 by Prashant_mahajan » Thu Nov 17, 2022 4:10 am
by Prashant_mahajan » Thu Nov 17, 2022 4:10 am 
			
			Also, when I plot the psi values with a covariate, the graph shows a different curve than the beta estimate. For example, my beta estimates values are:
beta_parameters_cov       	est	se
A1_psiA	                        2.31	0.79
A2_psiBA                          -3.40 0.94
A3_psiBa	                       -0.11	2.83
A4_psiA.cov_psiA               2.53	1.11
A5_psiBA.SP2:cov_psiBA    -2.90	1.23
A6_psiBa.INT2:cov_psiBa	 0.13	3.82
The effect of "cov" on psiBa is positive however, my graph shows a decreasing probability of psiBa with an increase in cov. I am using the following codes:
cov=seq(min(data$unitcov$cov, 
                    na.rm = TRUE),
                max(data$unitcov$cov, 
                    na.rm = TRUE), 
                by = 0.01);
nu=length(cov)
newdata=data.frame(
  SP=factor(c(rep('A',nu),rep('B',2*nu))),
  INT=c(rep(0,nu),rep(0,nu),rep(1,nu)),
  cov=cov)
z = predict(object=mod3, newdata=newdata, param='psi')
#  add parameter name to z data-frame
z$param = c(rep('psiA',nu),rep('psiBA',nu), rep('psiBa',nu))
z$cov = newdata$cov
ggplot(z,aes(x=cov,y=est)) + xlab('cov (standardized)') +
  ylab('Occupancy Probability')+
  ylim(0,1)+
  geom_line(aes(color=param))+
  theme_classic()
Is there any error in the codes, because of which my graph shows an opposite curve for psiBa.