I am looking to predict the effect of annual hunter harvest on the survival and recruitment of a population. I am using a Pradel Robust Design Model.
I have 8 years of data (occasions), with 3 secondary sessions within each year.
Originally I constructed the model with hunter harvest rate (Kill_F) in the design data, with a unique harvest rate for each year.
However, when I went to predict this effect using "covariate.prediction" I realized the hunter harvest rate must be included as in individual covariate.
I really just want to make a graph that shows the effect of harvest on survival. I currently have the following information from the model where the kill data was in the design matrix:
- Code: Select all
estimate se lcl ucl
Phi:(Intercept) 1.9951422 4.812250e-01 1.051941300 2.9383431
Phi:Kill_F -0.2170472 1.308897e-01 -0.473591000 0.0394966
f:(Intercept) 1.3437004 1.258996e+00 -1.123931200 3.8113321
f:Kill_F -1.5799839 7.908900e-01 -3.130128300 -0.0298394
p:(Intercept) -2.1753491 1.920780e-01 -2.551822000 -1.7988763
p:SexM 0.2173607 1.394550e-01 -0.055971100 0.4906925
p:TrapTypeRS -1.5453538 3.501957e-01 -2.231737400 -0.8589701
p:TrapNights 0.0011118 8.217706e-05 0.000950719 0.0012729
p:time2 0.0437163 1.002392e-01 -0.152752500 0.2401851
p:time3 -0.2339337 2.941970e-01 -0.810559900 0.3426925
p:time4 -0.2015211 3.028178e-01 -0.795043900 0.3920018
p:time5 -1.1301934 4.259638e-01 -1.965082400 -0.2953044
p:session2007 -0.1969021 1.828471e-01 -0.555282500 0.1614784
p:session2008 0.0408710 1.852748e-01 -0.322267500 0.4040096
p:session2009 0.0181858 1.963324e-01 -0.366625700 0.4029973
p:session2010 -0.6265472 2.243603e-01 -1.066293400 -0.1868009
p:session2011 -0.6089051 2.292836e-01 -1.058301000 -0.1595093
p:session2012 0.7997242 3.234028e-01 0.165854600 1.4335938
p:session2013 -0.5813095 2.762739e-01 -1.122806400 -0.0398127
p:SexM:TrapTypeRS 1.0341984 1.836248e-01 0.674293800 1.3941030
Can I simply back transform the Phi:Kill_F = -0.2170472 to get a slope?
I attempted to include the hunter kill as an individual covariate following the instructions in the MARK book, but I was stumped when it came to including continuous time-varying individual covariates. I kept getting an error when I tried to run my models
- Code: Select all
##Import captures, specify column classes
SR<- read.csv("SR_GBPU_DATA_Short.txt" ,
colClasses=c( Individual="factor",ch="character", Sex="factor", freq="numeric"),
strip.white=FALSE)
##Add individual covariates
SR$KillFem2006<-2
SR$KillFem2007<-3
SR$KillFem2008<-6
SR$KillFem2009<-1
SR$KillFem2010<-5
SR$KillFem2011<-8
SR$KillFem2012<-1
##################
##Process Data
SR.proc=process.data(SR, model="RDPdfHuggins", groups="Sex", begin.time=2006,time.intervals=c(0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0))
#######################################
###SR MODEL
##Sex + TrapType + TrapNights + time + session + (Sex * TrapType)
SR1<-mark(
data=SR.proc,
ddl=SR.ddl,
model.parameters =
list(
p=list(formula=~Sex + TrapType + TrapNights + time + session+ (Sex * TrapType),share=TRUE),
Phi=list(formula=~KillFem),
f=list(formula=~1)
),
output=FALSE,model="RDPdfHuggins",
delete=TRUE)
Error in make.mark.model(data.proc, title = title, parameters = model.parameters, :
Following covariates are duplicates of another covariate within the first 10 characters
KillFem2007, KillFem2008, KillFem2009, KillFem2011, KillFem2012
Error in mark(data = SR.proc, ddl = SR.ddl, model.parameters = list(p = list(formula = ~Sex + :
Misspecification of model or internal error in code
Any help would be much appreciated!!!