I am currently running models with Rmark to investigate senescence on birds and more particulary effet of climat on bird aging.
I have 6 age groups ([0,1) [1,2) [2,3) [3,4) [4,28) [28,37];I start at age 0). I wish to test the effect of time covariates (Tmax for example) only on the two last age classes. To separately use each age class, I have created 6 age variables like that
- Code: Select all
vaut.ddl.age$S$a0=0
vaut.ddl.age$S$a0[vaut.ddl.age$S$Age==0]=1
vaut.ddl.age$S$a1=0
vaut.ddl.age$S$a1[vaut.ddl.age$S$Age==1]=1
vaut.ddl.age$S$a2=0
vaut.ddl.age$S$a2[vaut.ddl.age$S$Age==2]=1
vaut.ddl.age$S$a3=0
vaut.ddl.age$S$a3[vaut.ddl.age$S$Age==3]=1
vaut.ddl.age$S$a4_28=0
vaut.ddl.age$S$a4_28[vaut.ddl.age$S$age_covar=="[4,28)"]=1
vaut.ddl.age$S$a28_37=0
vaut.ddl.age$S$a28_37[vaut.ddl.age$S$age_covar=="[28,37]"]=1
So I am able to build age model with this kind of function
- Code: Select all
S.age=list(formula=~-1+a0+a1+a2+a3+a4_28+a28_37)
1) I want to know if there is a linear trend between survival of the last age class and a time covariate (Tmax) so I have done
- Code: Select all
S.age1=list(formula=~-1+a0+a1+a2+a3+a4_28+a28_37:Tmax)
2) Same thing thes two last age class
- Code: Select all
S.age2=list(formula=~-1+a0+a1+a2+a3+a4_28:Tmax+a28_37:Tmax)
My questions :
- Is it the correct to model the effect of covariate on age classes in this way? I think there is an intercept problem!!
- Is the model 2 correspond to an interaction model between Tmax and the two last age classes? I think that I also have an intercept problem (because I should estimate two intercepts and two slopes and I do not have parameter fot the intercepts).
- How can I test an additive effect of Tmax on the two last age classes (different intercept but one slope)
thanks and sorry in advance for my unclear English and my poor knowlegde of covariates models
Stephane