- Code: Select all
- c1 c2 c3 c4
 [1,] 1 0 0 0
 [2,] 1 0 0 0
 [3,] 1 1 0 0
 [4,] 1 1 0 0
 [5,] 1 0 0 0
The top of the year matrix looks like this:
- Code: Select all
- c1 c2 c3 c4
 1 2021 2021 2021 2021
 2 2021 2021 2021 2021
 3 2021 2021 2021 2021
 4 2021 2021 2021 2021
 5 2020 2020 2020 2020
The top of the season matrix looks like this:
- Code: Select all
- c1 c2 c3 c4
 1 1 1 1 1
 2 1 1 1 1
 3 2 2 2 2
 4 2 2 2 2
 5 2 2 2 2
Both year and season are integers. Here is the code for both models:
- Code: Select all
- year.cjs <- F.cjs.estim(capture = ~ 1, survival = ~ year.mat,
 histories=ch.mat)
 seas.cjs <- F.cjs.estim(capture = ~ 1, survival = ~ seas.mat,
 histories=ch.mat)
Here are the results:
- Code: Select all
- F.cjs.estim(capture = ~1, survival = ~year.mat, histories = ch.mat)
 Capture var Est SE Survival var Est SE
 (Intercept) 2.04405 0.64901 (Intercept) 1.889 0.49182
 year.mat -0.00111 0.00024
 Message = SUCCESS: Convergence criterion met
 Link = logit
 Model df = 1
 Std Errors and QAIC adjusted for C_hat = 1 on 0 df
 Log likelihood = -97.5681262896564
 Deviance = 195.136252579313
 AIC = 197.136252579313
 AICc = 197.185635295362
 QAIC = 197.136252579313
 QAICc = 197.185635295362
 Population Size Estimates (se):
 N2=40 (3.71), N3=11 (1.47), N4=7 (1.06),
- Code: Select all
- F.cjs.estim(capture = ~1, survival = ~seas.mat, histories = ch.mat)
 Capture var Est SE Survival var Est SE
 (Intercept) 1.82267 0.61578 (Intercept) 0.44488 0.56501
 seas.mat -0.33433 0.25645
 Message = SUCCESS: Convergence criterion met
 Link = logit
 Model df = 3
 Std Errors and QAIC adjusted for C_hat = 1 on 0 df
 Log likelihood = -96.5329746777274
 Deviance = 193.065949355455
 AIC = 199.065949355455
 AICc = 199.369746823809
 QAIC = 199.065949355455
 QAICc = 199.369746823809
 Population Size Estimates (se):
 N2=41 (4.32), N3=12 (1.69), N4=7 (1.22),
Why does the df differ between models?

