Object class capthist
Detector type multi (6), telemetry
Telemetry type concurrent
Detector number 110
Average spacing 136.2351 m
x-range 305198 307255 m
y-range 3419021 3421681 m
Usage range by occasion
1 2 3 4 5 6 7
min 0 0 0 0 0 0 0
max 1 1 1 1 1 1 1
Counts by occasion
1 2 3 4 5 6 7 Total
n 4 3 6 20 4 8 17 62
u 4 3 6 19 0 7 11 50
f 39 10 1 0 0 0 0 50
M(t+1) 4 7 13 32 32 39 50 50
losses 0 0 0 0 0 0 0 0
detections 4 3 6 20 4 8 71 116
detectors visited 2 2 1 4 1 3 0 13
detectors used 110 110 110 110 110 110 0 660
Empty histories : 11
17 telemetered animals, 6 detected
1-5 locations per animal, mean = 4.18, sd = 1.42
Individual covariates
Age Sex
A:28 F:24
J:22 M:26
- Code: Select all
rm(list=ls())
#load in packages
library(secr)
library(rgdal)
library(sp)
library(raster)
options(scipen = 999)
#Read trap files
fall2023_detectors<- read.traps(file = "RCR_fall_2023trapsites.txt", detector = "multi", binary.usage = TRUE)
# Get a summary from trap files
summary(fall2023_detectors)
#read in telemetry data
CHt <- read.telemetry("RCR_fall23_telem.txt", verify = T, covnames = c("Age", "Sex"))
head(CHt)
summary(CHt)
#Read in captures file
fall2023_captures<-read.delim(file = "RCR_fall23_captures.txt")
fall2023_captures
bobCH2023<-make.capthist(captures = fall2023_captures, traps = fall2023_detectors)
summary(bobCH2023)
#merge capture data and telemetry data
mytelem <- addTelemetry(bobCH2023, CHt, type ="concurrent", verify = T, collapsetelemetry = T)
summary(mytelem)
###############
#Sigma estimate -- these are the SAME?
initialsigma_telem <- RPSV(mytelem, CC = TRUE)
cat("Quick and biased estimate of sigma =", initialsigma_telem, "m\n")
initialsigma <- RPSV(bobCH2023, CC = TRUE)
cat("Quick and biased estimate of sigma =", initialsigma, "m\n")
#Mask
centroids <- data.frame(t(sapply(telemetryxy(CHt), apply, 2, mean)))
tmpxy <- rbind(centroids, data.frame(traps(bobCH2023)))
mask2 <- make.mask(tmpxy, buffer = 4 * initialsigma, type = 'trapbuffer', nx=32)
# fit models
## THESE DO NOT FIT
model.HHN.2023_telem<-secr.fit(mytelem, trace=T,groups= c('Age', 'Sex'),
detectfn= "HHN", mask=mask2)
model.HEX.2023_telem<-secr.fit(mytelem, trace=T, groups= c('Age', 'Sex'),
detectfn= "HEX", mask=mask2)
# # # baseline detection function results
det_results_2023_telem<-AIC(model.HHN.2023_telem, model.HEX.2023_telem)
det_results_2023_telem
model.HEX.2023_telem
#Baseline Detection Function Models- No telem-- THESE FIT FINE
model.NEGEX.2023<- secr.fit(bobCH2023, groups= c('Age', 'Sex'), detectfn = "EX", trace=T, mask = mask2)
model.HR.2023 <- secr.fit(bobCH2023, trace=T, groups= c('Age', 'Sex'), detectfn= "HR", mask = mask2) #can't be used with telem data
model.HN.2023<-secr.fit(bobCH2023, trace=T, groups= c('Age', 'Sex'), detectfn= "HN", mask = mask2)
# baseline detection function results
det_results_2023<-AIC(model.NEGEX.2023, model.HR.2023, model.HN.2023)
det_results_2023