- Code: Select all
Error in system(paste(MAKE, p1(paste("-f", shQuote(makefiles))), "compilers"), :
'make' not found
6. system(paste(MAKE, p1(paste("-f", shQuote(makefiles))), "compilers"),
intern = TRUE)
5. .shlib_internal(file)
4. compile(paste(tpl, ".cpp", sep = ""), flags = "-Wno-ignored-attributes")
3. setup_tmb("multistate_tmb", clean = clean)
2. mscjs_tmb(data.proc, ddl, fullddl, dml, parameters = parameters,
initial = initial, method = method, hessian = hessian, debug = debug,
accumulate = accumulate, chunk_size = chunk_size, refit = refit,
control = control, itnmax = itnmax, scale = scale, re = re, ...
1. crm(data = post.process, ddl = post.ddl, use.tmb = TRUE, model.parameters = list(S = list(formula = ~1),
Psi = list(formula = ~Treatment + (1 | Brood)), p = list(formula = ~1)))
The same thing happens if I try to run just one model instead of the entire set. I'm wondering if anyone has come across this? Is it a bug in the package or something I need to fix in my system/environment? I already tried updating Rtools, editing the file path, etc. but to no avail. Here is my code:
- Code: Select all
> head(post_multi)
ID Treatment Weight Brood ch
1 1 Exp 18.1 177A A...........
2 2 Exp 15.9 177A A...........
3 3 Exp 18.0 177A A...........
4 4 Exp 21.3 177A A...........
5 5 Exp 18.1 177A A0A00AAAAA0A
6 6 Exp 15.3 945A A...........
post.process<- process.data(post_multi, model="Mscjs", strata.labels=c("A","D","."), time.intervals= c(2,2,2,2,2,2,2,2,2,2,2), groups=c("ID","Treatment"), begin.time=12)
post.ddl<-make.design.data(post.process)
#fix psi(D-A) = 0
post.ddl$Psi$fix=NA
post.ddl$Psi$fix[post.ddl$Psi$stratum=="D" & post.ddl$Psi$tostratum=="A"]=0
#fix psi(D-D) = 1
post.ddl$Psi$fix[post.ddl$Psi$stratum=="D" & post.ddl$Psi$tostratum=="D"]=1
#post.ddl$Psi
#summary(mark(post_multi,post.ddl,output=FALSE),show.fixed=TRUE) #throws an error for some reason
#fix all S = 1
post.ddl$S$fix=1
#fix individual p for specific occasions to 0
#for p, occ 1 is actually the second sampling occasion because there is no p for the first one
post.ddl$p$fix=NA
post.ddl$p$fix[post.ddl$p$ID=="4" & post.ddl$p$occ=="1"]=0
post.ddl$p$fix[post.ddl$p$ID=="5" & post.ddl$p$occ=="2"|post.ddl$p$ID=="5" &post.ddl$p$occ=="3"|post.ddl$p$ID=="5" &post.ddl$p$occ=="4"|post.ddl$p$ID=="5" &post.ddl$p$occ=="10"]=0
post.ddl$p$fix[post.ddl$p$ID=="7" & post.ddl$p$occ=="2"|post.ddl$p$ID=="7" & post.ddl$p$occ=="8"]=0
post.ddl$p$fix[post.ddl$p$ID=="8" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="9" & post.ddl$p$occ=="1"|post.ddl$p$ID=="9" &post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="10" & post.ddl$p$occ=="1"|post.ddl$p$ID=="10" &post.ddl$p$occ=="2"|post.ddl$p$ID=="10" &post.ddl$p$occ=="8"]=0
post.ddl$p$fix[post.ddl$p$ID=="11" & post.ddl$p$occ=="1"]=0
post.ddl$p$fix[post.ddl$p$ID=="12" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="13" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="14" & post.ddl$p$occ=="1"|post.ddl$p$ID=="14" &post.ddl$p$occ=="7"]=0
post.ddl$p$fix[post.ddl$p$ID=="15" & post.ddl$p$occ=="1"]=0
post.ddl$p$fix[post.ddl$p$ID=="16" & post.ddl$p$occ=="1"|post.ddl$p$ID=="16" &post.ddl$p$occ=="2"|post.ddl$p$ID=="16" &post.ddl$p$occ=="5"|post.ddl$p$ID=="16" &post.ddl$p$occ=="7"]=0
post.ddl$p$fix[post.ddl$p$ID=="17" & post.ddl$p$occ=="1"|post.ddl$p$ID=="17" &post.ddl$p$occ=="2"|post.ddl$p$ID=="17" &post.ddl$p$occ=="5"|post.ddl$p$ID=="17" &post.ddl$p$occ=="7"]=0
post.ddl$p$fix[post.ddl$p$ID=="18" & post.ddl$p$occ=="1"|post.ddl$p$ID=="18" &post.ddl$p$occ=="4"|post.ddl$p$ID=="18" &post.ddl$p$occ=="7"|post.ddl$p$ID=="18" &post.ddl$p$occ=="8"]=0
post.ddl$p$fix[post.ddl$p$ID=="19" & post.ddl$p$occ=="1"|post.ddl$p$ID=="19" &post.ddl$p$occ=="4"|post.ddl$p$ID=="19" &post.ddl$p$occ=="7"|post.ddl$p$ID=="19" &post.ddl$p$occ=="8"]=0
post.ddl$p$fix[post.ddl$p$ID=="20" & post.ddl$p$occ=="1"]=0
post.ddl$p$fix[post.ddl$p$ID=="21" & post.ddl$p$occ=="1"|post.ddl$p$ID=="21" &post.ddl$p$occ=="5"|post.ddl$p$ID=="21" &post.ddl$p$occ=="7"]=0
post.ddl$p$fix[post.ddl$p$ID=="22" & post.ddl$p$occ=="1"]=0
post.ddl$p$fix[post.ddl$p$ID=="23" & post.ddl$p$occ=="1"]=0
post.ddl$p$fix[post.ddl$p$ID=="24" & post.ddl$p$occ=="1"]=0
post.ddl$p$fix[post.ddl$p$ID=="25" & post.ddl$p$occ=="3"|post.ddl$p$ID=="25" &post.ddl$p$occ=="5"|post.ddl$p$ID=="25" &post.ddl$p$occ=="10"]=0
post.ddl$p$fix[post.ddl$p$ID=="26" & post.ddl$p$occ=="3"|post.ddl$p$ID=="26" &post.ddl$p$occ=="5"|post.ddl$p$ID=="26" &post.ddl$p$occ=="10"]=0
post.ddl$p$fix[post.ddl$p$ID=="28" & post.ddl$p$occ=="4"|post.ddl$p$ID=="28" &post.ddl$p$occ=="9"]=0
post.ddl$p$fix[post.ddl$p$ID=="29" & post.ddl$p$occ=="2"|post.ddl$p$ID=="29" &post.ddl$p$occ=="5"|post.ddl$p$ID=="29" &post.ddl$p$occ=="10"]=0
post.ddl$p$fix[post.ddl$p$ID=="30" & post.ddl$p$occ=="2"|post.ddl$p$ID=="30" &post.ddl$p$occ=="5"|post.ddl$p$ID=="30" &post.ddl$p$occ=="10"]=0
post.ddl$p$fix[post.ddl$p$ID=="31" & post.ddl$p$occ=="2"|post.ddl$p$ID=="31" &post.ddl$p$occ=="5"|post.ddl$p$ID=="31" &post.ddl$p$occ=="10"]=0
post.ddl$p$fix[post.ddl$p$ID=="32" & post.ddl$p$occ=="2"|post.ddl$p$ID=="32" &post.ddl$p$occ=="5"]=0
post.ddl$p$fix[post.ddl$p$ID=="33" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="34" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="35" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="36" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="37" & post.ddl$p$occ=="1"|post.ddl$p$ID=="37" &post.ddl$p$occ=="6"]=0
post.ddl$p$fix[post.ddl$p$ID=="38" & post.ddl$p$occ=="2"]=0
post.ddl$p$fix[post.ddl$p$ID=="39" & post.ddl$p$occ=="1"|post.ddl$p$ID=="39" &post.ddl$p$occ=="6"]=0
post.ddl$p$fix[post.ddl$p$ID=="40" & post.ddl$p$occ=="1"|post.ddl$p$ID=="40" &post.ddl$p$occ=="6"]=0
post.ddl$p$fix[post.ddl$p$ID=="41" & post.ddl$p$occ=="5"]=0
post.ddl$p$fix[post.ddl$p$ID=="42" & post.ddl$p$occ=="5"]=0
post.ddl$p$fix[post.ddl$p$ID=="43" & post.ddl$p$occ=="3"]=0
post.ddl$p$fix[post.ddl$p$ID=="45" & post.ddl$p$occ=="3"]=0
fit.models=function()
{
#Models for Psi
Psi.Treatment.Weight.Time=list(formula=~Treatment+Weight+time+(1|Brood))
Psi.Weight.Time=list(formula=~Weight+time+(1|Brood))
Psi.Weight.Treatment=list(formula=~Weight+Treatment+(1|Brood))
Psi.Treatment.Time=list(formula=~Treatment+time+(1|Brood))
Psi.Weight=list(formula=~Weight+(1|Brood))
Psi.Treatment=list(formula=~Treatment+(1|Brood))
Psi.Time=list(formula=~time+(1|Brood))
Psi.dot.Brood=list(formula=~1+(1|Brood))
Psi.dot=list(formula=~1)
#Models for p
#p.Time=list(formula=~time)
p.dot=list(formula=~1)
#Models for S
S.dot=list(formula=~1)
cml=create.model.list(c("Psi","p","S"))
results=crm.wrapper(cml,data=post.process, ddl=post.ddl,use.tmb=TRUE)#,re=TRUE)
#external=FALSE,accumulate=FALSE)
}
post.models.rand=fit.models()
You'll notice several individual-specific occasions where I set p=0 because they were not tracked in that interval.
Other uncertainties on my end, potentially related to the issue:
1. I am using dot notation to censor individuals whose radio transmitter fell off. I did this because there are some true zeros before the transmitter fell off that I didn't want to lose. This seemed to work in RMark, but perhaps is not appropriate for 'marked?' In the process.data line, I got an error unless I listed "." as one of the strata, but would I want to treat it as it's own stratum?
2. I saw another post (http://www.phidot.org/forum/viewtopic.php?f=54&t=3549) saying that the re= argument doesn't actually work with the crm() function, so I removed it from the code above. When it was included, however, I got a different error message: "argument 4 matches multiple formal arguments"
Alternatively, other suggestions of methods for accounting for brood effect would be welcome. I saw other posts on calculating process variance, but I don't fully understand how to use/interpret that.
Thanks for your time!