Are there reasons that RMark would use two beta parameters to represent a dichotomous group variable instead of one? One of the grouping variables in my dataset is called transmission interval (TI) and it has two levels (60 and 90). When I parameterize recapture probability using TI in an additive model, RMark gives me one parameter (as in 60 vs 90) unless there is an interaction among the other parameters in the model. In this case, it gives me two parameters (one for 60 and another for 90). The SEs on the beta terms go to zero when there are two parameters for TI. The highest ranked hypothesis uses TI as an additive term and includes an interaction so I would like to know if I can trust those betas.
Thank you very much,
Aswea
Col2009<-import.chdata("CH_RMark.txt", header=TRUE, field.types=c("f","f","f","n"))
#process the data and make the design data list (ddl)
Col2009.process=process.data(Col2009,model="CJS",groups=c("STOCK","RELEASE","TI"))
Col2009.ddl=make.design.data(Col2009.process, remove.unused=TRUE)
#add test variable to distinguish tags with transmission interval TI of 60 vers 90
Col2009.ddl$p$t90=0
Col2009.ddl$p$t90[Col2009.ddl$p$TI=="90"]=1
Col2009.ddl$p$t60=0
Col2009.ddl$p$t60[Col2009.ddl$p$t90=="0"]=1
Col2009.models=function()
{
Phi.time.stock=list(formula=~-1+time:STOCK)
#---p---
p.time.plusTI=list(formula=~-1+time+TI) #SEs on betas reasonable
p.time.plusTI.plusrelease=list(formula=~-1+time+RELEASE+TI) #SEs on betas reasonable
p.time.STOCK.plusTI=list(formula=~-1+time:STOCK+TI) #SEs on betas NOT reasonable
p.time.STOCK.plusTI90=list(formula=~-1+time:STOCK+TI:t90) #SEs on betas reasonable
cml=create.model.list("CJS")
results=mark.wrapper(cml,data=Col2009.process,ddl=Col2009.ddl,adjust=TRUE)
return(results)
}