Trouble estimating Pi

I am trying to run a Huggins full heterogeneity model. I have 8 occasions in my capture history, 2 mixtures, and a sex column, (81 individuals).
Note: only 2 parameters counted of 3 specified parameters
AICc and parameter count have been adjusted upward
Output summary for HugFullHet model
Name : pi(~1)p(~1)c(~1)
Npar : 3 (unadjusted=2)
-2lnL: 749.5595
AICc : 755.5967 (unadjusted=753.57809)
Beta
estimate se lcl ucl
pi:(Intercept) -0.1000000 799.1222400 -1566.379600 1566.1796000
p:(Intercept) -1.5088851 0.2850582 -2.067599 -0.9501711
c:(Intercept) -0.9745597 0.1173609 -1.204587 -0.7445323
Real Parameter pi
Group:sexFemale
0.4750208
Group:sexMale
0.4750208
p is 0.811 for both mixtures and both sexes. c is 0.273 for both mixtures and sexes. Any ideas what is going on with Pi?
Thanks
Note: only 2 parameters counted of 3 specified parameters
AICc and parameter count have been adjusted upward
Output summary for HugFullHet model
Name : pi(~1)p(~1)c(~1)
Npar : 3 (unadjusted=2)
-2lnL: 749.5595
AICc : 755.5967 (unadjusted=753.57809)
Beta
estimate se lcl ucl
pi:(Intercept) -0.1000000 799.1222400 -1566.379600 1566.1796000
p:(Intercept) -1.5088851 0.2850582 -2.067599 -0.9501711
c:(Intercept) -0.9745597 0.1173609 -1.204587 -0.7445323
Real Parameter pi
Group:sexFemale
0.4750208
Group:sexMale
0.4750208
p is 0.811 for both mixtures and both sexes. c is 0.273 for both mixtures and sexes. Any ideas what is going on with Pi?
Thanks