Adding telemetry doesn't change sigma and doesn't fit

I'm trying to integrate concurrent telemetry data into a capture recapture dataset. When fitting without telemetry data, estimates from the most supported model seem reasonable but when using the dataset where telemetry is added, I get nonsensical estimates. I am curious if I am doing something wrong or if it's an artefact of the data (relatively small dataset). Estimates from RPSV are the same for both capture histories (with and without telem). This doesn't seem like it should be the case- should it? I have adjusted telemetry scale multiple times and altered estimation method to no avail. The summary appears to be correct. Any suggestions?
Object class capthist
Detector type multi (6), telemetry
Telemetry type concurrent
Detector number 110
Average spacing 136.2351 m
x-range 305198 307255 m
y-range 3419021 3421681 m
Usage range by occasion
1 2 3 4 5 6 7
min 0 0 0 0 0 0 0
max 1 1 1 1 1 1 1
Counts by occasion
1 2 3 4 5 6 7 Total
n 4 3 6 20 4 8 17 62
u 4 3 6 19 0 7 11 50
f 39 10 1 0 0 0 0 50
M(t+1) 4 7 13 32 32 39 50 50
losses 0 0 0 0 0 0 0 0
detections 4 3 6 20 4 8 71 116
detectors visited 2 2 1 4 1 3 0 13
detectors used 110 110 110 110 110 110 0 660
Empty histories : 11
17 telemetered animals, 6 detected
1-5 locations per animal, mean = 4.18, sd = 1.42
Individual covariates
Age Sex
A:28 F:24
J:22 M:26
Object class capthist
Detector type multi (6), telemetry
Telemetry type concurrent
Detector number 110
Average spacing 136.2351 m
x-range 305198 307255 m
y-range 3419021 3421681 m
Usage range by occasion
1 2 3 4 5 6 7
min 0 0 0 0 0 0 0
max 1 1 1 1 1 1 1
Counts by occasion
1 2 3 4 5 6 7 Total
n 4 3 6 20 4 8 17 62
u 4 3 6 19 0 7 11 50
f 39 10 1 0 0 0 0 50
M(t+1) 4 7 13 32 32 39 50 50
losses 0 0 0 0 0 0 0 0
detections 4 3 6 20 4 8 71 116
detectors visited 2 2 1 4 1 3 0 13
detectors used 110 110 110 110 110 110 0 660
Empty histories : 11
17 telemetered animals, 6 detected
1-5 locations per animal, mean = 4.18, sd = 1.42
Individual covariates
Age Sex
A:28 F:24
J:22 M:26
- Code: Select all
rm(list=ls())
#load in packages
library(secr)
library(rgdal)
library(sp)
library(raster)
options(scipen = 999)
#Read trap files
fall2023_detectors<- read.traps(file = "RCR_fall_2023trapsites.txt", detector = "multi", binary.usage = TRUE)
# Get a summary from trap files
summary(fall2023_detectors)
#read in telemetry data
CHt <- read.telemetry("RCR_fall23_telem.txt", verify = T, covnames = c("Age", "Sex"))
head(CHt)
summary(CHt)
#Read in captures file
fall2023_captures<-read.delim(file = "RCR_fall23_captures.txt")
fall2023_captures
bobCH2023<-make.capthist(captures = fall2023_captures, traps = fall2023_detectors)
summary(bobCH2023)
#merge capture data and telemetry data
mytelem <- addTelemetry(bobCH2023, CHt, type ="concurrent", verify = T, collapsetelemetry = T)
summary(mytelem)
###############
#Sigma estimate -- these are the SAME?
initialsigma_telem <- RPSV(mytelem, CC = TRUE)
cat("Quick and biased estimate of sigma =", initialsigma_telem, "m\n")
initialsigma <- RPSV(bobCH2023, CC = TRUE)
cat("Quick and biased estimate of sigma =", initialsigma, "m\n")
#Mask
centroids <- data.frame(t(sapply(telemetryxy(CHt), apply, 2, mean)))
tmpxy <- rbind(centroids, data.frame(traps(bobCH2023)))
mask2 <- make.mask(tmpxy, buffer = 4 * initialsigma, type = 'trapbuffer', nx=32)
# fit models
## THESE DO NOT FIT
model.HHN.2023_telem<-secr.fit(mytelem, trace=T,groups= c('Age', 'Sex'),
detectfn= "HHN", mask=mask2)
model.HEX.2023_telem<-secr.fit(mytelem, trace=T, groups= c('Age', 'Sex'),
detectfn= "HEX", mask=mask2)
# # # baseline detection function results
det_results_2023_telem<-AIC(model.HHN.2023_telem, model.HEX.2023_telem)
det_results_2023_telem
model.HEX.2023_telem
#Baseline Detection Function Models- No telem-- THESE FIT FINE
model.NEGEX.2023<- secr.fit(bobCH2023, groups= c('Age', 'Sex'), detectfn = "EX", trace=T, mask = mask2)
model.HR.2023 <- secr.fit(bobCH2023, trace=T, groups= c('Age', 'Sex'), detectfn= "HR", mask = mask2) #can't be used with telem data
model.HN.2023<-secr.fit(bobCH2023, trace=T, groups= c('Age', 'Sex'), detectfn= "HN", mask = mask2)
# baseline detection function results
det_results_2023<-AIC(model.NEGEX.2023, model.HR.2023, model.HN.2023)
det_results_2023