVA analysis. In the regression formulation, x represents a coding

(‘dummy’) variable specifying male or female (i.e., sex, the classi�cation variable in the ANOVA anal-

ysis). The coding variable takes on the value of ‘0’ or ‘1’ (‘0’ for females, ‘1’ for males). We regress the

response variable Y (scutum width) on the coding variable for sex. If the slope (β1) is not di�erent from 0,

then we interpret this as evidence that the numerical value of the coding variable does not signi�cantly

in�uence variation in our data. Put another way, if the slope does not di�er from 0, then this indicates

no signi�cant di�erence between the sexes. This is entirely analogous to test of the (α1 − α2) hypothesis

in the ANOVA analysis.

Recall that we can express a linear model in matrix form as

y = Xβ + ǫ

where y is a vector of responses (i.e., a vector of the response variables), β is a vector of parameters

(e.g., the intercept and 1 or more ‘slopes’), X is a matrix with either ‘0’ or ‘1’ elements, or values of

‘independent’ variables, and ǫ is a vector of random error terms. For our present example, the design

matrix X consists of 2 columns of ‘0’ and ‘1’ dummy variables (the �rst column corresponding to the

intercept, β1, and the second column corresponding to dummy variable coding for a given sex, β2).
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Given K individuals in each sex (although a balanced design is not required), y = Xβ + ǫ can be

written as



Y11

Y12

...
Y1K

Y21

Y22

...
Y2K



=



1 0

1 0

...
...

1 0

1 1

1 1

...
...

1 1



[
β1

β2

]
+



ǫ11

ǫ12

...
ǫ1K

ǫ21

ǫ22

...
ǫ2K



In fact, in this case, if we used ‘1’ to code for males, and ‘0’ to code for females, then the intercept

(β1) would represent the estimate for female survival (since if the dummy variable is ‘0’, then all that

remains in the model is the intercept, and the random error term). The β2 term actually re�ects (male

survival - female survival), such that β1 + β2 = (female) + (male-female) = male survival. The structure

of the design matrix is discussed in more detail in the next section.

It is perhaps worth noting that models of the form ‘y = Xβ + ǫ’ are called linear models because

the non-error part of the expression Xβ is a linear combination of the parameters (and not speci�cally

because of the relationship of ANOVA to linear regression). MARK uses this general linear models

approach as the basis for all of the analysis (data) types available.

begin sidebar

matrix approach to linear regression & ANOVA: simple introduction

Here, we provide a very simple example of a matrix approach to linear regression (and, by extension,

to linear models in general). For deeper understanding, you are strongly urged to consult one of the

several very good textbooks which give much fuller treatments of the subject.

Consider the linear model, say of individual (i) with mass (Yi) relative to sex (Xi , where X = 0 or

X = 1 for – say – female or male, respectively), measured with Gaussian (normally) distributed random

variation (ǫi ) about the mean. We’ll assume the following ‘fake’ data:

mass (Y)

male (X = 1) 11 12 11 14

female (X = 0) 8 11 12 10

The mean mass for males (x̄m = 12) is larger than the mean mass for females (x̄ f = 10.25) – the usual

question being, is the di�erence between the two larger than expected due to random chance?

We could adopt a linear models approach to answering this question – �rst, we could write the

relationship between mass and sex in linear model form as

Yi = β1 + β2Xi + ǫi

The null hypothesis of ‘no di�erence between sexes’ can be expressed formally in terms of the β

term for sex; i.e., Ho : β2 = 0. The technical problem then is estimating the βi coe�cients in the linear

model. To do this, �rst de�ne a vector y for all the Yi , a matrix X for a vector of 1s and all the Xi , a

vector ǫ for all the ǫi , and further de�ne a vector β for the coe�cients β1 and β2.
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Then (for our ‘fake’ data set) we get

Y =



11

12

11

14

8

11

12

10



=



1 1

1 1

1 1

1 1

1 0

1 0

1 0

1 0



[
β1
β2

]
+



ǫ11
ǫ12
ǫ13
ǫ14
ǫ21
ǫ22
ǫ23
ǫ24



= Xβ + ǫ

Note that the matrix X is referred to as the design matrix – the construction of the design matrix is

fundamental to using linear models in MARK, as we will cover in considerable detail later in this

chapter. So, to derive estimates of the βi coe�cients, we need to �nd a vector β such that y = Xβ.

Is this possible? The answer is clearly ’no’, because that would require the points to lie exactly on a

straight line. A more modest (and tractable) question is: can we �nd a vector β̂ such that Xβ̂ is in a

sense ‘as close to y as possible?’. The answer is ‘yes’. The task is to �nd β̂ such that the length of the

vector ǫ = y − Xβ is as small as possible (i.e., ǫ → 0).

How do we get there from here? Fairly easily. First, we note that what we’re trying to do is solve for

β in the linear model. The �rst step is to let ǫ = 0 (such that it drops out of the equation – this should

make sense, if you keep in mind that what we’re trying to do is to �nd β̂ such that the length of the

vector ǫ is, in e�ect, 0). This leaves us with

y = Xβ

Then, a few steps of algebra to solve for the vector β:

y = Xβ

XTy = XTXβ
(
XTX

)−1
XTy =

(
XTX

)−1
XTXβ

(
XTX

)−1
XTy = β

β̂ =
(
XTX

)−1
XTy

In words, we multiply both sides of the initial equation by the transpose of X to get the crossproduct

XTX, which is a square matrix (note: the square matrix (XTX) is called the pseudo inverse of X. We cannot

use the true matrix inverse of X – that is, X−1 – because it generally does not exist as X is not a square

matrix; m , n). We then �nd the inverse of this cross-product matrix and multiply both sides by that.

This allows us to cancel out the term involving X on the right-hand side of the equation, allowing us

to �nd an estimate of β, which we call β̂, in terms of the original data.

It is worth noting that we could also approach this problem using the more familiar method of least

squares. Recall that least squares involves minimizing the sum of the squared residuals between the

observed and expected values. More formally, we want to minimize the Euclidean norm squared of

the residual (y − Xβ), that is, the quantity

‖y − Xβ‖2 =
(
[Y1 − (Xβ)1)

)2
+

(
[Y2 − (Xβ)2)

)2
+ · · · +

(
[Yi − (Xβ)n )

)2

where (Xβ)i denotes the ith component of the vector (Xβ).
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We could also rewrite this as

‖y − Xβ‖2 =
(
[Y1 − (Xβ)1)

)2
+

(
[Y2 − (Xβ)2)

)2
+ · · · +

(
[Yi − (Xβ)n )

)2

=
n∑

i=1

(
Yi − (β1 + β2xi )

)2

You might recall (from some linear algebra class you might have taken) that for some vector θ

θTθ =
[
θ1 θ2 · · · θn

]


θ1
θ2

...

θn



= θ2
1 + θ2

2 + · · · + θ2
n =

n∑

i

θ2
i

Thus, if θ =
(
y − Xβ

)
, then we can write

‖y − Xβ‖2 =
(
y − Xβ

)T (
y − Xβ

)

= yTy − 2βTXTy + βTXTXβ

All that’s left is to di�erentiate this expression with respect to β, set to 0, and solve. Let

S = ‖y − Xβ‖2 =
(
y − Xβ

)T (
y − Xβ

)

Thus,

∂S

∂β
= −2XTy + 2XTXβ = 0

XTY = XTXβ

β̂ =
(
XTX

)−1
XTy

Note the resulting solution is identical to that obtained from the preceding solution to the linear set of

equations (i.e., the linear algebra approach).

In fact, we could show that both solutions are equivalent to the MLE estimates for β (the Gaussian

linear model is nice in the sense that the parameter estimates – namely the solution to the linear set

of equations, the least squares estimate, and the maximum likelihood estimate – are all the same).

So for our ‘fake’ data:

β̂ =
(
XTX

)−1
XTY

=

[
10.25

1.75

]

Thus, our estimates for the intercept and slope are β̂1 = 10.25 and β̂2 = 1.75, respectively. We would

next estimate the error variance for β̂1 and β̂2. First, we derive an estimate of the variance-covariance

matrix for the vector β estimates as

var(β̂) =
(
XTX

)−1
σ2

e

We can estimate σ2
e from the residual sums of squares (RSS) as

RSS =
(
y − Xβ

)T (
y − Xβ

)

If the model estimates p parameters, then the estimate of σ2
e is simply RSS/(N − p) where N is the

number of data points. Thus,

var(β̂) =
(
XTX

)−1 (
y − Xβ

)T
(y − Xβ)/(N − p)
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So, for our ‘fake’ data (where N = 8 and p = 2), and our vector β̂,

RSS =
(
y − Xβ

)T (
y − Xβ

)

= 14.75

and thus

var(β̂) =
(
XTX

)−1 (
y − Xβ

)T
(y − Xβ)/(N − p)

=

[
0.6146 −0.6146

−0.6146 1.2292

]

Thus ŜE(β̂1) =
√

0.6146 = 0.7840, and ŜE(β̂2) =
√

1.2292 = 1.1087. And, since a 95% CI for β̂2
(approximately β̂2 ± 2SE; [−0.4674, 3.9674]) clearly bounds 0, we would conclude no signi�cant sex

e�ect at a nominal α = 0.05 level.

end sidebar

6.2. Linear models and the ‘design matrix’: the basics

In program MARK, the default design matrix for a given model is determined by the parameter

structure of the model you are trying to �t (number of groups, and the number and structure of the

parameters; i.e., the PIMs). This design matrix is then modi�ed in various ways to examine the relative

�t of di�erent models to the data. In order to understand this process, it is essential that you understand

how the design matrix is constructed.

Perhaps the best way to introduce the concept of a design matrix is by means of an example. Suppose

you are doing a ‘typical’ ANOVA on data with a single classi�cation factor (say, ‘treatment’). Suppose

that there are 4 levels for this factor (perhaps a control, and 3 di�erent levels of the ‘treatment’). You

want to test the hypothesis that there is no heterogeneity among ‘treatment’ levels (Ho: µ1 = µ2 = µ3 =

µ4). Recall from the preceding discussion that this problem can be formulated as an applied linear

regression problem using ‘0/1 dummy variable’ coding for the di�erent levels of the ‘treatment’.

Recall the previous example (above) which had 1 ‘treatment’ or classi�cation factor (sex),with 2 levels

(male and female). The corresponding regression model was

Yi = β1 + β2xi + ǫi

where x represented a coding variable specifying male or female (i.e., sex, the classi�cation variable in

the ANOVA analysis). The coding variable took on the value of ‘0’ or ‘1’ (‘0’ for females, ‘1’ for males).

What would the regression model look like for our present example, with 4 levels of the treatment

factor instead of 2? How can we use a simple ‘0’ or ‘1’ dummy variable coding scheme (which clearly

has only 2 ‘levels’) to accommodate a treatment factor with 4 levels? The key is to consider the answer

to the following question: if xi can take on 1 of 2 values (0 or 1), then how many values of xi do we need

to specify k levels of the classi�cation variable (i.e., the treatment variable)? If you think about it for a

moment, you should realize that the answer is k − 1 (which, of course, corresponds to the degrees of

freedom for a single-classi�cation ANOVA). Thus, for the present example, x1, x2 and x3 could be:

x1 =

{

1 if trt 1

0 if other
x2 =

{

1 if trt 2

0 if other
x3 =

{

1 if trt 3

0 if other

Clearly, when the coe�cients for x1, x2 and x3 are all 0, then the treatment level must be 4 (‘other’).
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Thus, our regression equation for this example would be:

Yi = β1 + β2x1 + +β3x2 + β4x3 + ǫi

In this case, β1 is the intercept, while β2, β3 and β4 correspond to the slopes for each of the levels of

the treatment factor. Since there are 4 levels of the treatment, 3 slopes are needed to code 4 levels of

the treatment, because 1 of the levels of the treatment corresponds to the case where all 3 slopes are 0.

Parameters β2, β3 and β4 refer to treatment levels 1, 2, and 3, respectively. If x1 = x2 = x3, then β1 refers

to treatment level 4. In other words, the intercept corresponds to treatment level 4.

begin sidebar

why is level 4 the intercept?

Choosing the intercept to specify treatment 4 was entirely arbitrary – we could for example have used

any other level of the treatment as the intercept, and adjusted the coding for the remaining levels

according. For example, we could have used used level 1 of the treatment as ‘other’ (i.e., the intercept),

as follows:

x1 =

{

1 if trt 2

0 if other
x2 =

{

1 if trt 3

0 if other
x3 =

{

1 if trt 4

0 if other

In this case, when the coe�cients for x1 , x2 and x3 are all 0, then the treatment level must be

1 (‘other’). Our regression equation would stay the same

Yi = β1 + β2x1 + +β3x2 + β4x3 + ǫi

but now, parameters β2, β3 and β4 refer to treatment levels 2, 3, and 4, respectively. If x1 = x2 = x3,

then β1 refers to treatment level 1.

What is important to note here is that in either case, one of the levels is speci�ed by the intercept

(i.e., β1). This level is referred to as the ‘control’ or ‘reference’ level. In this design, then, the other levels

(β2 → β4) are ‘o�sets’ from this reference (control) level (i.e., the other β terms represent the magnitude

that a particular level of the treatment di�ers from the control). We will discuss this and related issues

in much more detail later.

end sidebar

From this step, it is fairly straightforward to derive the design matrix (so-called because it fully

represents the design of the analysis). The design matrix is simply a matrix showing the structure of

the ‘dummy’ coding variables in the analysis. Because there are 4 parameters being estimated in the

equation (β1, β2, β3 and β4), each corresponding to the 4 levels of the main e�ect, then the design matrix

will be a (4 × 4) square matrix.

To help construct the design matrix, we can decompose the general regression equation for this

analysis (above) into n regression equations, where n is the number of parameters in the regression

equation (i.e., the number of levels of the main e�ect; n = 4).

treatment equation

1 Yi = β1(1) + β2(1) + β3(0) + β4(0)

2 Yi = β1(1) + β2(0) + β3(1) + β4(0)

3 Yi = β1(1) + β2(0) + β3(0) + β4(1)

4 Yi = β1(1) + β2(0) + β3(0) + β4(0)
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The design matrix X simply corresponds to the matrix of the coe�cient multipliers (in bold) in these

equations.

X =



1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0


While this seems logical enough, there are, in fact, a number of alternative parameterizations of the

design matrix, each of which yields the same ‘model �t’, but which have di�erent interpretations.

For example, all 6 of the following design matrices (X1, X2 and X3) give equivalent model �ts for our

example problem:

X1 =



1 1 0 0

1 0 1 0

1 0 0 1

1 0 0 0



X2 =



1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1



X3 =



1 1 0 0

1 0 0 0

1 0 1 0

1 0 0 1



X4 =



1 1 0 0

1 0 1 0

1 0 0 0

1 0 0 1



X5 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



X6 =



1 1 0 0

1 0 1 0

1 0 0 1

1 −1 −1 −1



X1 (above) is the design matrix we derived previously; we estimate an intercept term for the last

‘treatment’ level (4), and then an additional ‘treatment’ e�ect for ‘treatment’ levels 1, 2 and 3. Matrices

X2 → X4 are based on the same underlying idea, except that the intercept speci�es a di�erent ‘reference’

level in each case (see preceding ­sidebar­). For example, in X2, the intercept corresponds to treatment

level 1. In X3, the intercept corresponds to treatment level 2. And, in X4, the intercept corresponds to

treatment level 4.

In X5 is an identity design matrix. Here, each row corresponds to a parameter, and each column

corresponds to a parameter. Thus, each parameter represents a treatment estimate directly, not as an

‘o�set’ (deviation) from the ‘control’ or ‘reference’ (i.e., the intercept).

In X6, we estimate a mean parameter among treatment levels, and then an ‘o�set’ for each of the 4

levels; the �rst column corresponds to the mean treatment value, and the remaining columns provide

the treatment e�ects.

We’ll consider these di�erent design matrices later in the chapter. Note that the choice of the structure

of the design matrix doesn’t a�ect the estimates of the parameters (φ, or p, for example) – but it does

change how estimates of the individual slope parameters in the linear model are interpreted. We will

see many examples of this later in the chapter.

Perhaps the most important thing to remember in considering design matrices is that the number

of rows corresponds to the number of parameters in your PIMs, whereas the number of columns

corresponds to the number of these parameters you are trying to individually estimate. As we will

see in the next section, this distinction becomes important when �tting models where parameters are

constrained to be functions of 1 or more e�ects.

Finally, a more complex example, using 2 groups (say, males and females), with multiple levels of a

treatment within group (i.e., within sex). This example is clearly analogous to a 2-way ANOVA, with 2

main ‘e�ects’ (treatment, and sex). Again, assume there are 4 possible treatment levels. The response
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variable Y can be decomposed as:

Yi jk = µ + αi + β j + (αβ)i j + ǫi jk

where αi is the sex (group) e�ect, β j is the treatment e�ect, and (αβ)i j is the interaction of the two.

The corresponding regression equation would be:

Yi j = β1 + β2(SEX) + β3(t1) + β4(t2) + β5(t3)

+ β6(SEX.t1) + β7(SEX.t2) + β8(SEX.t3) + ǫ

If we derive the design matrix directly from this expression, then we see that we have 8 rows: 2 levels

for SEX (male or female) multiplied by 4 treatment levels within sex (remember, (n − 1) = 3 columns).

The design matrix X (shown below) would also have 8 columns, corresponding to the intercept, the SEX

(group e�ect), and the treatment and interaction terms, respectively

X =



1 1 1 0 0 1 0 0

1 1 0 1 0 0 1 0

1 1 0 0 1 0 0 1

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0


The �rst column represents the intercept, the second column the group (SEX) e�ect (1=male, 0=female;

i.e., the additive e�ect of males-females), columns 3-5 represent the treatment e�ect (t1 → t3), and

columns 6-8 represent the interactions of SEX (male) and treatment. Why male, and not female? It

depends on the coding – in this case, we’re using ‘0’ to represent females, and thus the interaction

columns have non-zero elements for males only.

Suppose, for example, rather than the full model (with interactions), you wanted to �t the additive

model consisting simply of the 2 main e�ects (no interaction term):

Yi jk = µ + αi + β j + ǫi jk

which, in regression form, is

Yi j = β1 + β2(SEX) + β3(t1) + β4(t2) + β5(t3) + ǫ

Using the design matrix X (above), this is easily accomplished by simply deleting the columns corre-

sponding to the interaction terms:

X =



1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1

1 0 0 0 0


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Got it? As we work through this chapter, we’ll come back to the concept of a ‘linear model’ and the

‘design matrix’ with considerable frequency, but hopefully you have the basic idea. In the examples

we will explore in this chapter, you will learn the basic steps of creating these linear ‘dummy variable’

models, design matrices, and how to use them with MARK to test a variety of hypotheses.

The only thing we now need to consider is – how can we use ‘regression models’ for analysis of mark-

recapture data, since both survival and recapture are not ‘normal’ response variables – normal in the

sense that they are both constrained to be values from 0→ 1? If you simply regressed ‘live=1/dead=0’

or ‘seen=1, not seen=0’ on some set of explanatory variables x, it is quite conceivable that for some

values of x the estimates value of survival or recapture would be > 1 or < 0, which clearly can’t be

correct! However, we clearly want to be able to bring the full power of ANOVA-type analyses to bear

on capture-recapture studies.

As mentioned earlier in this chapter, the way around this problem is to transform the probability of

survival or recapture, such that the transformed probabilities have been mapped from [0, 1] to [−∞, +∞],

which is of course the ‘assumption’ for normal linear regression models. To accomplish this, MARK

uses a link function (see the following ‘sidebar’ for more general background on link functions). In

fact, MARK allows you to choose among a number of di�erent link functions (some of which are more

appropriate for certain types of analyses than others). The default the sin link, which has very good

properties for analyses that use what is known as the ‘identity matrix’ (much more on this matrix in a

minute. . .). For models which don’t use the identity matrix (such as constrained models), the logit link

function is preferred (this is discussed later on in this chapter). Using these transformed probabilities,

we can use linear regression models analogous to the one we just considered in the skull circumference

example. We will now consider a simple example in detail, based on live encounter data from the

European Dipper, to demonstrate how linear models are constructed using MARK.

begin sidebar

What is a link function?

In the context of analysis of data from marked individuals, a link function is a transformation of prob-

ability such that the transformed probability is mapped from [0, 1] to [−∞,+∞]. For example, suppose

you want to express a dichotomous (i.e., binary) response variable Y (e.g., survival or recapture) as a

function of 1 or more explanatory variables. Let Y = 1 if alive or present; otherwise Y = 0. Let x be

a vector of explanatory variables, and p = Pr(Y = 1 | x) is the probability of the response variable

you want to model. We can construct a linear function of this probability by using a certain type of

transform of the probability, p. For example, the logit transformation (one of several transformation

or link functions you can use with MARK) is given as:

logit(p) = ln

(
p

1 − p

)
= β1 + β2x

where β1 is the intercept, and β2 is the vector of slope parameters. Since θ = ln(p/(1 − p)) has inverse

p = eθ/(1 + eθ) = 1/(1 + e−θ ), then the back-transformed estimate of p̂ (i.e., back-transformed to the

[0, 1] probability scale) is

p̂ =
e β̂1+β̂2x

1 + e β̂1+β̂2x
=

1

1 + e−β̂1−β̂2x

In other words,we can express the probability of the event (survival or recapture) as a linear function

of a vector of explanatory variables. The logit (or logistic) model is a special case of a more general

class of linear models where a function f = f (m) of the mean of any arbitrary response variable

is assumed to be linearly related to the vector of explanatory variables. The function f is the ‘link’

between the random component of the model (the response variable) and the �xed component (the
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explanatory variables). For this reason, the function f (m) is often referred to as a ‘link function’.

MARK allows you to choose among a number of di�erent link functions (we will discuss the various

link functions later in this chapter), some of which are more appropriate for certain types of analysis

than others. MARK estimates the intercept and vector of the slope parameters, using the speci�ed

link, and then reconstitutes the values of the parameter from the values of the explanatory variables,

x. MARK does this in 2 steps: (1) �rst, MARK reconstitutes estimates of the parameter from β̂1 , β̂2

and x, and then (2) MARK computes values of the parameter from f using the back transform f −1 .

There are several examples of this in the text.

end sidebar
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