by Alisha Mosloff » Tue Sep 23, 2025 5:05 pm 
			
			Hello,
I am running in to a similar issue. 
I have mark-recapture data from 5 sites trapped over 4 years with 8-11 trap nights per session. Not every site was trapped in every year. I also have 1 habitat mask which includes covariate data. When I run even simple models, all parameter estimates are NA. My code is below. Any insight is appreciated.
coonCH=read.capthist(captfile="RaccoonCaptureHistory.csv", trapfile=
                       list("Cole2021_Raccoons_TrapFile.csv", "Cole2022_Raccoons_TrapFile.csv",
                         "Cole2024_Raccoons_TrapFile.csv", "Hinkle2021_Raccoons_TrapFile.csv",
                         "Hinkle2022_Raccoons_TrapFile.csv", "Hinkle2023_Raccoons_TrapFile.csv",
                         "Hinkle2024_Raccoons_TrapFile.csv", "RebelsCove2021_Raccoons_TrapFile.csv",
                         "RebelsCove2022_Raccoons_TrapFile.csv", "RebelsCove2023_Raccoons_TrapFile.csv",
                         "RebelsCove2024_Raccoons_TrapFile.csv", "Roesline2023_Raccoons_TrapFile.csv",
                         "LakeThunderhead2022_Raccoons_TrapFile.csv",
                         "LakeThunderhead2023_Raccoons_TrapFile.csv", "LakeThunderhead2024_Raccoons_TrapFile.csv"), detector="single",
                     # noccasions=c(10, 10, 8, 11), 
                     skip=1, covnames=c('Age', 'Sex', 'Date', 'Temp', 'Management', 'SunsetLocal', 'SunriseLocal', 'MoonriseLocal',
                                        'MoonsetLocal', 'MeanMoonlightIntensity', 'nightstart', 'nightend', 'nightduration', 
                                        'moonstart', 'moonend', 'moonduration', 'proportion', 'propnocloud', 'MRI'))
coonCH=shareFactorLevels(coonCH)
summary(coonCH, terse=TRUE)
# Cole21 Cole22 Cole24 Hinkle21 Hinkle22 Hinkle23 Hinkle24 Rebels21 Rebels22 Rebels23 Rebels24
# Occasions      10     11     10       10       11       10       10       10        7       10       11
# Detections     23     17     18       29        9       38       17       33       18       40       24
# Animals        12     15     16       16        9       22       16       23       15       26       15
# Detectors      41     41     41       43       43       43       41       38       38       38       38
# Roesline23 Thunderhead22 Thunderhead23 Thunderhead24
# Occasions           8            11             9             8
# Detections         36            23             1             2
# Animals            20             9             1             2
# Detectors          46            37            37            37
mask_points=read.csv("RaccoonHabitatMaskData.csv", sep=",")
my_mask=read.mask(data=mask_points, spacing=100)
covariates(my_mask)
#All covariates plot as expected
MRI <- secr.fit(
  coonCH,
  model = list(
    D ~ predicted_counts,                       # Density depends on Management
    g0 ~ MRI, # Detection depends on covariates
    sigma ~ 1
  ),
  mask = my_mask,
  detectfn = "HN",   # e.g., Half-normal detection function
  CL=TRUE
)
MRI
secr.fit(capthist = coonCH, model = list(D ~ predicted_counts, 
    g0 ~ MRI, sigma ~ 1), mask = my_mask, CL = TRUE, detectfn = "HN")
secr 5.2.4, 16:01:25 23 Sep 2025
$Cole21
Detector type      single 
Detector number    41 
Average spacing    93.05912 m 
x-range            471908 472906 m 
y-range            4486651 4487356 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10
min 1 0 0 0 0 0 0 0 0  0
max 1 1 1 1 1 1 1 1 1  1
$Cole22
Detector type      single 
Detector number    41 
Average spacing    93.05912 m 
x-range            471908 472906 m 
y-range            4486651 4487356 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10 11
min 0 0 0 0 0 0 0 0 0  0  0
max 1 1 1 1 1 1 1 1 1  1  1
$Cole24
Detector type      single 
Detector number    41 
Average spacing    93.05912 m 
x-range            471908 472906 m 
y-range            4486651 4487356 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10
min 0 0 0 0 0 0 0 0 0  0
max 1 1 1 1 1 1 1 1 1  1
$Hinkle21
Detector type      single 
Detector number    43 
Average spacing    100 m 
x-range            509752 510462 m 
y-range            4480629 4481757 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10
min 0 0 0 0 0 0 0 0 0  0
max 1 1 1 1 1 1 1 1 1  1
$Hinkle22
Detector type      single 
Detector number    43 
Average spacing    100 m 
x-range            509752 510462 m 
y-range            4480629 4481757 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10 11
min 0 0 0 0 0 0 0 0 0  0  0
max 1 1 1 1 1 1 1 1 1  1  1
$Hinkle23
Detector type      single 
Detector number    43 
Average spacing    100 m 
x-range            509752 510462 m 
y-range            4480629 4481757 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10
min 0 0 0 0 0 0 0 0 0  0
max 1 1 1 1 1 1 1 1 1  1
$Hinkle24
Detector type      single 
Detector number    41 
Average spacing    100 m 
x-range            509752 510462 m 
y-range            4480629 4481647 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10
min 0 0 0 0 0 0 0 0 0  0
max 1 1 1 1 1 1 1 1 1  1
$Rebels21
Detector type      single 
Detector number    38 
Average spacing    99.22405 m 
x-range            524452.9 525354.1 m 
y-range            482918.6 484620 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10
min 0 0 0 0 0 0 0 0 0  0
max 1 1 1 1 1 1 1 1 1  1
$Rebels22
Detector type      single 
Detector number    38 
Average spacing    99.19116 m 
x-range            525254 526952 m 
y-range            4489765 4490671 m 
Usage range by occasion
    1 2 3 4 5 6 7
min 0 0 0 0 0 0 0
max 1 1 1 1 1 1 1
$Rebels23
Detector type      single 
Detector number    38 
Average spacing    99.19116 m 
x-range            525254 526952 m 
y-range            4489765 4490671 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10
min 0 0 0 0 0 0 0 0 0  0
max 1 1 1 1 1 1 1 1 1  1
$Rebels24
Detector type      single 
Detector number    38 
Average spacing    99.19116 m 
x-range            525254 526952 m 
y-range            4489765 4490671 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10 11
min 0 0 0 0 0 0 0 0 0  0  0
max 1 1 1 1 1 1 1 1 1  1  1
$Roesline23
Detector type      single 
Detector number    46 
Average spacing    75.88004 m 
x-range            507302.6 507760 m 
y-range            4477152 4477759 m 
Usage range by occasion
    1 2 3 4 5 6 7 8
min 0 0 0 0 0 0 0 0
max 1 1 1 1 1 1 1 1
$Thunderhead22
Detector type      single 
Detector number    37 
Average spacing    94.02127 m 
x-range            497152 497873 m 
y-range            4485956 4486656 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9 10 11
min 0 0 0 1 0 0 0 0 0  0  0
max 1 1 1 1 1 1 1 1 1  1  1
$Thunderhead23
Detector type      single 
Detector number    37 
Average spacing    94.02127 m 
x-range            497152 497873 m 
y-range            4485956 4486656 m 
Usage range by occasion
    1 2 3 4 5 6 7 8 9
min 0 0 0 1 0 0 0 1 0
max 1 1 1 1 1 1 1 1 1
$Thunderhead24
Detector type      single 
Detector number    37 
Average spacing    94.02127 m 
x-range            497152 497873 m 
y-range            4485956 4486656 m 
Usage range by occasion
    1 2 3 4 5 6 7 8
min 0 0 0 0 0 0 0 0
max 1 1 1 1 1 1 1 1
           Cole21 Cole22 Cole24 Hinkle21 Hinkle22 Hinkle23 Hinkle24 Rebels21 Rebels22 Rebels23
Occasions      10     11     10       10       11       10       10       10        7       10
Detections     23     17     18       29        9       38       17       33       18       40
Animals        12     15     16       16        9       22       16       23       15       26
Detectors      41     41     41       43       43       43       41       38       38       38
           Rebels24 Roesline23 Thunderhead22 Thunderhead23 Thunderhead24
Occasions        11          8            11             9             8
Detections       24         36            23             1             2
Animals          15         20             9             1             2
Detectors        38         46            37            37            37
Model           :  D~predicted_counts g0~MRI sigma~1 
Fixed (real)    :  none 
Detection fn    :  halfnormal
N parameters    :  4 
Log likelihood  :  -1e+10 
AIC             :  2e+10 
AICc            :  2e+10 
Beta parameters (coefficients) 
                   beta SE.beta lcl ucl
D.predicted_counts   NA      NA  NA  NA
g0                   NA      NA  NA  NA
g0.MRI               NA      NA  NA  NA
sigma                NA      NA  NA  NA
Variance-covariance matrix of beta parameters 
NULL
Fitted (real) parameters evaluated at base levels of covariates 
Error in beta.vcv[is.na(fb[row(beta.vcv)]) & is.na(fb[col(beta.vcv)])] <- object$beta.vcv : 
  replacement has length zero