real parameter estimates
 Posted: Sat Mar 21, 2020 2:44 pm
Posted: Sat Mar 21, 2020 2:44 pmI have been reviewing documentation on marked and something that is not well documented and should be is that the real parameter estimates computed from compute.real and predict.crm are not adjusted for time interval length. This is only relevant to survival which is the only parameter that is scaled on time. Thus the survival estimates are always on the unit interval (eg annual if the unit is 1 year). Hopefully, this was obvious if you looked at beta estimates and computed the real values as a check. If it was not obvious, my sinceres apologies for any problems this may have caused. Below is an example that demonstrates the point.  I am going to add an option to compute using time interval value.
			- Code: Select all
- data(dipper)
 > dipper.proc=process.data(dipper,model="cjs",begin.time=1)
 255 capture histories collapsed into 53
 > dipper.ddl=make.design.data(dipper.proc)
 > mod.Phit.p=crm(dipper.proc,dipper.ddl,
 + model.parameters=list(Phi=list(formula=~time),p=list(formula=~1)))
 Computing initial parameter estimates
 Starting optimization for 7 parameters...
 Number of evaluations: 400 -2lnl: 660.2026972
 Elapsed time in minutes: 0.0045
 > mod.Phit.p
 crm Model Summary
 Npar : 7
 -2lnL: 659.7301
 AIC : 673.7301
 Beta
 Estimate
 Phi.(Intercept) 0.514389842
 Phi.time2 -0.698144440
 Phi.time3 -0.600934471
 Phi.time4 -0.006102359
 Phi.time5 -0.075710457
 Phi.time6 -0.178061661
 p.(Intercept) 2.220394714
 > predict(mod.Phit.p)
 $Phi
 time occ estimate
 1 6 6 0.5832983
 2 5 5 0.6079443
 3 4 4 0.6244049
 4 3 3 0.4783773
 5 2 2 0.4541902
 6 1 1 0.6258350
 $p
 occ estimate
 1 7 0.9020661
 >
 > dipper.proc=process.data(dipper,model="cjs",begin.time=1,time.intervals=rep(.5,6))
 255 capture histories collapsed into 53
 > dipper.ddl=make.design.data(dipper.proc)
 > mod.Phit.p=crm(dipper.proc,dipper.ddl,
 + model.parameters=list(Phi=list(formula=~time),p=list(formula=~1)))
 Computing initial parameter estimates
 Starting optimization for 7 parameters...
 Number of evaluations: 400 -2lnl: 659.7391348
 Elapsed time in minutes: 0.0038
 > mod.Phit.p
 crm Model Summary
 Npar : 7
 -2lnL: 659.7301
 AIC : 673.7301
 Beta
 Estimate
 Phi.(Intercept) -0.440804390
 Phi.time1.5 -0.906580318
 Phi.time2 -0.774014992
 Phi.time2.5 -0.006985002
 Phi.time3 -0.093134136
 Phi.time3.5 -0.221426050
 p.(Intercept) 2.220420652
 > predict(mod.Phit.p)
 $Phi
 time occ estimate
 1 3.5 6 0.3402388
 2 3 5 0.3695988
 3 2.5 4 0.3898865
 4 2 3 0.2288494
 5 1.5 2 0.2062983
 6 1 1 0.3915493
 $p
 occ estimate
 1 7 0.9020684
 > 0.3402388^.5
 [1] 0.5832999